

# **ETUDE DES PLANS D'EAU** DU PROGRAMME DE SURVEILLANCE DES BASSINS RHONE-MEDITERRANEE ET **CORSE - RAPPORT DE DONNEES BRUTES ET** INTERPRETATION - RESERVOIR DE PANTHIER -SUIVI ANNUEL 2011



crédit photo : Sciences et Techniques de l'Environnement

# Rapport n° 08-283/2012-PE2011-16 – Septembre 2012







co-traitants







| Maître d'Ouvrage : | Agence de l'Eau Rhône Méditerranée et Corse (AERMC) Direction des Données et Redevances 2-4, allée de Lodz 69363 Lyon cedex 09 |  |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                    | Interlocuteur: Mr Imbert Loïc                                                                                                  |  |  |  |  |
|                    | Coordonnées: loic.imbert@eaurmc.fr                                                                                             |  |  |  |  |

| Titre du Rapport                      | ETUDE DES PLANS D'EAU DU PROGRAMME DE SURVEILLANCE DES                                                                                                                                                                                                                          |                                                               |                    |  |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------|--|--|
|                                       | BASSINS RHONE- MEDITERRANEE ET CORSE                                                                                                                                                                                                                                            |                                                               |                    |  |  |
|                                       | <b>'</b>                                                                                                                                                                                                                                                                        |                                                               |                    |  |  |
| Résumé                                | Le rapport rend compte de l'ensemble des données collectées sur le réservoir de Panthier lors des campagnes de suivi 2011. Une présentation du plan d'eau et du cadre d'intervention est menée puis les résultats des investigations sont développés dans la suite du document. |                                                               |                    |  |  |
|                                       | <u>.</u>                                                                                                                                                                                                                                                                        |                                                               |                    |  |  |
| Mots-clés                             | <b>Géographiques</b> : Bassins Rhône-Méditerranée et Corse - Côte d'Or (21) - Réservoir de Panthier                                                                                                                                                                             |                                                               |                    |  |  |
|                                       |                                                                                                                                                                                                                                                                                 |                                                               |                    |  |  |
| _                                     | <b>Thématiques</b> : Résea                                                                                                                                                                                                                                                      | ux de surveillance - Etat trophique - Plan                    | n d'eau            |  |  |
| Date                                  | Thématiques : Résea                                                                                                                                                                                                                                                             | ux de surveillance - Etat trophique - Plai  Statut du rapport | n d'eau  Définitif |  |  |
| Date Présent tirage en exemplaire (s) | 1                                                                                                                                                                                                                                                                               |                                                               |                    |  |  |
| Présent tirage en                     | 1                                                                                                                                                                                                                                                                               | Statut du rapport  Diffusion informatique au                  | Définitif          |  |  |

| Auteur                               | Sciences et Techniques de l'Environnement – B.P. 374 17, Allée du Lac d'Aiguebelette - Savoie Technolac 73372 Le Bourget du Lac cedex tél.: 04 79 25 08 06; tcp: 04 79 62 13 22 |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rédacteur(s)                         | Hervé Coppin                                                                                                                                                                    |
|                                      |                                                                                                                                                                                 |
| Chef de projet – contrôle<br>qualité | Eric Bertrand                                                                                                                                                                   |

# **SOMMAIRE**

| - PI        | REAMBULE                                     | <u> 1</u>  |
|-------------|----------------------------------------------|------------|
| 1           | CADRE DU PROGRAMME DE SUIVI                  | 3          |
| 1.1         |                                              |            |
| 1.2         | · · · · · · · · · · · · · · · · · · ·        |            |
| 2           | PRESENTATION DU PLAN D'EAU ET LOCALISATION   |            |
|             | CONTENU DU SUIVI 2011                        |            |
|             |                                              |            |
|             |                                              |            |
| - RI        | ESULTATS DES INVESTIGATIONS                  | 9          |
|             | INVESTIGATIONS PHYSICOCHIMIQUES              |            |
| 1.1         |                                              |            |
| 1.2         |                                              |            |
| 2           | PHYTOPLANCTON                                |            |
| 2.1         | PRELEVEMENTS INTEGRES                        |            |
| 2.2         | LISTE FLORISTIQUE (NOMBRE DE CELLULES/ML)    | 23         |
| 2.3         |                                              |            |
| 3           | OLIGOCHETES                                  |            |
| 3.1         | CONDITIONS DE PRELEVEMENTS                   | 27         |
| 3.2         | CARACTERISTIQUES DES SEDIMENTS RECOLTES      | 28         |
| 3.3         | LISTE FAUNISTIQUE ET CALCUL DE L'INDICE IOBL | 28         |
| 3.4         |                                              |            |
|             |                                              |            |
|             |                                              |            |
| INT         | TERPRETATION GLOBALE DES RESULTATS           | 31         |
|             |                                              |            |
|             |                                              |            |
|             | ATRIENZEG                                    | 22         |
| <b>-</b> Aſ | NNEXES                                       | <u> 33</u> |

| Agence de l'Eau Rhône - Méditerranée & Corse<br>Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Réservoir de Panthier (21) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
| - PREAMBULE-                                                                                                                                                            |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |

## CADRE DU PROGRAMME DE SUIVI

Dans le cadre de la mise en œuvre de la Directive Cadre Européenne sur l'Eau (DCE), un programme de surveillance doit être établi pour suivre l'état écologique (ou le potentiel écologique) et l'état chimique des eaux douces de surface.

Différents réseaux constituent le programme de surveillance. Parmi ceux-ci, trois réseaux sont actuellement mis en œuvre sur les plans d'eau :

- Le réseau de contrôle de surveillance (RCS) vise à donner une image globale de la qualité des eaux. Tous les plans d'eau naturels supérieurs à 50 ha ont été pris en compte sur les bassins Rhône-Méditerranée et Corse. Pour les plans d'eau d'origine anthropique, une sélection a été opérée parmi les plans d'eau supérieurs à 50 ha, afin de couvrir au mieux les différents types présents (grandes retenues, plans d'eau de digue, plans d'eau de creusement).
- <u>Le contrôle opérationnel (CO)</u> vise à suivre spécifiquement les masses d'eau (naturelles ou anthropiques) supérieures à 50 ha, à risque de non atteinte du bon état (ou du bon potentiel) des eaux en 2015.
- <u>Le contrôle d'enquête (CE)</u> vise à déterminer les causes pour lesquelles une masse d'eau n'atteint pas les objectifs environnementaux (lorsqu'un contrôle opérationnel n'a pas encore été mis en place), ou à déterminer l'ampleur et l'incidence d'une pollution accidentelle.

Au total, 80 plans d'eau sont suivis sur les bassins Rhône-Méditerranée et Corse dans le cadre de des deux réseaux RCS et CO.

Le contenu du programme de suivi sur les plans d'eau est identique pour le RCS et le CO. Un plan d'eau concerné par le CO sera cependant suivi à une fréquence plus soutenue (tous les 3 ans) comparativement à un plan d'eau strictement visé par le RCS (tous les 6 ans). Un plan d'eau concerné par le CE est suivi de manière exceptionnelle.

Le tableau 1 résume les différents éléments suivis sur une année et les fréquences d'intervention associées. Il s'agit du suivi qualitatif type mis en place sur les plans d'eau concernés par le RCS et le CO. Pour chaque plan d'eau, selon leur typologie et l'historique de leur suivi, ce programme peut faire l'objet d'ajustements concernant l'hydrobiologie et l'hydromorphologie.

Le contenu du programme de suivi des plans d'eau au titre du CE est dit « allégé ». Ces plans d'eau ne font pas l'objet de prélèvements de fond concernant les analyses physico-chimiques sur eau et seule l'étude des peuplements phytoplanctoniques est réalisée concernant l'hydrobiologie et l'hydromorphologie.

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Réservoir de Panthier (21)

Tableau 1 : Synoptique générique des investigations menées sur une année de suivi d'un plan d'eau

|                   |                                     |                                                                          | Paramètres Type de prélèvements/<br>Mesures                                                                                                                                  |                                                            | HIVER | PRINTEMPS | ЕТЕ | AUTOMNE |
|-------------------|-------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------|-----------|-----|---------|
| Mesures in situ   |                                     | Mesures in situ                                                          | O2 dis. (mg/l, %sat.), pH, COND (25°C), T°C, transparence secchi                                                                                                             | Profils verticaux                                          |       | Х         | Х   | х       |
|                   | Ę.                                  | Physico-chimie classique                                                 | DBO5, PO4, Ptot, NH4, NKJ, NO3,<br>NO2, COT, COD, MEST, Turbidité,<br>Si dissoute                                                                                            | Prélèvement intégré et prélèvement ponctuel de fond        | Х     | Х         | Х   | х       |
|                   | Sur EAU                             | Substances prioritaires, autres substances et pesticides                 | Micropolluants*                                                                                                                                                              | Prélèvement intégré et<br>prélèvement ponctuel de fond     | Х     | Х         | Х   | Х       |
|                   | Pigments chlorophylliens            |                                                                          | Chlorophylle a + phéopigments                                                                                                                                                | Prélèvement intégré                                        | Х     | Х         | х   | Х       |
| Minéralisation    |                                     | Minéralisation                                                           | Ca <sup>2+</sup> , Na <sup>+</sup> , Mg <sup>2+</sup> , K <sup>+</sup> , dureté, TA,<br>TAC, SO <sub>4</sub> <sup>2-</sup> , Cl <sup>-</sup> , HCO <sub>3</sub> <sup>-</sup> | Prélèvement intégré                                        | Х     |           |     |         |
|                   | Eau interstitielle : Physico-chimie |                                                                          | PO4, Ptot, NH4                                                                                                                                                               |                                                            |       |           |     |         |
| Sur SEDIMENTS     | Phase solide<br>(<2mm)              | Physico-chimie                                                           | Corg., Ptot, NKJ, Granulomètrie,<br>perte au feu                                                                                                                             | Prélèvement ponctuel au point<br>de plus grande profondeur |       |           |     | Х       |
| Su                | ча                                  | Substances prioritaires, autres substances et pesticides Micropolluants* |                                                                                                                                                                              |                                                            |       |           |     |         |
| HADBOBIOI OCIE 44 |                                     |                                                                          | Phytoplancton                                                                                                                                                                | Prélèvement intégré<br>(Cemagref/Utermöhl)                 | Х     | Х         | Х   | Х       |
|                   |                                     |                                                                          | Oligochètes                                                                                                                                                                  | IOBL                                                       |       |           |     | Х       |
|                   |                                     | HYDROBIOLOGIE et                                                         | Mollusques                                                                                                                                                                   | IMOL                                                       |       |           |     | Х       |
|                   |                                     | YDROMORPHOLOGIE                                                          | Macrophytes                                                                                                                                                                  | Protocole Cemagref (nov.2007)                              |       |           | Х   |         |
|                   |                                     |                                                                          | Hydromorphologie                                                                                                                                                             | A partir du Lake Habitat Survey<br>(LHS)                   |       |           | Х   |         |
|                   |                                     |                                                                          | Suivi piscicole                                                                                                                                                              | Protocole CEN (en charge de l'ONEMA)                       |       |           | Х   |         |

<sup>\* :</sup> se référer à l'annexe 5 de la circulaire DCE 2006/16, analyses à réaliser sur les paramètres pertinents à suivre sur le support concerné

# 1.1 INVESTIGATIONS PHYSICOCHIMIQUES

Les différents paramètres physico-chimiques analysés sur l'eau sont suivis lors de quatre campagnes calées aux différentes phases du cycle annuel de fonctionnement du plan d'eau, soit entre le mois de février et le mois d'octobre. Les dates d'intervention sont mentionnées dans le tableau 2, au paragraphe 3.

A chaque campagne, sont réalisées au point de plus grande profondeur, toutes ou partie des investigations suivantes (en fonction du type de réseau) :

- 1. un profil vertical des paramètres physico-chimiques de terrain : température, conductivité, oxygène dissous (en mg/l et % saturation) et pH;
- 2. des échantillons d'eau pour analyses (physico-chimie, micropolluants, pigments chlorophylliens), il s'agit :
  - ✓ d'un prélèvement intégré sur la colonne d'eau (constitué à partir du mélange de prélèvements ponctuels réalisés tous les mètres entre la surface et 2,5 fois la transparence mesurée avec le disque de Secchi);

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse − Réservoir de Panthier (21) ✓ d'un prélèvement de fond (réalisé généralement à un mètre du fond).

Les sédiments sont prélevés une fois par an lors de la 4<sup>ème</sup> et dernière campagne au point de plus grande profondeur.

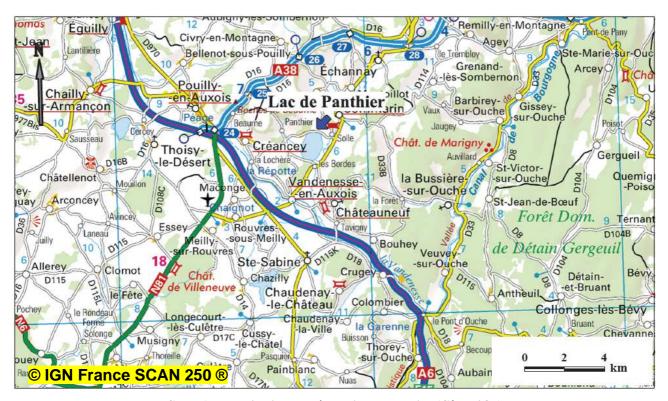
Les échantillons d'eau et de sédiments ont été transmis au Laboratoire Départemental d'Analyses de la Drôme (LDA 26) en charge des analyses.

# 1.2 Investigations hydromorphologiques et hydrobiologiques

Les investigations hydromorphologiques et hydrobiologiques ont été réalisées à des périodes adaptées aux objectifs des méthodes utilisées.

L'évaluation morphologique du lac est établie en suivant le protocole du Lake Habitat Survey (LHS) dans sa version 3.1 (mai 2006). Cet élément n'a pas été suivi en 2011.

Les investigations hydrobiologiques comprennent plusieurs volets :


- l'étude des peuplements phytoplanctoniques à partir du protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en œuvre de la DCE (CEMAGREF INRA; version 3.3 de mars 2009);
- 2 l'étude des peuplements d'oligochètes à travers la détermination de l'Indice Oligochètes de Bio-indication Lacustre : IOBL (Norme AFNOR NF T90-391, mars 2005), les prélèvements suivent ce protocole.
- l'étude des peuplements de mollusques avec la détermination de l'Indice Mollusques : IMOL (Mouthon, J. (1993) Un indice biologique lacustre basé sur l'examen des peuplements de mollusques. Bull. Franç. Pêche Pisc., 331 : 397-406) ;
- l'étude des peuplements de macrophytes sur le lac s'appuie sur la méthode mise au point par le CEMAGREF et décrite au sein de la norme AFNOR XP T90-328 : « Echantillonnage des communautés de macrophytes en plans d'eau », décembre 2010.

## 2 Presentation du plan d'eau et localisation

Le réservoir de Panthier est situé dans le département de la Côte-d'Or (21), sur la commune de Vandenesse-en-Auxois à une altitude de 373 m NGF. Le plan d'eau s'étend sur 105 ha. La profondeur maximale mesurée en 2011 est d'environ 11,5 m. La construction d'une digue en 1875 est à l'origine de ce plan d'eau qui sert à l'alimentation en eau du canal de Bourgogne grâce à une capacité de stockage de 8,2 millions de m³. Il est alimenté par le ruisseau de Commarin via une rigole d'amenée, par le canal de Bourgogne via une dérivation des eaux excédentaires du bief de partage et par le ruisseau de Panthier. Il est la propriété de l'Etat et est géré par la DDT Service Navigation de Dijon. Il est également aménagé pour les loisirs nautiques.

Le climat de la Côte-d'Or est de type océanique à tendance semi-continentale. Des pluies sont fréquentes en toutes saisons. Les étés sont chauds et secs et les hivers sont assez froids.

La végétation s'est développée sur les rives Nord et Ouest du réservoir, où les pentes douces ont permis la formation de roselières et de saulaies. En fin d'été, la baisse du niveau d'eau favorise l'apparition d'un tapis herbacé. Pratiquement l'ensemble du périmètre du plan d'eau est aménagé d'une digue.



Carte 1 : Localisation du réservoir de Panthier (Côte d'Or)

## 3 CONTENU DU SUIVI 2011

Le réservoir de Panthier est suivi au titre du Contrôle Opérationnel (CO). Parmi les investigations hydrobiologiques et hydromorphologiques précitées, seules l'étude des peuplements phytoplanctoniques et l'étude des peuplements oligochètes ont été réalisées. Les études des peuplements de mollusques et de macrophytes n'ont pas été mises en œuvre en raison du caractère marnant du plan d'eau. L'étude hydromorphologique n'a également pas été menée en 2011 (déjà suivie en 2009 par l'Office National de l'Eau et des Milieux Aquatiques), la fréquence de suivi de cet élément étant de 6 ans. Le tableau ci-dessous indique la répartition des missions au sein du groupement aussi bien en phase terrain qu'en phase laboratoire/détermination. S.T.E. a en outre eu en charge de coordonner la mission et de collecter l'ensemble des données pour établir les rapports et mener l'exploitation des données.

Tableau 2 : Synoptique des interventions de terrain et de laboratoire sur le plan d'eau, par campagne

| Lac de Panthier (21)        |            | Laboratoire -<br>détermination |            |                  |            |                            |
|-----------------------------|------------|--------------------------------|------------|------------------|------------|----------------------------|
| Campagne                    | C1         | C2                             | C3         | Campagne IOBL    | C4         |                            |
| Date                        | 08/03/2011 | 14/06/2011                     | 04/08/2011 | 15/09/2011       | 27/09/2011 | automne/hiver<br>2011-2012 |
| Physicochimie des eaux      | S.T.E.     | S.T.E.                         | S.T.E.     |                  | S.T.E.     | LDA26                      |
| Physicochimie des sédiments |            |                                |            |                  | S.T.E.     | LDA26                      |
| Phytoplancton               | S.T.E.     | S.T.E.                         | S.T.E.     |                  | S.T.E.     | BECQ'Eau                   |
| Oligochètes                 |            |                                |            | IRIS consultants |            | IRIS consultants           |

En 2011, l'hiver a été relativement frais et peu arrosé dans la région Bourgogne. La tendance s'est amplifiée durant le printemps avec une longue période exceptionnellement chaude et sèche d'avril à juin. L'été a ensuite été particulièrement arrosé évitant une éventuelle sécheresse à la région, avec des températures conformes aux moyennes saisonnières. Comme au printemps, la chaleur et le beau temps se sont installés durablement en automne entraînant un léger déficit pluviométrique.

| Agence de l'Eau Rhône - Méditerranée & Corse<br>Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Réservoir de Panthier (21) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
| - RESULTATS DES<br>INVESTIGATIONS -                                                                                                                                     |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |

# 1 INVESTIGATIONS PHYSICOCHIMIQUES

Les comptes rendus des campagnes de prélèvements physicochimiques et phytoplanctoniques sont présentés en annexe 3.

#### 1.1 ANALYSES DES EAUX DU LAC

#### 1.1.1 Profils verticaux et evolutions saisonnières

Le suivi prévoit la réalisation de profils verticaux sur la colonne d'eau à chaque campagne. Quatre paramètres sont mesurés : la température, la conductivité, l'oxygène (en concentration et en % saturation) et le pH. Les graphiques regroupant ces résultats pour chaque paramètre lors des 4 campagnes sont affichés dans ce chapitre.

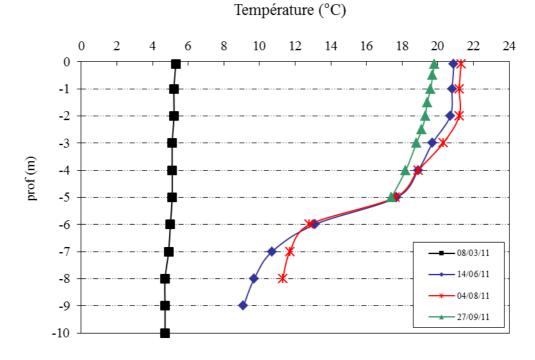



Figure 1: Profils verticaux de température au point de plus grande profondeur

En fin d'hiver, la température est homogène à 5°C sur toute la colonne d'eau. Un brassage complet des eaux a donc eu lieu suite à la période hivernale.

Au printemps, la stratification s'installe avec une augmentation de la température des eaux jusqu'à 20,8°C en surface et une thermocline établie entre 2 et 7 m de profondeur. Les eaux hypolimniques restent fraîches à environ 9°C.

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Réservoir de Panthier (21) En été, la stratification est toujours bien établie : la thermocline se situe toujours entre 2 et 7 m. On constate seulement un léger réchauffement des eaux épilimniques (21,2°C) et des eaux hypolimniques (11,3°C au fond).

En fin d'été, le déstockage du réservoir (6 m de profondeur maximale au lieu de 9 m lors de la campagne précédente) par soutirage des eaux hypolimniques entraîne la déstratification du plan d'eau. Ainsi, on observe un gradient de température de faible amplitude : 19,8°C en surface et 17,4°C au fond.

La stratification thermique est bien établie sur le réservoir de Panthier. Cependant, la gestion hydraulique pour alimentation du canal de Bourgogne conduit à une disparition précoce de cette stratification durant la période estivale.

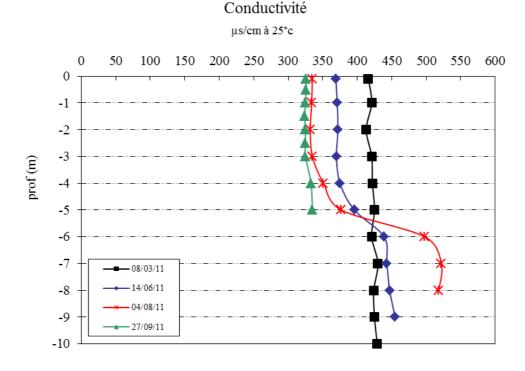



Figure 2 : Profils verticaux de conductivité au point de plus grande profondeur

La conductivité indique une eau bien minéralisée, typiquement en lien avec la nature calcaire des terrains. Elle est comprise entre 325 et 525  $\mu$ S/cm à 25°C. Elle est homogène sur toute la colonne d'eau lors de la 1ère campagne à environ 425 $\mu$ S/cm. Au cours des campagnes suivantes, on observe :

- d'une part une diminution progressive de la conductivité dans les eaux de surface en lien avec l'utilisation des minéraux pour le développement du phytoplancton. Les valeurs de conductivité sont donc proches de 370 μS/cm le 14/06/2011, 335 μS/cm le 04/08/2011 et 325 μS/cm le 27/09/2011 dans les eaux de surface ;
- et d'autre part une augmentation progressive de la conductivité dans les eaux profondes en lien avec les processus de minéralisation de la matière organique. La conductivité est proche de 455 μS/cm en campagne 2 et de 520 μS/cm en campagne 3. En campagne 4, il n'est plus observé de conductivité élevée en profondeur. Le déstockage du réservoir par soutirage des eaux du fond peut expliquer la disparition de cette couche profonde bien minéralisée.

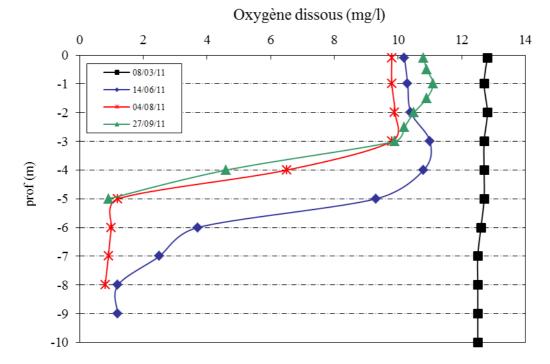



Figure 3 : Profils verticaux d'oxygène (mg/l) au point de plus grande profondeur

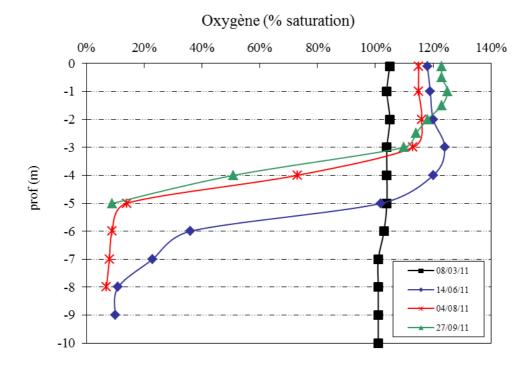



Figure 4 : Profils verticaux d'oxygène (% sat.) au point de plus grande profondeur

En fin d'hiver, l'oxygène dissous est homogène sur la colonne d'eau à environ 100% de saturation. Dès la 2<sup>ème</sup> campagne et lors des campagnes suivantes, on observe des sursaturations en oxygène assez importantes (proches de 120%) dans la couche de surface. Elles témoignent d'une activité photosynthétique importante. Parallèlement, les eaux du fond sont désoxygénées lors des 3

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse − Réservoir de Panthier (21) campagnes estivales (≤ 10% d'oxygène dissous dans le fond). L'oxygène dissous est consommé pour dégrader la matière organique produite. L'oxycline se situe entre 4 et 8 m de profondeur en campagne 2. La désoxygénation s'accentue ensuite en campagne 3 : la consommation d'oxygène est effective dès 4 m de profondeur. Enfin, en campagne 4, le soutirage des eaux profondes pour l'alimentation du canal de Bourgogne réduit considérablement la couche anoxique.

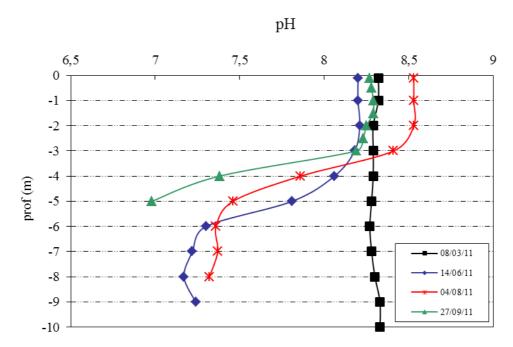



Figure 5 : Profils verticaux de pH au point de plus grande profondeur

Le pH est compris entre 7,0 et 8,5. En fin d'hiver, il est homogène à 8,3 sur toute la colonne d'eau. Dans l'épilimnion, il reste élevé ou augmente jusqu'à 8,5 en campagne 3 en lien avec l'activité photosynthétique. Simultanément, il diminue dans les couches profondes avec les processus de respiration et de décomposition de la matière organique : 7,2 en campagne 2, 7,3 en campagne 3 et 7,0 en campagne 4. La baisse du pH est significative à partir de 3 m de profondeur lors de ces 3 campagnes.

## 1.1.2 PARAMETRES DE CONSTITUTION ET TYPOLOGIE DU LAC

N.B. pour tous les tableaux suivants :

LD = limite de détection, généralement =SQ/3, sauf pour DBO5 et turbidité pour lesquels LD=SQ, avec SQ = seuil de quantification; Prés. = valeur comprise entre LD et SQ, composé présent mais non précisément quantifiable.

Les paramètres de minéralisation sont étudiés lors de la 1<sup>ère</sup> campagne uniquement. Les résultats sont présentés dans le tableau 3.

Tableau 3 : Résultats des paramètres de minéralisation lors de la 1ère campagne

| Réservoir de      | Réservoir de Panthier |                      | 08/03/2011 |      |
|-------------------|-----------------------|----------------------|------------|------|
| code plan d'eau : | U1305043              | seuil quantification | Intégré    | Fond |
| Dureté calculée   | °F                    | 0,1 pour C1 seule    | 21,9       |      |
| T.A.C.            | °F                    | 0,5 pour C1 seule    | 19,9       |      |
| T.A.              | °F                    | 0,5 pour C1 seule    | 0,9        |      |
| CO <sub>3</sub>   | mg(CO3)/l             | 6 pour C1 seule      | 10,8       |      |
| HCO <sub>3</sub>  | mg(HCO3)/l            | 6,1 pour C1 seule    | 220,8      |      |
| Calcium total     | mg(Ca)/l              | 1 pour C1 seule      | 81         |      |
| Magnésium         | mg(Mg)/l              | 1 pour C1 seule      | 4,2        |      |
| Sodium            | mg(Na)/l              | 1 pour C1 seule      | 10         |      |
| Potassium         | mg(K)/l               | 1 pour C1 seule      | 2,4        |      |
| Chlorures         | mg(Cl)/l              | 1 pour C1 seule      | 17         |      |
| Sulfates          | mg(SO4)/l             | 1 pour C1 seule      | 24         |      |

Les résultats indiquent une eau riche en hydrogénocarbonates, de dureté forte conformément à la nature calcaire des terrains observés.

#### 1.1.3 RESULTATS DES ANALYSES PHYSICOCHIMIQUES DES EAUX (HORS MICROPOLLUANTS)

Tableau 4 : Résultats des paramètres de physico-chimie classique sur eau.

| Physico-chimie sur eau       |            |                      |                                                                                                                                                                                             |                                                                                                                                                                   |                                                                                                                                         |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|------------------------------|------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-------------------|
| Réservoir de                 | Panthier   | seuil quantification | 08/03/                                                                                                                                                                                      | 2011                                                                                                                                                              | 14/06/                                                                                                                                  | 2011                                                                                                                      | 04/08/2011                                                                                      |                                                                       | 27/09/2011                                  |                   |
| code plan d'eau :            | U1305043   | seun quantification  | Intégré                                                                                                                                                                                     | Fond                                                                                                                                                              | Intégré                                                                                                                                 | Fond                                                                                                                      | Intégré                                                                                         | Fond                                                                  | Intégré                                     | Fond              |
| Turbidité                    | NTU        | 0,1 pour C1 à C4     | 1,6                                                                                                                                                                                         | 2,0                                                                                                                                                               | 2,1                                                                                                                                     | 11,0                                                                                                                      | 2,5                                                                                             | 32,3                                                                  | 3,8                                         | 4,1               |
| M.E.S.T.                     | mg/l       | 1 pour C1 à C4       | 5                                                                                                                                                                                           | 5                                                                                                                                                                 | 5                                                                                                                                       | 12                                                                                                                        | 5                                                                                               | 22                                                                    | 9                                           | 7                 |
| C.O.D.                       | mg(C)/l    | 0,1 pour C1 à C4     | 3,8                                                                                                                                                                                         | 3,4                                                                                                                                                               | 3,9                                                                                                                                     | 4,1                                                                                                                       | 4,6                                                                                             | 4,3                                                                   | 4,8                                         | 4,5               |
| C.O.T.                       | mg(C)/l    | 0,1 pour C1 à C4     | 3,8                                                                                                                                                                                         | 3,9                                                                                                                                                               | 4,0                                                                                                                                     | 4,1                                                                                                                       | 4,6                                                                                             | 5,1                                                                   | 4,9                                         | 4,5               |
| D.B.O.5                      | mg(O2)/l   | 0,5 pour C1 à C4     | 3,9                                                                                                                                                                                         | 3,8                                                                                                                                                               | 1,9                                                                                                                                     | 4,0                                                                                                                       | 1,4                                                                                             | 3,8                                                                   | 3,0                                         | 1,2               |
| Azote Kjeldahl               | mg(N)/l    | 1 pour C1 à C4       | <ld< td=""><td><ld< td=""><td>2</td><td>2</td><td><ld< td=""><td>2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>                                     | <ld< td=""><td>2</td><td>2</td><td><ld< td=""><td>2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>                                     | 2                                                                                                                                       | 2                                                                                                                         | <ld< td=""><td>2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>                 | 2                                                                     | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| NH <sub>4</sub> <sup>+</sup> | mg(NH4)/l  | 0,05 pour C1 à C4    | <ld< td=""><td><ld< td=""><td><ld< td=""><td>0,32</td><td><ld< td=""><td>1,85</td><td><ld< td=""><td>0,16</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>                            | <ld< td=""><td><ld< td=""><td>0,32</td><td><ld< td=""><td>1,85</td><td><ld< td=""><td>0,16</td></ld<></td></ld<></td></ld<></td></ld<>                            | <ld< td=""><td>0,32</td><td><ld< td=""><td>1,85</td><td><ld< td=""><td>0,16</td></ld<></td></ld<></td></ld<>                            | 0,32                                                                                                                      | <ld< td=""><td>1,85</td><td><ld< td=""><td>0,16</td></ld<></td></ld<>                           | 1,85                                                                  | <ld< td=""><td>0,16</td></ld<>              | 0,16              |
| $NO_3$                       | mg(NO3)/l  | 1 pour C1 à C4       | 10,0                                                                                                                                                                                        | 10,0                                                                                                                                                              | 3,3                                                                                                                                     | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| $NO_2^-$                     | mg(NO2)/l  | 0,02 pour C1 à C4    | 0,05                                                                                                                                                                                        | 0,05                                                                                                                                                              | 0,07                                                                                                                                    | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| PO <sub>4</sub>              | mg(PO4)/l  | 0,015 pour C1 à C4   | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,034</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td>0,034</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td>0,034</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td>0,034</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>             | 0,034                                                                                           | <ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Phosphore Total              | mg(P)/l    | 0,005 pour C1 à C4   | 0,043                                                                                                                                                                                       | 0,026                                                                                                                                                             | 0,042                                                                                                                                   | 0,118                                                                                                                     | 0,047                                                                                           | 0,156                                                                 | 0,051                                       | 0,039             |
| Silice dissoute              | mg(SiO2)/l | 0,2 pour C1 à C4     | 3,2                                                                                                                                                                                         | 3,2                                                                                                                                                               | 2,8                                                                                                                                     | 9,2                                                                                                                       | 2,7                                                                                             | 11,4                                                                  | 4,2                                         | 6,3               |
| Chl. A                       | μg/l       | 1 pour C1 à C4       | 12,0                                                                                                                                                                                        |                                                                                                                                                                   | 3,2                                                                                                                                     |                                                                                                                           | 5,7                                                                                             |                                                                       | 11,9                                        |                   |
| Chl. B                       | μg/l       | 1 pour C1 à C4       | <ld< td=""><td></td><td><ld< td=""><td></td><td>1,4</td><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<>                                                                       |                                                                                                                                                                   | <ld< td=""><td></td><td>1,4</td><td></td><td><ld< td=""><td></td></ld<></td></ld<>                                                      |                                                                                                                           | 1,4                                                                                             |                                                                       | <ld< td=""><td></td></ld<>                  |                   |
| Chl. C                       | μg/l       | 1 pour C1 à C4       | 4,0                                                                                                                                                                                         |                                                                                                                                                                   | 3,1                                                                                                                                     |                                                                                                                           | 2,5                                                                                             |                                                                       | 4,9                                         |                   |
| Indice phéopigments          | μg/l       | 1 pour C1 à C4       | 2,0                                                                                                                                                                                         |                                                                                                                                                                   | 2,8                                                                                                                                     |                                                                                                                           | 3,6                                                                                             |                                                                       | 4,2                                         |                   |

Les analyses des fractions dissoutes ont été réalisées sur eau filtrée (COD, NH4, NO3, NO2, PO4, Si).

Les concentrations en carbone organique dissous sont élevées sur les 4 campagnes, comprises entre 3,4 et 4,8 mg/l. Les eaux de surface sont modérément chargées en particules (jusqu'à 9 mg/l). En période estivale, les eaux du fond présentent davantage de matières en suspension notamment lors de la 3<sup>ème</sup> campagne (22 mg/l).

En fin d'hiver, les concentrations en nutriments disponibles dans les eaux du lac sont élevées pour les nitrates (10 mg/l) et les nitrites et faibles pour les orthophosphates ([P-PO<sub>4</sub><sup>3-</sup>] < 0,005 mg/l) : le rapport N/P¹ est élevé (> 100), le phosphore constitue ainsi le facteur limitant à la croissance du phytoplancton par rapport à l'azote. Les nitrates sont plus faiblement quantifiés dans l'échantillon intégré de campagne 2 (3,3 mg/l) et ne sont pas détectés lors de cette même campagne dans l'échantillon de fond et lors des campagnes suivantes sur toute la colonne d'eau. Cette diminution de la teneur en nitrates s'explique en zone euphotique par une consommation par le phytoplancton. Dans l'hypolimnion anoxique, cette baisse résulte également du processus de réduction des nitrates en ammonium. Des orthophosphates sont par ailleurs disponibles dans les eaux de surface en campagne 3 (34  $\mu$ g/l).

L'ammonium est quantifié uniquement dans les prélèvements de fond des 3 campagnes estivales et plus particulièrement lors de la campagne du 04/08/2011 (1,85 mg/l). De même, les concentrations en phosphore total sont plus importantes dans les eaux profondes que dans la zone euphotique lors des campagnes 2 et 3. Ces éléments suggèrent un relargage de ces 2 composés à l'interface eau/sédiment lors des périodes d'anoxie gagnant les eaux profondes du plan d'eau.

<sup>&</sup>lt;sup>1</sup> le rapport N/P est calculé à partir de [Nminéral]/ [P-PO<sub>4</sub><sup>3-</sup>] avec N minéral = [N-NO<sub>3</sub><sup>-</sup>]+[N-NO<sub>2</sub><sup>-</sup>]+[N-NH<sub>4</sub><sup>+</sup>] sur la campagne de fin d'hiver.

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Réservoir de Panthier (21) Enfin, la teneur en silice dissoute est moyenne sur l'échantillon intégré, comprise entre 2,8 et 4,2 mg/l selon les saisons et ne semble pas limiter le développement des diatomées selon les observations effectuées. En parallèle, elle augmente au fond durant la période estivale avec la dégradation des frustules de diatomées. La production chlorophyllienne est relativement élevée dans les eaux du réservoir de Panthier puisque la concentration en pigments chlorophylliens (somme des concentrations mesurées en chlorophylle a + b + c) atteint jusqu'à une valeur comprise entre 16 et  $17 \,\mu g/l$  lors des campagnes 1 et 4.

#### 1.1.4 MICROPOLLUANTS MINERAUX

Tableau 5 : Résultats d'analyses de métaux sur eau

| Micropolluants min | Micropolluants minéraux sur eau |                  |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|--------------------|---------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-------------------|
| Réservoir de       | Panthier                        | seuil            | 08/03/2                                                                                                                                                                                                 | 2011                                                                                                                                                                          | 14/06/                                                                                                                                              | 2011                                                                                                                      | 04/08/                                                                                          | 2011                                                                  | 27/09/                                      | 2011              |
| code plan d'eau :  | U1305043                        | quantification   | Intégré                                                                                                                                                                                                 | Fond                                                                                                                                                                          | Intégré                                                                                                                                             | Fond                                                                                                                      | Intégré                                                                                         | Fond                                                                  | Intégré                                     | Fond              |
| Aluminium          | μg (Al)/l                       | 5 pour C1 à C4   | 8                                                                                                                                                                                                       | 7                                                                                                                                                                             | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Antimoine          | μg(Sb)/l                        | 0,2 pour C1 à C4 | 0,3                                                                                                                                                                                                     | <ld< td=""><td><ld< td=""><td><ld< td=""><td>0,2</td><td><ld< td=""><td>0,3</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>                             | <ld< td=""><td><ld< td=""><td>0,2</td><td><ld< td=""><td>0,3</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>                             | <ld< td=""><td>0,2</td><td><ld< td=""><td>0,3</td><td><ld< td=""></ld<></td></ld<></td></ld<>                             | 0,2                                                                                             | <ld< td=""><td>0,3</td><td><ld< td=""></ld<></td></ld<>               | 0,3                                         | <ld< td=""></ld<> |
| Argent             | μg(Ag)/l                        | 0,2 pour C1 à C4 | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Arsenic            | μg(As)/l                        | 0,2 pour C1 à C4 | 0,7                                                                                                                                                                                                     | 0,7                                                                                                                                                                           | 1,1                                                                                                                                                 | 3,2                                                                                                                       | 1,8                                                                                             | 2,9                                                                   | 2,8                                         | 5,5               |
| Baryum             | μg(Ba)/l                        | 5 pour C1 à C4   | 14                                                                                                                                                                                                      | 13                                                                                                                                                                            | 13                                                                                                                                                  | 10                                                                                                                        | 9                                                                                               | 11                                                                    | 13                                          | 13                |
| Beryllium          | μg(Be)/l                        | 0,2 pour C1 à C4 | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Bore               | μg(B)/l                         | 5 pour C1 à C4   | 12                                                                                                                                                                                                      | 13                                                                                                                                                                            | 13                                                                                                                                                  | 13                                                                                                                        | 13                                                                                              | 14                                                                    | 11                                          | 12                |
| Cadmium            | μg(Cd)/l                        | 0,2 pour C1 à C4 | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Chrome Total       | μg(Cr)/l                        | 0,2 pour C1 à C4 | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>                             | <ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>                             | <ld< td=""><td><ld< td=""><td>0,3</td><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>                             | <ld< td=""><td>0,3</td><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>                             | 0,3                                                                                             | 0,2                                                                   | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Cobalt             | μg(Co)/l                        | 0,2 pour C1 à C4 | <ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td><td><ld< td=""><td>0,5</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>                             | <ld< td=""><td><ld< td=""><td>0,3</td><td><ld< td=""><td>0,5</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>                             | <ld< td=""><td>0,3</td><td><ld< td=""><td>0,5</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>                             | 0,3                                                                                                                       | <ld< td=""><td>0,5</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>               | 0,5                                                                   | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Cuivre             | μg(Cu)/l                        | 0,2 pour C1 à C4 | 1,3                                                                                                                                                                                                     | 1,0                                                                                                                                                                           | 0,9                                                                                                                                                 | 0,3                                                                                                                       | 0,5                                                                                             | 0,3                                                                   | 0,4                                         | 0,8               |
| Etain              | μg(Sn)/l                        | 0,2 pour C1 à C4 | 0,4                                                                                                                                                                                                     | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Fer total          | μg(Fe)/l                        | 5 pour C1 à C4   | 23                                                                                                                                                                                                      | 18                                                                                                                                                                            | <ld< td=""><td>30</td><td><ld< td=""><td>29</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>                               | 30                                                                                                                        | <ld< td=""><td>29</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>                | 29                                                                    | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Manganèse          | μg(Mn)/l                        | 5 pour C1 à C4   | <ld< td=""><td><ld< td=""><td><ld< td=""><td>295</td><td><ld< td=""><td>2463</td><td><ld< td=""><td>24</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>                                           | <ld< td=""><td><ld< td=""><td>295</td><td><ld< td=""><td>2463</td><td><ld< td=""><td>24</td></ld<></td></ld<></td></ld<></td></ld<>                                           | <ld< td=""><td>295</td><td><ld< td=""><td>2463</td><td><ld< td=""><td>24</td></ld<></td></ld<></td></ld<>                                           | 295                                                                                                                       | <ld< td=""><td>2463</td><td><ld< td=""><td>24</td></ld<></td></ld<>                             | 2463                                                                  | <ld< td=""><td>24</td></ld<>                | 24                |
| Mercure            | μg(Hg)/l                        | 0,1 pour C1 à C4 | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Molybdène          | μg(Mo)/l                        | 0,2 pour C1 à C4 | 0,5                                                                                                                                                                                                     | 0,4                                                                                                                                                                           | 0,4                                                                                                                                                 | 0,4                                                                                                                       | 0,4                                                                                             | 0,2                                                                   | 0,5                                         | 0,4               |
| Nickel             | μg(Ni)/l                        | 0,2 pour C1 à C4 | 1,0                                                                                                                                                                                                     | 0,9                                                                                                                                                                           | 0,9                                                                                                                                                 | 1,0                                                                                                                       | 1,1                                                                                             | 0,9                                                                   | 1,2                                         | 1,2               |
| Plomb              | μg(Pb)/l                        | 0,2 pour C1 à C4 | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Sélénium           | μg(Se)/l                        | 0,2 pour C1 à C4 | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Thallium           | μg(Tl)/l                        | 0,2 pour C1 à C4 | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Titane             | μg(Ti)/l                        | 5 pour C1 à C4   | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Uranium            | μg(U)/l                         | 0,2 pour C1 à C4 | 0,5                                                                                                                                                                                                     | 0,5                                                                                                                                                                           | 0,5                                                                                                                                                 | 0,4                                                                                                                       | 0,5                                                                                             | 0,2                                                                   | 0,5                                         | 0,4               |
| Vanadium           | μg(V)/l                         | 0,2 pour C1 à C4 | 0,4                                                                                                                                                                                                     | 0,4                                                                                                                                                                           | <ld< td=""><td><ld< td=""><td>0,3</td><td><ld< td=""><td>0,5</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>                             | <ld< td=""><td>0,3</td><td><ld< td=""><td>0,5</td><td><ld< td=""></ld<></td></ld<></td></ld<>                             | 0,3                                                                                             | <ld< td=""><td>0,5</td><td><ld< td=""></ld<></td></ld<>               | 0,5                                         | <ld< td=""></ld<> |
| Zinc               | μg(Zn)/l                        | 2 pour C1 à C4   | 3                                                                                                                                                                                                       | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |

Les analyses sur les métaux ont été effectuées sur eau filtrée.

Plusieurs métaux lourds sont présents dans l'eau en quantité plus ou moins importante :

- ✓ l'arsenic présente des teneurs comprises entre 0,7 et 5,5 µg/l;
- ✓ le cuivre est présent à des concentrations comprises entre 0.3 et  $1.3 \mu g/l$ ;
- ✓ le nickel est quantifié jusqu'à la concentration de 1,2 µg/l en campagne 4.

Les concentrations en manganèse mais aussi en fer et en arsenic sont significativement plus élevées dans le fond que dans la zone euphotique lors des campagnes 2 et 3, attestant ainsi des conditions de désoxygénation en profondeur. Lors de la minéralisation de la matière organique à l'interface

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Réservoir de Panthier (21) eau/sédiment en condition anoxique, il y a réduction des oxydes de fer et de manganèse notamment, qui apparaissent alors dans la colonne d'eau.

### 1.1.5 MICROPOLLUANTS ORGANIQUES

Le tableau 6 indique les micropolluants organiques qui ont été détectés (présent à l'état de traces ou quantifiés) lors des campagnes de prélèvements en 2011. La liste de l'ensemble des substances analysées est fournie en annexe 1.

Tableau 6: Résultats d'analyses de micropolluants organiques présents sur eau

| Micropolluants organiques       | Micropolluants organiques mis en évidence sur eau |                      |                                                                                                                                                                                             |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|---------------------------------|---------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-------------------|
| Réservoir de                    | Panthier                                          | seuil quantification | 08/03/2011 14/06/20                                                                                                                                                                         |                                                                                                                                                                               | 2011                                                                                                                                                | 1 04/08/2011                                                                                                              |                                                                                                 | 27/09/2011                                                            |                                             |                   |
| code plan d'eau :               | U1305043                                          | seum quantification  | Intégré                                                                                                                                                                                     | Fond                                                                                                                                                                          | Intégré                                                                                                                                             | Fond                                                                                                                      | Intégré                                                                                         | Fond                                                                  | Intégré                                     | Fond              |
| Acide monochloroacétique        | μg/l                                              | 5 pour C1 à C4       | <ld< td=""><td><ld< td=""><td>6</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>     | <ld< td=""><td>6</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>                 | 6                                                                                                                                                   | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| AMPA                            | μg/l                                              | 0,1 pour C1 à C4     | 1,7                                                                                                                                                                                         | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Benzène                         | μg/l                                              | 0,2 pour C1 à C4     | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1,0</td><td>1,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>                 | <ld< td=""><td><ld< td=""><td><ld< td=""><td>1,0</td><td>1,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>                             | <ld< td=""><td><ld< td=""><td>1,0</td><td>1,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>                             | <ld< td=""><td>1,0</td><td>1,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>                             | 1,0                                                                                             | 1,2                                                                   | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Benzo (a) pyrène                | μg/l                                              | 0,001 pour C1 à C4   | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,002</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,002</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>             | <ld< td=""><td><ld< td=""><td><ld< td=""><td>0,002</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>             | <ld< td=""><td><ld< td=""><td>0,002</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>             | <ld< td=""><td>0,002</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>             | 0,002                                                                 | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Chlortoluron                    | μg/l                                              | 0,05 pour C1 à C4    | 0,10                                                                                                                                                                                        | 0,11                                                                                                                                                                          | 0,07                                                                                                                                                | prés.                                                                                                                     | prés.                                                                                           | 0,05                                                                  | prés.                                       | prés.             |
| Di(2-éthylhexyl)phtalate (DEHP) | μg/l                                              | 1 pour C1 à C4       | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1,0</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>   | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1,0</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>               | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1,0</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>               | <ld< td=""><td><ld< td=""><td><ld< td=""><td>1,0</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>               | <ld< td=""><td><ld< td=""><td>1,0</td><td><ld< td=""></ld<></td></ld<></td></ld<>               | <ld< td=""><td>1,0</td><td><ld< td=""></ld<></td></ld<>               | 1,0                                         | <ld< td=""></ld<> |
| Ethylbenzène                    | μg/l                                              | 0,2 pour C1 à C4     | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1,4</td><td>1,3</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>                 | <ld< td=""><td><ld< td=""><td><ld< td=""><td>1,4</td><td>1,3</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>                             | <ld< td=""><td><ld< td=""><td>1,4</td><td>1,3</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>                             | <ld< td=""><td>1,4</td><td>1,3</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>                             | 1,4                                                                                             | 1,3                                                                   | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Formaldéhyde                    | μg/l                                              | 1 pour C1 à C4       | <ld< td=""><td><ld< td=""><td>2,2</td><td>7,8</td><td><ld< td=""><td>8</td><td>3</td><td>4</td></ld<></td></ld<></td></ld<>                                                                 | <ld< td=""><td>2,2</td><td>7,8</td><td><ld< td=""><td>8</td><td>3</td><td>4</td></ld<></td></ld<>                                                                             | 2,2                                                                                                                                                 | 7,8                                                                                                                       | <ld< td=""><td>8</td><td>3</td><td>4</td></ld<>                                                 | 8                                                                     | 3                                           | 4                 |
| Hydroxyatrazine                 | μg/l                                              | 0,04 pour C1 à C4    | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>prés.</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>prés.</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>             | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>prés.</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>             | <ld< td=""><td><ld< td=""><td><ld< td=""><td>prés.</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>             | <ld< td=""><td><ld< td=""><td>prés.</td><td><ld< td=""></ld<></td></ld<></td></ld<>             | <ld< td=""><td>prés.</td><td><ld< td=""></ld<></td></ld<>             | prés.                                       | <ld< td=""></ld<> |
| Monobutylétain                  | μg/l                                              | 0,015 pour C1 à C4   | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>prés.</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>prés.</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>             | <ld< td=""><td><ld< td=""><td><ld< td=""><td>prés.</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>             | <ld< td=""><td><ld< td=""><td>prés.</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>             | <ld< td=""><td>prés.</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>             | prés.                                                                 | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Monooctylétain                  | μg/l                                              | 0,02 pour C1 à C4    | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>prés.</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<> | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>prés.</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>             | <ld< td=""><td><ld< td=""><td><ld< td=""><td>prés.</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>             | <ld< td=""><td><ld< td=""><td>prés.</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>             | <ld< td=""><td>prés.</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>             | prés.                                                                 | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Phénanthrène                    | μg/l                                              | 0,01 pour C1 à C4    | prés.                                                                                                                                                                                       | prés.                                                                                                                                                                         | <ld< td=""><td><ld< td=""><td>prés.</td><td>prés.</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>                         | <ld< td=""><td>prés.</td><td>prés.</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>                         | prés.                                                                                           | prés.                                                                 | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Pyrène                          | μg/l                                              | 0,01 pour C1 à C4    | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,01</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>  | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,01</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>              | <ld< td=""><td><ld< td=""><td><ld< td=""><td>0,01</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>              | <ld< td=""><td><ld< td=""><td>0,01</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>              | <ld< td=""><td>0,01</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>              | 0,01                                                                  | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Toluène                         | μg/l                                              | 0,2 pour C1 à C4     | <ld< td=""><td>0,2</td><td><ld< td=""><td><ld< td=""><td>6,3</td><td>5,0</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>                               | 0,2                                                                                                                                                                           | <ld< td=""><td><ld< td=""><td>6,3</td><td>5,0</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>                             | <ld< td=""><td>6,3</td><td>5,0</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>                             | 6,3                                                                                             | 5,0                                                                   | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Xylène méta                     | μg/l                                              | 0,2 pour C1 à C4     | <ld< td=""><td>0,3</td><td><ld< td=""><td><ld< td=""><td>2,3</td><td>2,3</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>                               | 0,3                                                                                                                                                                           | <ld< td=""><td><ld< td=""><td>2,3</td><td>2,3</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>                             | <ld< td=""><td>2,3</td><td>2,3</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>                             | 2,3                                                                                             | 2,3                                                                   | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Xylène ortho                    | μg/l                                              | 0,2 pour C1 à C4     | <ld< td=""><td>0,2</td><td><ld< td=""><td><ld< td=""><td>1,3</td><td>1,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>                               | 0,2                                                                                                                                                                           | <ld< td=""><td><ld< td=""><td>1,3</td><td>1,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>                             | <ld< td=""><td>1,3</td><td>1,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>                             | 1,3                                                                                             | 1,2                                                                   | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |
| Xylène para                     | μg/l                                              | 0,2 pour C1 à C4     | <ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,9</td><td>0,9</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>                 | <ld< td=""><td><ld< td=""><td><ld< td=""><td>0,9</td><td>0,9</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>                             | <ld< td=""><td><ld< td=""><td>0,9</td><td>0,9</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>                             | <ld< td=""><td>0,9</td><td>0,9</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>                             | 0,9                                                                                             | 0,9                                                                   | <ld< td=""><td><ld< td=""></ld<></td></ld<> | <ld< td=""></ld<> |

Il s'agit d'une présentation des résultats bruts, certaines valeurs pouvant être qualifiées d'incertaines suite à la validation finale des résultats (cas par exemple des valeurs mesurées en BTEX, HAP, dont une contamination via la chaîne de prélèvement est parfois privilégiée).

Divers micropolluants organiques ont été quantifiés dans les eaux du réservoir de Panthier :

- ✓ des composés de type BTEX présentent des concentrations élevées en campagne 3 (toluène, xylène, éthylbenzène et benzène) ;
- ✓ des hydrocarbures aromatiques polycycliques (HAP) sont faiblement quantifiés en campagne 3 : le benzo(a)pyrène, le phénanthrène et le pyrène ;
- ✓ le formaldéhyde est retrouvé en campagne 2, 3 et 4. Les concentrations sont plus élevées dans le fond (jusqu'à 8 μg/l en campagne 3) que dans la zone euphotique, elles suggèrent une production naturelle de ce composé lors de la minéralisation de la matière organique en conditions anoxiques ;
- ✓ des herbicides (chlortoluron) ou plus ponctuellement des produits de dégradation de molécules herbicides (AMPA et hydroxyatrazine) sont mis en évidence ;
- ✓ des organo-stanneux (monobutylétain et monooctylétain), utilisés notamment dans les peintures antifouling des bateaux, sont détectés à l'état de trace dans les eaux du fond de campagne 3 :
- ✓ l'acide monochloroacétique et le DEHP ont été ponctuellement quantifiés.

## 1.2 ANALYSES DE SEDIMENTS

#### 1.2.1 Physicochimie des sediments

Le tableau 7 fournit la synthèse de l'analyse granulométrique menée sur les sédiments prélevés.

Tableau 7 : Synthèse granulométrique sur le sédiment du point de plus grande profondeur

| Sédiment : composition granulométrique (%) |            |                |              |  |  |  |  |  |
|--------------------------------------------|------------|----------------|--------------|--|--|--|--|--|
|                                            | Réservo    | oir de Panthie | r 27/09/2011 |  |  |  |  |  |
| co                                         | de plan d' | eau: U130504   | 43           |  |  |  |  |  |
| classe gran                                | ulométriq  | ue (µm)        | %            |  |  |  |  |  |
| 0                                          | à          | 2              | 6,2          |  |  |  |  |  |
| 2                                          | à          | 20             | 70,4         |  |  |  |  |  |
| 20                                         | à          | 50             | 23,4         |  |  |  |  |  |
| 50                                         | à          | 63             | 0,0          |  |  |  |  |  |
| 63                                         | à          | 200            | 0,0          |  |  |  |  |  |
| 200                                        | à          | 1000           | 0,0          |  |  |  |  |  |
| 1000                                       | à          | 2000           | 0,0          |  |  |  |  |  |
| > 2000                                     |            |                | 0,0          |  |  |  |  |  |

Il s'agit de sédiments très fins, de nature vaso-limoneuse de 0 à  $50~\mu m$  à 100% (exempts de débris grossiers).

Les analyses de physico-chimie classique menées sur la fraction solide et sur l'eau interstitielle du sédiment sont rapportées au tableau 8.

Tableau 8 : Analyse de sédiments

| Eau interstitielle du sédiment : | Physico-chimie |                      |                   |
|----------------------------------|----------------|----------------------|-------------------|
| Réservoir de                     | Panthier       | sauil quantification |                   |
| code plan d'eau :                | U1305043       | seuil quantification | 27/09/2011        |
| NH <sub>4</sub> <sup>+</sup>     | mg(NH4)/l      | 0,5                  | 7                 |
| PO <sub>4</sub>                  | mg(PO4)/l      | 1,5                  | <ld< td=""></ld<> |
| Phosphore Total                  | mg(P)/l        | 0,1                  | <ld< td=""></ld<> |

| Sédiment : Physico-chimie |             |                      |            |
|---------------------------|-------------|----------------------|------------|
| Réservoir de              | Panthier    | souil quantification |            |
| code plan d'eau :         | U1305043    | seuil quantification | 27/09/2011 |
| Matières sèches minérales | % MS        | 0                    | 92,0       |
| Perte au feu              | % MS        | 0                    | 8,0        |
| Matières sèches totales   | %           | 0                    | 49,4       |
| C.O.T.                    | mg(C)/kg MS | 1                    | 30700,0    |
| Azote Kjeldahl            | mg(N)/kg MS | 1                    | 3650,0     |
| Phosphore Total           | mg/kg MS    | 0,5                  | 1200,0     |

Dans les sédiments, la teneur en matière organique est moyenne avec 8% de perte au feu. La concentration en azote organique est modérée, environ 3,6 g/kg MS. Le rapport C/N est de 8,4 (C/N < 10), il indique une prédominance de matière algale récemment déposée dont une partie sera recyclée en azote organique. La concentration en phosphore est élevée, égale à 1,2 g/kg MS.

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Réservoir de Panthier (21) L'eau interstitielle contient les minéraux facilement mobilisables dans les sédiments. La concentration élevée en ammonium suggère un relargage de cet élément à l'interface eau/sédiment en conditions anoxiques. Le phénomène a notamment été observé durant la période estivale (Cf. analyses physico-chimiques sur les eaux du fond des campagnes 2, 3 et 4).

#### 1.2.2 MICROPOLLUANTS MINERAUX

Ils ont été dosés sur la fraction solide du sédiment.

Tableau 9: Micropolluants minéraux sur sédiment

| Sédiment : Micropolluants minéraux |              |                      |                   |  |  |  |
|------------------------------------|--------------|----------------------|-------------------|--|--|--|
| Réservoir de                       | Panthier     | :1t:G:t:             |                   |  |  |  |
| code plan d'eau :                  | U1305043     | seuil quantification | 27/09/2011        |  |  |  |
| Aluminium                          | mg(Al)/kg MS | 10                   | 34963             |  |  |  |
| Bore                               | mg(B)/kg MS  | 1                    | 88,0              |  |  |  |
| Fer total                          | mg(Fe)/kg MS | 10                   | 36022             |  |  |  |
| Mercure                            | mg(Hg)/kg MS | 0,02                 | <ld< td=""></ld<> |  |  |  |
| Zinc                               | mg(Zn)/kg MS | 0,4                  | 134,6             |  |  |  |
| Antimoine                          | mg(Sb)/kg MS | 0,2                  | 0,5               |  |  |  |
| Argent                             | mg(Ag)/kg MS | 0,2                  | <ld< td=""></ld<> |  |  |  |
| Arsenic                            | mg(As)/kg MS | 0,2                  | 19,5              |  |  |  |
| Baryum                             | mg(Ba)/kg MS | 0,4                  | 219,5             |  |  |  |
| Beryllium                          | mg(Be)/kg MS | 0,2                  | 1,5               |  |  |  |
| Cadmium                            | mg(Cd)/kg MS | 0,2                  | 0,3               |  |  |  |
| Chrome Total                       | mg(Cr)/kg MS | 0,2                  | 78,2              |  |  |  |
| Cobalt                             | mg(Co)/kg MS | 0,2                  | 14,0              |  |  |  |
| Cuivre                             | mg(Cu)/kg MS | 0,2                  | 19,1              |  |  |  |
| Etain                              | mg(Sn)/kg MS | 0,2                  | 16,1              |  |  |  |
| Manganèse                          | mg(Mn)/kg MS | 0,4                  | 776,3             |  |  |  |
| Molybdène                          | mg(Mo)/kg MS | 0,2                  | 0,7               |  |  |  |
| Nickel                             | mg(Ni)/kg MS | 0,2                  | 42,4              |  |  |  |
| Plomb                              | mg(Pb)/kg MS | 0,2                  | 25,9              |  |  |  |
| Sélénium                           | mg(Se)/kg MS | 0,2                  | 0,6               |  |  |  |
| Tellurium                          | mg(Te)/kg MS | 0,2                  | <ld< td=""></ld<> |  |  |  |
| Thallium                           | mg(Th)/kg MS | 0,4                  | 1,7               |  |  |  |
| Titane                             | mg(Ti)/kg MS | 1                    | 3069,0            |  |  |  |
| Uranium                            | mg(U)/kg MS  | 0,2                  | 1,9               |  |  |  |
| Vanadium                           | mg(V)/kg MS  | 0,2                  | 101,4             |  |  |  |

Les sédiments sont riches en fer, en manganèse et en titane. Parmi les métaux lourds, les éléments chrome, nickel et zinc atteignent des concentrations assez élevées.

#### 1.2.3 MICROPOLLUANTS ORGANIQUES

Le tableau 10 indique les micropolluants organiques qui ont été quantifiés dans les sédiments lors de la campagne de prélèvements en 2011. La liste de l'ensemble des substances analysées est fournie en annexe 2.

Tableau 10 : Résultats d'analyses de micropolluants organiques présents sur sédiment

| Sédiment : Micropolluants organiques mis en évidence |          |                      |            |  |  |  |  |
|------------------------------------------------------|----------|----------------------|------------|--|--|--|--|
| Réservoir de                                         | Panthier | aquil quantification |            |  |  |  |  |
| code plan d'eau :                                    | U1305043 | seuil quantification | 27/09/2011 |  |  |  |  |
| Acénaphtylène                                        | μg/kg MS | 20                   | 40         |  |  |  |  |
| Anthracène                                           | μg/kg MS | 20                   | 49         |  |  |  |  |
| Benzo (a) anthracène                                 | μg/kg MS | 10                   | 75         |  |  |  |  |
| Benzo (a) pyrène                                     | μg/kg MS | 10                   | 106        |  |  |  |  |
| Benzo (b) fluoranthène                               | μg/kg MS | 10                   | 141        |  |  |  |  |
| Benzo (ghi) pérylène                                 | μg/kg MS | 10                   | 110        |  |  |  |  |
| Benzo (k) fluoranthène                               | μg/kg MS | 10                   | 66         |  |  |  |  |
| Chrysène                                             | μg/kg MS | 50                   | 75         |  |  |  |  |
| Di(2-éthylhexyl)phtalate (DEHP)                      | μg/kg MS | 100                  | 150        |  |  |  |  |
| Fluoranthène                                         | μg/kg MS | 40                   | 221        |  |  |  |  |
| Indéno (1,2,3-cd) pyrène                             | μg/kg MS | 10                   | 79         |  |  |  |  |
| PCB101                                               | μg/kg MS | 1                    | prés.      |  |  |  |  |
| PCB118                                               | μg/kg MS | 1                    | prés.      |  |  |  |  |
| PCB153                                               | μg/kg MS | 1                    | prés.      |  |  |  |  |
| PCB180                                               | μg/kg MS | 1                    | prés.      |  |  |  |  |
| Phénanthrène                                         | μg/kg MS | 50                   | 62         |  |  |  |  |
| Pyrène                                               | μg/kg MS | 40                   | 110        |  |  |  |  |

De nombreux hydrocarbures et des PCB ont été quantifiés dans les sédiments du réservoir de Panthier:

- ✓ 12 hydrocarbures aromatiques polycycliques (HAP) pour une concentration totale modérée de 1134 μg/kg;
- ✓ 4 substances appartenant aux PCB (polychlorobiphényles) pour une concentration totale très faible, **inférieure à 4 μg/kg**.

Un indicateur plastifiant, le DEHP, est présent à la concentration faible de 150 µg/kg.

## 2 PHYTOPLANCTON

#### 2.1 Prelevements integres

Les prélèvements intégrés destinés à l'analyse du phytoplancton ont été réalisés en même temps que les prélèvements pour analyses physicochimiques. Sur le réservoir de Panthier, la zone euphotique et la transparence mesurées sont représentées par le graphique de la figure 6. La transparence est moyenne lors des 3 premières campagnes, comprise entre 2,1 et 3,4 m, elle est plus faible en campagne 4 avec le développement phytoplanctonique. La zone euphotique varie entre 3,0 et 8,5 m. Elle est maximale en campagne 2 et couvre près de 90% de la colonne d'eau.

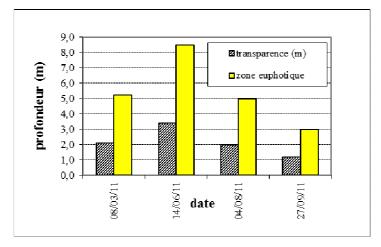



Figure 6 : Evolution de la transparence et de la zone euphotique aux 4 campagnes

La liste des espèces de phytoplancton par plan d'eau a été établie selon la méthodologie développée par le CEMAGREF: Protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en œuvre de la DCE, Mars 2009.

La diversité taxonomique N espèces correspond au nombre de taxons identifiés à l'espèce, à l'exclusion des groupes et familles, ainsi que des taxons identifiés au genre quand une espèce du même genre est présente et déterminée à l'espèce. Le nombre N' correspond à la diversité taxonomique totale incluant tous les taxons aux différents niveaux d'identification (nombre le plus probable).

# 2.2 LISTE FLORISTIQUE (NOMBRE DE CELLULES/ML)

Tableau 11: Liste taxonomique du phytoplancton

| Réservoir de Panthier |                                                       |            | Date prélèvement |            |            |  |  |
|-----------------------|-------------------------------------------------------|------------|------------------|------------|------------|--|--|
| Classe                | Nom Taxon                                             | 08/03/2011 | 14/06/2011       | 04/08/2011 | 27/09/2011 |  |  |
| Chlorophycées         | Chlorella vulgaris                                    | 91         | 819              | 1237       | 1664       |  |  |
|                       | Chlorophycées flagellées indéterminées diam 2 - 5 µm  | 7          | 300              | 58         | 163        |  |  |
|                       | Chlorophycées flagellées indéterminées diam 5 - 10 µm |            | 9                |            |            |  |  |
|                       | Chlorophycées indéterminées                           | 84         | 928              | 947        | 685        |  |  |
|                       | Choricystis minor                                     | 29         | 992              | 638        | 196        |  |  |
|                       | Coelastrum microporum                                 |            |                  | 155        |            |  |  |
|                       | Crucigenia tetrapedia                                 |            |                  | 39         | 3654       |  |  |
|                       | Didymocystis fina                                     |            | 9                | 58         | 33         |  |  |
|                       | Elakatothrix gelatinosa                               |            | 18               | 77         |            |  |  |
|                       | Hyaloraphidium contortum                              |            |                  | 155        |            |  |  |
|                       | Lagerheimia genevensis                                | 4          |                  |            |            |  |  |
| l                     | Monoraphidium arcuatum                                |            |                  | 19         |            |  |  |
|                       | Monoraphidium circinale                               | 15         | 46               | 39         |            |  |  |
|                       | Monoraphidium komarkovae                              |            | 9                | 97         |            |  |  |
|                       | Monoraphidium minutum                                 |            | 55               | 483        | 914        |  |  |
|                       | Nephrochlamys subsolitaria                            |            | 9                | 19         |            |  |  |
|                       | Oocystis lacustris                                    |            | 18               | 155        |            |  |  |
|                       | Pediastrum boryanum                                   |            | 18               |            |            |  |  |
|                       | Pediastrum tetras                                     |            |                  | 464        |            |  |  |
|                       | Phacotus lendneri                                     | 4          | 146              | 464        |            |  |  |
|                       | Scenedesmus acutus                                    |            |                  | 155        |            |  |  |
|                       | Scenedesmus parisiensis                               |            |                  | 77         |            |  |  |
|                       | Scenedesmus quadricauda                               |            |                  | 155        | 261        |  |  |
|                       | Sphaerocystis schroeteri                              |            |                  |            | 261        |  |  |
|                       | Tetraedron minimum                                    |            |                  | 522        | 98         |  |  |
|                       | Tetrastrum triangulare                                | 4          | 473              |            | 131        |  |  |
| Chrysophycées         | Bicoeca cylindrica                                    | 11         |                  |            |            |  |  |
|                       | Bitrichia chodatii                                    |            | 27               |            |            |  |  |
|                       | Dinobryon divergens                                   |            | 537              |            |            |  |  |
|                       | Dinobryon elegantissimum                              |            | 264              |            |            |  |  |
|                       | Dinobryon sociale var. stipitatum                     |            | 182              | 1315       |            |  |  |
|                       | Erkenia subaequiciliata                               | 73         | 555              | 503        | 196        |  |  |
|                       | Kephyrion elegans                                     |            | 200              |            |            |  |  |
|                       | Kystes chrysophycées                                  |            |                  | 19         |            |  |  |
| Cryptophycées         | Cryptomonas marssonii                                 | 7          | 109              |            |            |  |  |
|                       | Cryptomonas sp.                                       | 106        | 519              | 329        | 979        |  |  |
|                       | Rhodomonas minuta var. nannoplanctica                 | 131        | 1265             | 155        | 4405       |  |  |
| Cyanobactéries        | Cyanobactéries indéterminées                          | 189        |                  | 116        | 489        |  |  |
|                       | Komvophoron sp.                                       |            | 218              |            |            |  |  |
|                       | Merismopedia tenuissima                               |            | 2439             |            |            |  |  |
|                       | Snowella lacustris                                    |            |                  | 309        | 131        |  |  |

Agence de l'Eau Rhône - Méditerranée & Corse Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Réservoir de Panthier (21)

|                         | 1 5                                          | Ĩ   | Ī     | 1    | 1 ` ′ |
|-------------------------|----------------------------------------------|-----|-------|------|-------|
|                         | Woronichinia naegeliana                      |     |       | 19   | 131   |
| Desmidiacées            | Cosmarium phaseolus f. minus                 |     | 18    |      |       |
|                         | Staurastrum sp.                              |     |       | 39   | 65    |
| Diatomées               | Asterionella formosa                         |     |       |      | 65    |
|                         | Aulacoseira sp.                              |     | 18    |      | 65    |
|                         | Diatomées centriques indéterminées           | 408 |       |      | 33    |
|                         | Diatomées centriques indéterminées <10 µm    | 178 | 182   | 483  | 2447  |
|                         | Fragilaria sp.                               |     | 36    | 19   |       |
|                         | Nitzschia sp.                                | 7   |       |      |       |
| Dinoflagellés           | Gymnodinium lantzschii                       |     | 9     | 19   |       |
|                         | Gymnodinium sp.                              |     |       | 39   |       |
|                         | Peridinium aciculiferum                      |     | 9     |      |       |
| Euglènes                | Phacus acuminatus                            |     | 9     |      |       |
|                         | Trachelomonas volvocina                      |     | 18    |      | 65    |
| A                       | Abondance cellulaire totale (nb cellules/ml) |     | 10465 | 9378 | 17130 |
| Diversité taxonomique N |                                              | 12  | 29    | 29   | 18    |
| Diversité N'            |                                              | 17  | 34    | 34   | 23    |

# 2.3 ÉVOLUTIONS SAISONNIERES DES GROUPEMENTS PHYTOPLANCTONIQUES

Les échantillons destinés à la détermination du phytoplancton sont constitués d'un prélèvement intégré sur la zone euphotique (équivalant à 2,5 fois la transparence lors de la campagne). Les graphiques suivants présentent la répartition du phytoplancton par groupe algal à partir des résultats exprimés en cellules/ml d'une part et à partir des biovolumes (mm³/l) d'autre part.

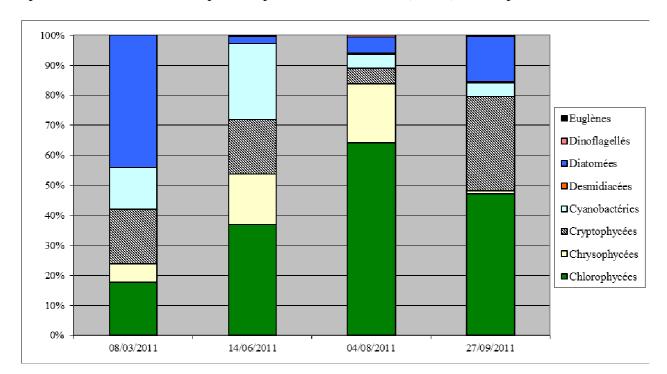
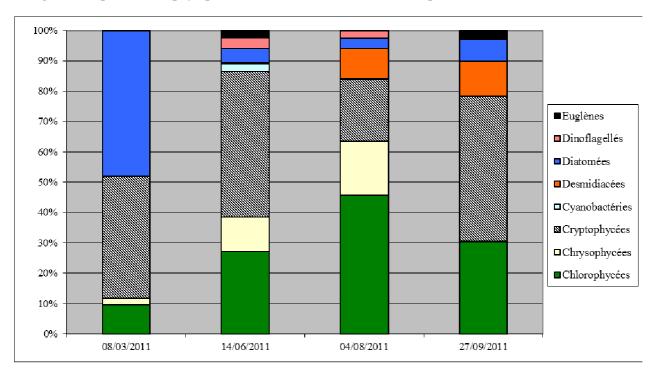




Figure 7: Répartition du phytoplancton sur le réservoir de Panthier à partir des abondances (cellules/ml)

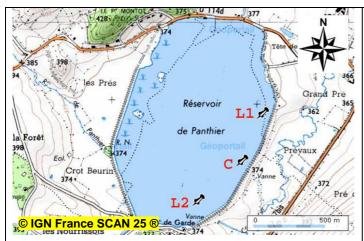


Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Réservoir de Panthier (21) Figure 8: Répartition du phytoplancton sur le réservoir de Panthier à partir des biovolumes (mm³/ml)

Le peuplement phytoplanctonique présente une abondance faible en campagne 1 (1347 cellules/ml) et assez élevée les campagnes suivantes (9378 à 17130 cellules/ml). La diversité taxonomique est moyenne à élevée, comprise entre 17 et 34 taxons. Elle est maximale durant la période estivale (campagnes 2 et 3).

En fin d'hiver, le peuplement phytoplanctonique est dominé par les diatomées avec près de 44% de l'effectif global et 48% du biovolume total. Les cryptophycées, avec les genres *Rhodomonas* et *Cryptomonas*, sont également bien représentées notamment en biovolume (40% du peuplement). On note également les présences non négligeables de chlorophycées, de cyanobactéries et de chrysophycées.

Au printemps, les chlorophycées (*Chlorella vulgaris* et *Choricystis minor*) et dans une moindre mesure les cryptophycées (en particulier *Rhodomonas minuta var. nannoplanctica*) se développent au détriment des diatomées. Toutefois, aucun groupe algal ne domine réellement le peuplement phytoplanctonique. Les cryptophycées sont tout de même particulièrement représentées en termes de biovolume (48% du peuplement).


En campagne 3, les chlorophycées continuent de coloniser le milieu et représentent alors jusqu'à 64% du peuplement en abondance et 46% en biovolume.

En fin d'été, l'abondance phytoplanctonique est maximale en raison du développement important des taxons suivants : *Rhodomonas minuta var. nannoplanctica* (cryptophycées) et de *Crucigenia tetrapedia* (chlorophycées). Les diatomées sont de nouveau en pleine expansion (2610 cellules/ml). La période estivale est également marquée par la présence d'euglènes, groupe algal colonisant préférentiellement les milieux au niveau trophique élevé, mais aussi de desmidiacées et de dinoflagellés.

Le peuplement phytoplanctonique est relativement équilibré, il est dominé consécutivement par les diatomées, les cryptophycées et les chlorophycées, des groupes algaux qui ne traduisent pas une eutrophisation marquée. L'indice phytoplanctonique (IPL) est de 41,7, il qualifie le réservoir de Panthier de mésotrophe. L'indice calculé à partir de l'abondance cellulaire, bien que légèrement moins favorable, confirme ce constat (46,7).

# **3 OLIGOCHETES**

## 3.1 CONDITIONS DE PRELEVEMENTS

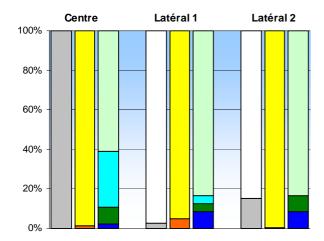


Carte 2 : Localisation des prélèvements de sédiments sur le réservoir de Panthier



Photo 1 : Vue sur la partie Nord du plan d'eau depuis la rive à proximité du point L2

| Echantillon                |  |
|----------------------------|--|
| Date et heure              |  |
| Code point                 |  |
| Prof (m)                   |  |
| Type de benne              |  |
| Nombre de bennes           |  |
| Surface prospectée (m²)    |  |
| Localisation               |  |
| Coordonnées X (LII étendu) |  |
| Coordonnées Y (LII étendu) |  |
| Préleveur                  |  |
| Code préleveur             |  |


| Central (C)      | Latéral 1 (L1)   | Latéral 2 (L2)   |  |  |
|------------------|------------------|------------------|--|--|
| 15/09/2011 08:30 | 15/09/2011 08:00 | 15/09/2011 09:00 |  |  |
| o1               | o2               | о3               |  |  |
| 7                | 3,5              | 3,5              |  |  |
| Ekman            | Ponar            | Ponar            |  |  |
| 5                | 7                | 5                |  |  |
| 0,105            | 0,179            | 0,128            |  |  |
| Z max            | Nord-Est         | Sud              |  |  |
| 773881           | 774018           | 773594           |  |  |
| 2251548          | 2251892          | 2251262          |  |  |
| IRIS consultants | IRIS consultants | IRIS consultants |  |  |
| 515              | 515              | 515              |  |  |

Remarques (conditions extérieures remarquables, écart au protocole...):

- Protocole de type "retenue" avec les trois points situés sur un axe transversal parallèle à la digue.
- Surface prospectée nettement supérieure aux valeurs préconisées dans la Norme IOBL (0,03 à 0,1 m²) sur le point L1 en raison de la faible quantité de sédiments récoltés par benne.

## 3.2 CARACTERISTIQUES DES SEDIMENTS RECOLTES

| Nom : Panthier (réservoir de)                                   |  | Date :      |              |              |  |  |
|-----------------------------------------------------------------|--|-------------|--------------|--------------|--|--|
| Type : Retenue de moyenne montagne, calcaire, peu profonde (A2) |  |             |              |              |  |  |
| Echantillon                                                     |  | Central (C) | Latéral (L1) | Latéral (L2) |  |  |
| Couleur                                                         |  | beige noir  | gris vert    | gris vert    |  |  |
| Odeur                                                           |  | moyen       | faible       | faible       |  |  |
| Taux de remplissage (1 <sup>ère</sup> barre)                    |  |             |              |              |  |  |
| Volume (ml) sans sédiments                                      |  | 0           | 17420        | 10850        |  |  |
| Volume (ml) avec sédiments                                      |  | 17871       | 500          | 1950         |  |  |
| Présence de débris (2 <sup>ème</sup> barre)                     |  |             |              |              |  |  |
| Volume (ml) $< 0.5 \text{ mm (fines)}$                          |  | 17641       | 476          | 1938         |  |  |
| Volume (ml) > 0,5 mm (débris)                                   |  | 230         | 24           | 12           |  |  |
| Granulométrie (3 <sup>ème</sup> barre)                          |  |             |              |              |  |  |
| Volume (ml) 0,5 à 5 mm, organique                               |  | 140         | 20           | 10           |  |  |
| Volume (ml) 0,5 à 5 mm, minéral                                 |  | 65          | 1            | 0            |  |  |
| Volume (ml) > 5 mm, organique                                   |  | 20          | 1            | 1            |  |  |
| Volume (ml) > 5 mm, minéral                                     |  | 5           | 2            | 1            |  |  |



Le taux de remplissage de la benne est élevé (>75%) au centre alors qu'il est faible (< 25%) sur les points latéraux. Les débris sont peu abondants (< 10%) sur les trois points de contrôle (centre et latéraux). Ils sont dominés par la fraction organique fine (0,5 à 5 mm) sur les trois points de contrôle avec une fraction minérale fine bien représentée au centre.

# 3.3 LISTE FAUNISTIQUE ET CALCUL DE L'INDICE IOBL

#### 3.3.1 DEFINITIONS

- (1) L'identification possible des taxons se fait soit à tous les stades (a) soit seulement à l'état mature (m).
- (2) Pour aider à l'interprétation, une analyse des espèces indicatrices est menée en utilisant les éléments de diagnoctic de Lafont (2007)². Les espèces sont réparties en 6 classes indicatrices de la dynamique du fonctionnement des sédiments lacustres :
- S = espèces sensibles à la pollution organique et toxique,
- I = espèces caractérisant un état intermédiaire,
- D = espèces indicatrices d'une impasse trophique naturelle (dystrophie) quand elles sont dominantes,
- P = espèces indicatrices d'un état de forte pollution quand elles sont dominantes,
- H = espèces indicatrices d'échanges hydriques entre les eaux superficielles et souterraines,

 $<sup>^2</sup>$  Lafont, M. 2007. Interprétation de l'indice la custre oligochètes IOBL et son intégration dans un système d'évaluation de l'état écologique. Cemagref/MEDAD : 18pp.

S.T.E. - Sciences et Techniques de l'Environnement - Rapport 08-283/2012-PE2011-16 - septembre 2012 - Page 28

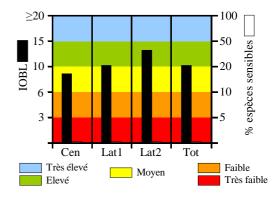
Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Réservoir de Panthier (21) R =espèces probablement liées à un réchauffement climatique

- (3) Le nombre de taxons = R est le nombre minimal possible de taxons parmi les 100 oligochètes comptés. Par exemple, le taxon Naididae ASC immat. (identification limitée par le caractère immature de l'individu) sera comptabilisé comme un taxon uniquement en cas d'absence d'autres Naididae ASC identifiables seulement au stade mature. Les valeurs d'abondance mises en caractère gras correspondent aux taxons pris en compte pour le calcul de la richesse.
- (4) Le calcul de l'Indice IOBL est le suivant : IOBL = R + 3log10 (D+1) où  $R^3 = nombre de taxons parmi les oligochètes comptés et <math>D = densité en oligochètes pour 0,1 m^2$ .
- (5) La valeur globale = ½(valeur centre) + ¼(valeur lat1) + ¼(valeur lat2). Il s'agit donc de la moyenne entre la valeur de la zone centrale profonde et celle des zones latérales, cette dernière étant égale à la moyenne des valeurs des deux zones latérales (lat 1 et lat 2). Pour le pourcentage des espèces sensibles sur la globalité du plan d'eau, on applique la moyenne : moyenne (%cen;%lat1;%lat2).

#### 3.3.2 Liste faunistique pour l'IOBL

Tableau 12 : liste faunistique pour le calcul de l'IOBL

| Groupe       | Taxon                     | Code<br>Sandre | Stades<br>identifiables | Espèces<br>indicatrices | Centre | Lat 1 | Lat 2 |
|--------------|---------------------------|----------------|-------------------------|-------------------------|--------|-------|-------|
| Naididae ASC | Branchiura sowerbyi       | 952            | a                       | R                       |        | 1     |       |
|              | Dero digitata             | 19306          | a                       | P                       |        | 23    | 4     |
|              | Naididae ASC immat.       | 5231           | a                       |                         | 10     | 7     | 59    |
|              | Potamothrix hammoniensis  | 9795           | m                       | P                       | 1      |       |       |
| Naididae SSC | Limnodrilus claparedeanus | 2992           | m                       | P                       | 3      | 7     | 4     |
|              | Limnodrilus hoffmeisteri  | 2991           | m                       | P                       | 5      |       | 1     |
|              | Naididae SSC immat.       | 29901          | a                       |                         | 71     | 62    | 32    |


|                                               |                                          | Centre | Lat 1 | Lat 2 | Tot (5) |
|-----------------------------------------------|------------------------------------------|--------|-------|-------|---------|
| Eléments utilisés pour<br>le calcul de l'IOBL | Nombre de taxons = $R^{(3)}$             | 3      | 4     | 4     |         |
|                                               | Nombre d'oligochètes comptés             | 90     | 100   | 100   |         |
|                                               | Fraction observée de l'échantillon (%)   | 100,0  | 47,0  | 6,6   |         |
|                                               | Nombre d'oligochètes récoltés            | 90     | 213   | 1515  |         |
|                                               | Surface échantillonnée (m²)              | 0,105  | 0,179 | 0,128 |         |
|                                               | Densité en oligochètes (pour 0,1 m²) = D | 86     | 119   | 1184  |         |
| Indicateurs                                   | Indice IOBL <sup>(4)</sup>               | 8,8    | 10,2  | 13,2  | 10,3    |
| marcateurs                                    | % Espèces sensibles                      | 0      | 0     | 0     | 0,0     |

<sup>3</sup> Pour le calcul de l'IOBL selon la norme, R désigne le nombre de taxons comptés. Parmi les espèces indicatrices, Lafont a dénommé R les espèces indicatrices d'un réchauffement climatique. Attention au risque de confusion.

## 3.4 Interpretation des resultats

Dans l'ensemble, le potentiel métabolique se situe en limite de classe moyen-élevé et le pourcentage d'espèces sensibles est nul sur chacun des points échantillonnés. Cela suggère une mauvaise qualité des sédiments profonds (hauteur d'eau > 50% de la profondeur maximale) mais pas d'impasse trophique.

Le potentiel métabolique diffère légèrement selon les points échantillonnés (notes IOBL variant de 9 à 13). Le point de plus grande profondeur présente le potentiel métabolique le plus faible.



# <u>INTERPRETATION GLOBALE DES</u> <u>RESULTATS</u>

Les résultats acquis durant le suivi annuel ont été interprétés en termes de potentiel écologique pour les plans d'eau d'origine anthropique et d'état chimique selon les critères et méthodes d'évaluation décrits dans l'arrêté du 25 janvier 2010.

Ces résultats ont également été traités en termes de niveau trophique à l'aide des outils de la diagnose rapide (Cemagref, 2003).

Les résultats de ces deux approches sont présentés dans le document complémentaire : Note synthétique d'interprétation des résultats.

#### ✓ Critères d'applicabilité de la diagnose rapide

La diagnose rapide vise à évaluer l'état trophique des lacs et à mettre en évidence les phénomènes d'eutrophisation. Elle fait appel au principe fondamental du fonctionnement des lacs qui suppose qu'il existe un lien entre la composition physico-chimique à l'époque du mélange hivernal et les phénomènes qu'elle est susceptible d'engendrer dans les divers compartiments de l'écosystème au cours de la période de croissance végétale qui lui succède.

Cette méthode est donc adaptée aux plans d'eau qui stratifient durablement en été et exclut les plans d'eau au temps de séjour réduit (CEMAGREF, 1990, 2003) et les lacs dont la profondeur moyenne est inférieure à 3 m. Il convient également de noter que la diagnose rapide ne prend en compte que la biomasse phytoplanctonique sous l'aspect "production végétale" et n'intègre donc pas l'importance du recouvrement en macrophytes du plan d'eau.

Le réservoir de Panthier est un plan d'eau artificiel d'une profondeur moyenne de 8 m lorsqu'il est à sa cote maximale. La stratification thermique est bien établie. Cependant, la déstratification thermique est précoce en raison de la gestion hydraulique des eaux pour l'alimentation du canal de Bourgogne (soutirage des eaux du fond). Ainsi, en 2011, elle est observable de juin à août. On observe, lors de la dernière campagne, un marnage de près de 5,5 m.

Le temps de séjour est long : il est estimé à 480 jours.

Les périodes d'intervention des différentes campagnes de prélèvements menées en 2011 correspondent aux préconisations de la méthodologie.

Le réservoir de Panthier répond aux exigences pour appliquer la diagnose rapide.

| Agence de E | l'Eau Rhône<br>Etude des pla | - Méditerranée &<br>uns d'eau du progra | Corse<br>amme de surveilla | ance des bassins | Rhône-Méditer | ranée et Corse – | Réservoir de P | anthier (21) |
|-------------|------------------------------|-----------------------------------------|----------------------------|------------------|---------------|------------------|----------------|--------------|
|             |                              |                                         |                            |                  |               |                  |                |              |
|             |                              |                                         |                            |                  |               |                  |                |              |
|             |                              |                                         |                            |                  |               |                  |                |              |
|             |                              |                                         |                            |                  |               |                  |                |              |
|             |                              |                                         |                            |                  |               |                  |                |              |
|             |                              |                                         |                            |                  |               |                  |                |              |
|             |                              |                                         | <b>A</b>                   |                  | - ~           |                  |                |              |
|             |                              |                                         | <u>- A</u>                 | <u>NNEXI</u>     | <u> </u>      |                  |                |              |
|             |                              |                                         |                            |                  |               |                  |                |              |
|             |                              |                                         |                            |                  |               |                  |                |              |
|             |                              |                                         |                            |                  |               |                  |                |              |
|             |                              |                                         |                            |                  |               |                  |                |              |
|             |                              |                                         |                            |                  |               |                  |                |              |
|             |                              |                                         |                            |                  |               |                  |                |              |
|             |                              |                                         |                            |                  |               |                  |                |              |
|             |                              |                                         |                            |                  |               |                  |                |              |
|             |                              |                                         |                            |                  |               |                  |                |              |
|             |                              |                                         |                            |                  |               |                  |                |              |
|             |                              |                                         |                            |                  |               |                  |                |              |
|             |                              |                                         |                            |                  |               |                  |                |              |
|             |                              |                                         |                            |                  |               |                  |                |              |

#### 1. LISTE DES MICROPOLLUANTS ANALYSES SUR EAU

| Code   | I                          |                            | Code   |                                |                         |
|--------|----------------------------|----------------------------|--------|--------------------------------|-------------------------|
| SANDRE | Libel param                | Famille composés           | SANDRE | Libel_param                    | Famille composés        |
| 5474   | 4-n-nonylphénol            | Alkylphénols               | 1118   | Benzo (ghi) Pérylène           | HAP                     |
| 1957   | Nonylphénols               | Alkylphénols               | 1117   | Benzo (k) Fluoranthène         | HAP                     |
| 1920   | p-(n-octyl)phénols         | Alkylphénols               | 1476   | Chrysène                       | HAP                     |
| 1958   | Para-nonylphénols ramifiés | Alkylphénols               | 1621   | Dibenzo (ah) Anthracène        | HAP                     |
| 1959   | Para-tert-octylphénol      | Alkylphénols               | 1191   | Fluoranthène                   | HAP                     |
| 1593   | Chloroaniline-2            | Anilines et Chloroanilines | 1623   | Fluorène                       | HAP                     |
| 1592   | Chloroaniline-3            | Anilines et Chloroanilines | 1204   | Indéno (123c) Pyrène           | HAP                     |
| 1591   | Chloroaniline-4            | Anilines et Chloroanilines | 1619   | Méthyl-2-Fluoranthène          | HAP                     |
| 1589   | Dichloroaniline-2,4        | Anilines et Chloroanilines | 1618   | Méthyl-2-naphtalène            | HAP                     |
| 1114   | Benzène                    | BTEX                       | 1517   | Naphtalène                     | HAP                     |
| 1602   | Chlorotoluène-2            | BTEX                       | 1524   | Phénanthrène                   | HAP                     |
| 1601   | Chlorotoluène-3            | BTEX                       | 1537   | Pyrène                         | HAP                     |
| 1600   | Chlorotoluène-4            | BTEX                       | 1370   | Aluminium                      | Métaux                  |
| 1497   | Ethylbenzène               | BTEX                       | 1376   | Antimoine                      | Métaux                  |
| 1633   | Isopropylbenzène           | BTEX                       | 1368   | Argent                         | Métaux                  |
| 1278   | Toluène                    | BTEX                       | 1369   | Arsenic                        | Métaux                  |
| 5431   | Xylène (ortho+meta+para)   | BTEX                       | 1396   | Baryum                         | Métaux                  |
| 1292   | Xylène-ortho               | BTEX                       | 1377   | Beryllium                      | Métaux                  |
| 1955   | Chloroalcanes C10-C13      | Chloroalacanes             | 1362   | Bore                           | Métaux                  |
| 1467   | Chlorobenzène (Mono)       | Chlorobenzènes             | 1388   | Cadmium                        | Métaux                  |
| 1165   | Dichlorobenzène-1,2        | Chlorobenzènes             | 1389   | Chrome                         | Métaux                  |
| 1164   | Dichlorobenzène-1,3        | Chlorobenzènes             | 1379   | Cobalt                         | Métaux                  |
| 1166   | Dichlorobenzène-1,4        | Chlorobenzènes             | 1392   | Cuivre                         | Métaux                  |
| 1199   | Hexachlorobenzène          | Chlorobenzènes             | 1380   | Etain                          | Métaux                  |
| 1888   | Pentachlorobenzène         | Chlorobenzènes             | 1393   | Fer                            | Métaux                  |
| 1631   | Tétrachlorobenzène-1,2,4,5 | Chlorobenzènes             | 1394   | Manganèse                      | Métaux                  |
| 1630   | Trichlorobenzène-1,2,3     | Chlorobenzènes             | 1387   | Mercure                        | Métaux                  |
| 1283   | Trichlorobenzène-1,2,4     | Chlorobenzènes             | 1395   | Molybdène                      | Métaux                  |
| 1629   | Trichlorobenzène-1,3,5     | Chlorobenzènes             | 1386   | Nickel                         | Métaux                  |
| 1774   | Trichlorobenzènes          | Chlorobenzènes             | 1382   | Plomb                          | Métaux                  |
| 1469   | Chloronitrobenzène-1,2     | Chloronitrobenzènes        | 1385   | Sélénium                       | Métaux                  |
| 1468   | Chloronitrobenzène-1,3     | Chloronitrobenzènes        | 2559   | Tellurium                      | Métaux                  |
| 1470   | Chloronitrobenzène-1,4     | Chloronitrobenzènes        | 2555   | Thallium                       | Métaux                  |
| 1617   | Dichloronitrobenzène-2,3   | Chloronitrobenzènes        | 1373   | Titane                         | Métaux                  |
| 1615   | Dichloronitrobenzène-2,5   | Chloronitrobenzènes        | 1361   | Uranium                        | Métaux                  |
| 1614   | Dichloronitrobenzène-3,4   | Chloronitrobenzènes        | 1384   | Vanadium                       | Métaux                  |
| 2915   | BDE100                     | Diphényléthers bromés      | 1383   | Zinc                           | Métaux                  |
| 2912   | BDE153                     | Diphényléthers bromés      | 1135   | Chloroforme (trichlorométhane) | OHV                     |
| 2911   | BDE154                     | Diphényléthers bromés      | 2611   | Chloroprène                    | OHV                     |
| 2920   | BDE28                      | Diphényléthers bromés      | 2065   | Chloropropène-3                | OHV                     |
| 2919   | BDE47                      | Diphényléthers bromés      | 1160   | Dichloréthane-1,1              | OHV                     |
| 2916   | BDE99                      | Diphényléthers bromés      | 1161   | Dichloréthane-1,2              | OHV                     |
| 1815   | Décabromodiphényléther     | Diphényléthers bromés      | 1162   | Dichloréthylène-1,1            | OHV                     |
| 2609   | Octabromodiphénylether     | Diphényléthers bromés      | 1163   | Dichloréthylène-1,2            | OHV                     |
| 1921   | Pentabromodiphényléther    | Diphényléthers bromés      | 1456   | Dichloréthylène-1,2 cis        | OHV                     |
| 1465   | Acide monochloroacétique   | Divers                     | 1727   | Dichloréthylène-1,2 trans      | OHV                     |
| 1753   | Chlorure de vinyle         | Chlorure de vinyles        | 1168   | Dichlorométhane                | OHV                     |
| 2826   | Diéthylamine               | Divers                     | 1652   | Hexachlorobutadiène            | OHV                     |
| 2773   | Diméthylamine              | Divers                     | 1271   | Tétrachloréthane-1,1,2,2       | OHV                     |
| 1494   | Epichlorohydrine           | Divers                     | 1272   | Tétrachloréthylène             | OHV                     |
| 1453   | Acénaphtène                | HAP                        | 1276   | Tétrachlorure de C             | OHV                     |
| 1622   | Acénaphtylène              | HAP                        | 1284   | Trichloréthane-1,1,1           | OHV                     |
| 1458   | Anthracène                 | HAP                        | 1285   | Trichloréthane-1,1,2           | OHV                     |
| 1082   | Benzo (a) Anthracène       | HAP                        | 1286   | Trichloréthylène               | OHV                     |
| 1115   | Benzo (a) Pyrène           | HAP                        | 1771   | Dibutylétain                   | Organostanneux complets |
| 1116   | Benzo (b) Fluoranthène     | HAP                        | 1936   | Tétrabutylétain                | Organostanneux complets |

Agence de l'Eau Rhône - Méditerranée & Corse
Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Réservoir de Panthier (21)

| Code         | Trude des plans d'éda de            | i programme de survem                           | Code   |                         | Teorse – Reservoir de Fair      |
|--------------|-------------------------------------|-------------------------------------------------|--------|-------------------------|---------------------------------|
|              | Libel_param                         | Famille_composés                                | SANDRE | Libel_param             | Famille composés                |
| 2879         |                                     |                                                 | 1187   | Fénitrothion            | Pesticides                      |
| 1779         | Tributylétain-cation Triphénylétain | Organostanneux complets Organostanneux complets | 1967   | Fénoxycarbe             | Pesticides                      |
| 1242         | PCB 101                             | PCB                                             | 2022   | Fludioxonil             | Pesticides                      |
|              | PCB 118                             |                                                 |        |                         |                                 |
| 1243         |                                     | PCB                                             | 1765   | Fluroxypyr              | Pesticides                      |
| 1244         | PCB 138                             | PCB                                             | 2547   | Fluroxypyr-meptyl       | Pesticides                      |
| 1245         | PCB 153                             | PCB                                             | 1194   | Flusilazole             | Pesticides                      |
| 1090         | PCB 169                             | PCB                                             | 1702   | Formaldéhyde            | Pesticides                      |
| 1246         | PCB 180                             | PCB                                             | 1506   | Glyphosate              | Pesticides                      |
| 1239         | PCB 28                              | PCB                                             | 1200   | HCH alpha               | Pesticides                      |
| 1240         | PCB 35                              | PCB                                             | 1201   | HCH beta                | Pesticides                      |
|              | PCB 52                              | PCB                                             | 1202   | HCH delta               | Pesticides                      |
| 1091         | PCB 77                              | PCB                                             | 2046   | HCH epsilon             | Pesticides                      |
| 1141         | 2 4 D                               | Pesticides                                      | 1203   | HCH gamma               | Pesticides                      |
| 1212         | 2 4 MCPA                            | Pesticides                                      | 1405   | Hexaconazole            | Pesticides                      |
| 1832         | 2-Hydroxy-atrazine                  | Pesticides                                      | 1877   | Imidaclopride           | Pesticides                      |
| 1903         | Acétochlore                         | Pesticides                                      | 1206   | Iprodione               | Pesticides                      |
| 1688         | Aclonifen                           | Pesticides                                      | 1207   | Isodrine                | Pesticides                      |
| 1101         | Alachlore                           | Pesticides                                      | 1208   | Isoproturon             | Pesticides                      |
| 1103         | Aldrine                             | Pesticides                                      | 1950   | Kresoxim méthyl         | Pesticides                      |
| 1105         | Aminotriazole                       | Pesticides                                      | 1094   | Lambda Cyhalothrine     | Pesticides                      |
| 1907         | AMPA                                | Pesticides                                      | 1209   | Linuron                 | Pesticides                      |
| 1107         | Atrazine                            | Pesticides                                      | 1210   | Malathion               | Pesticides                      |
| 1109         | Atrazine déisopropyl                | Pesticides                                      | 1214   | Mécoprop                | Pesticides                      |
| 1108         | Atrazine déséthyl                   | Pesticides                                      | 2987   | Métalaxyl m = mefenoxam | Pesticides                      |
| 1951         | Azoxystrobine                       | Pesticides                                      | 1796   | Métaldéhyde             | Pesticides                      |
| 1113         | Bentazone                           | Pesticides                                      | 1215   | Métamitrone             | Pesticides                      |
| 1686         | Bromacil                            | Pesticides                                      | 1670   | Métazachlore            | Pesticides                      |
| 1125         | Bromoxynil                          | Pesticides                                      | 1216   | Méthabenzthiazuron      | Pesticides                      |
| 1941         | Bromoxynil octanoate                | Pesticides                                      | 1227   | Monolinuron             | Pesticides                      |
| 1129         | Carbendazime                        | Pesticides                                      | 1519   | Napropamide             | Pesticides                      |
| 1130         | Carbofuran                          | Pesticides                                      | 1882   | Nicosulfuron            | Pesticides                      |
| 1464         | Chlorfenvinphos                     | Pesticides                                      | 1669   | Norflurazon             | Pesticides                      |
|              |                                     |                                                 | 1 —    |                         |                                 |
| 1134<br>1474 | Chlorméphos                         | Pesticides                                      | 1667   | Oxadiazon               | Pesticides                      |
|              | Chlorprophame                       | Pesticides                                      | 1666   | Oxadixyl                | Pesticides                      |
| 1083         | Chlorpyriphos éthyl                 | Pesticides                                      | 1231   | Oxydéméton méthyl       | Pesticides                      |
| 1540         | Chlorpyriphos méthyl                | Pesticides                                      | 1234   | Pendiméthaline          | Pesticides                      |
| 1136         | Chlortoluron                        | Pesticides                                      | 1665   | Phoxime                 | Pesticides                      |
| 2017         | Clomazone                           | Pesticides                                      | 1664   | Procymidone             | Pesticides                      |
| 1680         | Cyproconazole                       | Pesticides                                      | 1414   | Propyzamide             | Pesticides                      |
| 1359         | Cyprodinil                          | Pesticides                                      | 1432   | Pyriméthanil            | Pesticides                      |
| 1143         | DDD-o,p'                            | Pesticides                                      | 1892   | Rimsulfuron             | Pesticides                      |
| 1144         | DDD-p,p'                            | Pesticides                                      | 1263   | Simazine                | Pesticides                      |
| 1145         | DDE-o,p'                            | Pesticides                                      | 1662   | Sulcotrione             | Pesticides                      |
| 1146         | DDE-p,p'                            | Pesticides                                      | 1694   | Tébuconazole            | Pesticides                      |
| 1147         | DDT-o,p'                            | Pesticides                                      | 1661   | Tébutame                | Pesticides                      |
| 1148         | DDT-p,p'                            | Pesticides                                      | 1268   | Terbuthylazine          | Pesticides                      |
| 1830         | Déisopropyl-déséthyl-atrazine       | Pesticides                                      | 2045   | Terbuthylazine déséthyl | Pesticides                      |
| 1149         | Deltaméthrine                       | Pesticides                                      | 1954   | Terbuthylazine hydroxy  | Pesticides                      |
| 1480         | Dicamba                             | Pesticides                                      | 1269   | Terbutryne              | Pesticides                      |
| 1169         | Dichlorprop                         | Pesticides                                      | 1660   | Tétraconazole           | Pesticides                      |
| 1170         | Dichlorvos                          | Pesticides                                      | 1288   | Trichlopyr              | Pesticides                      |
| 1173         | Dieldrine                           | Pesticides                                      | 1289   | Trifluraline            | Pesticides                      |
| 1814         | Diflufénicanil                      | Pesticides                                      | 1636   | Chlorométhylphénol-4,3  | Phénols et chlorophénols        |
| 1678         | Diméthénamide                       | Pesticides                                      | 1471   | Chlorophénol-2          | Phénols et chlorophénols        |
| 1403         | Diméthomorphe                       | Pesticides                                      | 1651   | Chlorophénol-3          | Phénols et chlorophénols        |
| 1177         | Diuron                              | Pesticides                                      | 1650   | Chlorophénol-4          | Phénois et chlorophénois        |
| 1178         | Endosulfan alpha                    | Pesticides                                      | 1486   | Dichlorophénol-2,4      | Phénois et chlorophénois        |
| 1179         | Endosulfan beta                     | Pesticides                                      | 1235   | Pentachlorophénol       | Phénois et chlorophénois        |
| 1742         | Endosulfan sulfate                  | Pesticides                                      | 1548   | Trichlorophénol-2,4,5   | Phénois et chlorophénois        |
| 1743         | Endosulfan Total                    | Pesticides                                      | 1549   | Trichlorophénol-2,4,6   | Phénois et chlorophénois        |
|              | Endrine                             | Pesticides                                      | 1584   | Biphényle               | Semi volatils organiques divers |
| 1121         |                                     |                                                 | 1004   | Piprioriyio             | Com volumo organiques alveis    |
| 1181<br>1744 | Epoxiconazole                       | Pesticides                                      | 1461   | DEPH                    | Semi volatils organiques divers |

#### 2. LISTE DES MICROPOLLUANTS ANALYSES SUR SEDIMENTS

| 1957   Nonylphénols   Akkyphénols   1770   Dibuyétein (oxyde)   Organostanneux   1958   Para-nonylphonols ramifiés   Akkyphénols   2879   Tribuyétein-cation   Organostanneux   1958   Para-nonylphonols ramifiés   Akkyphénols   2879   Tribuyétein-cation   Organostanneux   1959   Para-nonylphonols ramifiés   Akkyphénols   2879   Tribuyétein-cation   Organostanneux   1950   Para-nonylphonols ramifiés   Akkyphénols   1779   Tribuyétein-cation   Organostanneux   1950   Organostanneux   1950   Para-nonylphonols   1779   Tribuyétein-cation   Organostanneux   1950   Organostanneux   1950   Organostanneux   1950   Organostanneux   1950   Organostanneux   1950   Organostanneux   1951   Organostanneux     |       | Libel param<br>4-n-nonylphénol | Famille_composés Alkylphénols | Code_SANDR<br>1652 | Hexachlorobutadiène | Famille_composés OHV         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------|-------------------------------|--------------------|---------------------|------------------------------|
| 1930   Princockylphenols ramified   Alkylphenols   1938   Tetrabylyteian-cation   Organostanneux   1959   Para-tert-ockylphenol   Alkylphenols   1779   Triphenyteian   Organostanneux   1959   Para-tert-ockylphenol   Alkylphenols   1779   Triphenyteian   Organostanneux   1959   Para-tert-ockylphenol   2779   Triphenyteian   Organostanneux   1950   Para-tert-ockylphenol   2779   Triphenyteian   Organostanneux   1950   Post   1950      |       |                                |                               |                    |                     | Organostanneux complets      |
| 1959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                |                               |                    |                     | Organostanneux complets      |
| 1959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                |                               |                    |                     | Organostanneux complets      |
| 1601   Chlorotoluène-3   STEX   1242   PCB 101   PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                |                               |                    |                     | Organostanneux complets      |
| 1900   Chlorotoluène-3   BTEX   1243   PCB 118   PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                |                               |                    |                     |                              |
| 1900   Chlorotoulena-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                                |                               |                    |                     |                              |
| 1497   Ethybenzéne   STEX   1945   PCB 133   PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                |                               |                    |                     |                              |
| 1933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                |                               |                    |                     |                              |
| 1929   Xylene (orthor-meter-para)   BTEX   1239   PCB 180   PCB   1929   Xylene (orthor-meter-para)   BTEX   1239   PCB 28   PCB   1955   Chloroslacanes C10-C13   Chloroslacanes   1240   PCB 35   PCB   PCB   1164   Dichtoroberzzène-1.2   Chlorosherzènes   1241   PCB 52   PCB   1164   Dichtoroberzzène-1.4   Chlorosherzènes   1991   PCB 77   PCB   PCB 1166   Dichtoroberzène-1.4   Chlorosherzènes   1993   Acetochlore   Pesticides   1993   Trichforoberzènes   1994   Acetochlore   Pesticides   1993   Trichforoberzènes   1994   Estrachiore   Pesticides   1994   Estrachiore   1994     |       |                                |                               |                    |                     |                              |
| 1935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                |                               |                    |                     |                              |
| 1955   Chloroslecanes C10-C13   Chloroslecanes   1241   FCB 52   FCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                |                               |                    |                     |                              |
| 1164   Dichtorobenzène-1,2   Chlorobenzènes   1164   Dichtorobenzène-1,3   Chlorobenzènes   1091   PCB 77   PCB   1199   Hexachlorobenzènes   Chlorobenzènes   1093   Acetochlore   Pesticides   1888   Pentachlorobenzène   Chlorobenzènes   1688   Actonifor   Pesticides   1888   Pentachlorobenzène-1,2,4,5   Chlorobenzènes   1688   Actonifor   Pesticides   1630   Trichtorobenzène-1,2,4,5   Chlorobenzènes   1195   Bromoxynil caranate   Pesticides   1797   Trichtorobenzène-1,2,4,5   Chlorobenzènes   1494   Bromoxynil caranate   Pesticides   1629   Trichtorobenzène-1,2,4   Chlorobenzènes   1494   Bromoxynil caranate   Pesticides   1629   Trichtorobenzènes   Chlorobenzènes   1444   Chlorméphos   Pesticides   1617   Dichtorontrobenzènes   Chlorobenzènes   1474   Chlorophame   Pesticides   1617   Dichtorontrobenzène-2,5   Chlorontrobenzènes   1617   Dichtorontrobenzène-2,5   Chlorontrobenzènes   1618   Dichtorontrobenzène-3,4   Chlorontrobenzènes   1618   Dichtorontrobenzène-3,4   Chlorontrobenzènes   1619   Diphémyléhers bromès   1614   Dichtorontrobenzène-3,4   Diphémyléhers bromès   1614   Dichtorontrobenzènes   1615   Dichtorontrobenzène-3,4   Diphémyléhers bromès   1614   Dichtorontrobenzènes   1615   Dichtorontrobenzènes   1615   Dichtorontrobenzène-3,4   Diphémyléhers bromès   1614   Dichtorontrobenzènes   1615   Dichtorontrobenzènes   1615   Dichtorontrobenzènes   1615   Dichtorontrobenzènes   1616   Dichtorontrobenzènes   1616   Dichtorontrobenzènes   1616   Dichtorontrobenzènes   1616   Dichtorontrobenzène   1617   Dichtorontrobenzène   1617   Dichtorontrobenzène   1618   Dichtorontrobenzène   1619   Diphémyléhers bromès   1614   Dichtorontrobenzène   1619   Dichto   |       | Kylène-ortho                   |                               |                    |                     |                              |
| 1166 Dichlorobenzéne-1,4 Chlorobenzénes 1199 Hexachlorobenzéne (Chlorobenzénes 1199 Hexachlorobenzéne (Chlorobenzénes 1193 Acétochlore Pesticides 1193 Acétochlore Pesticides 1193 Aldrine Pesticides 1630 Trichlorobenzéne-1,2,4 Chlorobenzénes 1103 Aldrine Pesticides 1103 Aldrine Pesticides 1103 Aldrine Pesticides 1103 Aldrine Pesticides 1103 Trichlorobenzéne-1,2,3 Chlorobenzénes 1104 Bromoxyril citanotte Pesticides 1105 Trichlorobenzéne-1,3,5 Chlorobenzénes 1106 Trichlorobenzéne-1,3,5 Chlorobenzénes 1107 Trichlorobenzéne-3,5 Chlorobenzénes 1107 Trichlorobenzéne-3,6 Chlorobenzénes 1107 Dichloronitrobenzéne-2,3 Chlorobenzénes 1108 Chlorophame Pesticides 1109 Trichlorobenzéne-2,3 Chlorobenzénes 1109 Trichlorobenzéne-1,3,5 Chlorobenzénes 1109 Trichlorobenzéne-1,3,5 Chlorobenzénes 1109 Trichlorobenzéne-3,4 Chlorobenzénes 1109 Trichlorobenzéne-3,4 Chlorobenzénes 1109 Dichloronitrobenzéne-3,4 Chloromitrobenzénes 1109 Dichloronitrobenzéne-3,4 Chloromitrobenzénes 1109 Dichloronitrobenzéne-3,4 Chloromitrobenzénes 1109 Diphényléthes bromés 1109 Diphénylét |       |                                | Chloroalacanes                |                    | PCB 35              |                              |
| 1199   Hoxachlorobenzène   Chlorobenzènes   1638   Pentachlorobenzène   Chlorobenzènes   1633   Tétrachlorobenzène   Chlorobenzènes   1633   Tétrachlorobenzène   2.4,6   Chlorobenzènes   1125   Bromoxyni   Pesticides   1630   Tirchlorobenzène   2.4,6   Chlorobenzènes   1125   Bromoxyni   Catanate   Pesticides   1630   Tirchlorobenzène   2.4,6   Chlorobenzènes   1125   Bromoxyni   Catanate   Pesticides   1630   Tirchlorobenzène   2.4,6   Chlorobenzènes   1144   Chlorafreyinphos   Pesticides   1647   Chloropenzènes   1647   Chloropenzènes   1474   Chlo   | 165   | Dichlorobenzène-1,2            | Chlorobenzènes                | 1241               |                     |                              |
| 1988   Petachlorobenzène   Chlorobenzènes   1688   Aclorifien   Pesticides   1630   Tribnicohonzène-1,2,4,5   Chlorobenzènes   1103   Aldrine   Pesticides   1630   Tribnicohonzène-1,2,3   Chlorobenzènes   1125   Bromoxynil clanate   Pesticides   1629   Tribnicohonzène-1,2,4   Chlorobenzènes   1125   Bromoxynil clanate   Pesticides   1629   Tribnicohonzène-1,3,5   Chlorobenzènes   1134   Bromoxynil clanate   Pesticides   1629   Tribnicohonzène-1,3,5   Chlorobenzènes   1134   Chlorrepiphos   Pesticides   1617   Dichioroniritobenzène-2,3   Chloronirobenzènes   1618   Chlorrepiphos entre   Pesticides   1615   Dichioroniritobenzène-2,3   Chloronirobenzènes   1614   Dichioroniritobenzène-3,4   Chloronirobenzènes   1540   Chlorypiphos éthyl   Pesticides   1614   Dichioroniritobenzène-3,4   Chloronirobenzènes   1540   Chlorypiphos éthyl   Pesticides   1614   Dichioroniritobenzène-3,4   Chloronirobenzènes   1540   Chlorypiphos éthyl   Pesticides   1629   Diphényléthers bromés   1629   Diphényléthers bromés   1143   DDD-p²   Pesticides   1629   Diphényléthers bromés   1144   DDD-p²   Pesticides   1629   Diphényléthers bromés   1145   DDE-p²   Pesticides   1629   Diphényléthers bromés   1146   DDE-p²   Pesticides   1629   Diphényléthers bromés   1146   DDE-p²   Pesticides   1629   Diphényléthers bromés   1146   DDE-p²   Pesticides   1620   Diphényléthers bromés   1146   DDE-p²   Pesticides   1620   Pesticides      | 164   | Dichlorobenzène-1,3            | Chlorobenzènes                | 1091               | PCB 77              | PCB                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 166   | Dichlorobenzène-1,4            | Chlorobenzènes                | 1903               | Acétochlore         | Pesticides                   |
| Testrachlorobenzéne-1,2,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 199 F | Hexachlorobenzène              | Chlorobenzènes                | 1688               | Aclonifen           | Pesticides                   |
| Tetrachlorobenzáne-1,2,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 888 F | Pentachlorobenzène             | Chlorobenzènes                | 1103               | Aldrine             | Pesticides                   |
| 1938   Trichlorobenzènes   1,2.4   Chlorobenzènes   1446   Chloridrivinphos   Pesticides   1774   Trichlorobenzènes   1,2.4   Chlorobenzènes   1134   Chlorméphos   Pesticides   1774   Trichlorobenzènes   1,2.5   Chlorobenzènes   1,2.5   Chlorob   |       |                                |                               |                    | Bromoxynil          |                              |
| 1283   Trichlorobenzéne-1,2.4   Chlorobenzénes   1464   Chlorfenvinphos   Pesticides   1629   Trichlorobenzénes   1,3   Chlorobenzénes   1147   Trichlorobenzénes   Chlorobenzénes   1474   Chlorprophame   Pesticides   1617   Dichloronitrobenzéne-2,3   Chloronitrobenzénes   1618   Dichloronitrobenzéne-2,3   Chloronitrobenzénes   1618   Dichloronitrobenzéne-3,4   Chloronitrobenzénes   1540   Chlorpryiphos éthyl   Pesticides   1614   Dichloronitrobenzéne-3,4   Chloronitrobenzénes   1540   Chlorpryiphos méthyl   Pesticides   1614   Dichloronitrobenzéne-3,4   Chloronitrobenzénes   1540   Chlorpryiphos méthyl   Pesticides   1614   Dichloronitrobenzénes   1615   Dichloronitrobenzénes   1614   Dichloronitrobenzénes   1620   Dicheryéthers bromés   1620   Dicheryéther   Dicheryéthers bromés   1620   Dicheryéthers   Dicheryé   |       |                                |                               |                    |                     |                              |
| 1629   Trichlorobenzénes   Chlorobenzénes   1134   Chlorméphos   Pesticides   1617   Dichloronitrobenzénes   23   Chlorobenzénes   1618   Chlorophanitrobenzénes   1616   Dichloronitrobenzénes   25   Chloronitrobenzénes   1618   Dichloronitrobenzénes   1618   Dichloronitrobenzénes   1618   Dichloronitrobenzénes   1618   Dichloronitrobenzénes   1618   Dichloronitrobenzénes   1619   Dichloronitrobenzénes   1619   Dichloronitrobenzénes   1619   Chloropriphos éthyl   Pesticides   1619   Dichloronitrobenzénes   1619   Chloropriphos éthyl   Pesticides   1619   Chloropriphos    |       |                                |                               |                    |                     |                              |
| 1474   Trichlorobenzénes   Chlorobenzénes   1474   Chlorprophame   Pesticides   1615   Dichloronitrobenzéne-2.3   Chloronitrobenzénes   1615   Dichloronitrobenzéne-2.3   Chloronitrobenzénes   1540   Chlororytiphos méthyl   Pesticides   1541   Dichloronitrobenzénes   1550   Chlororytiphos méthyl   Pesticides   1550   Chlororitiphen   1550   Ch   |       |                                |                               |                    |                     |                              |
| 1615   Dichloronitrobenzène-2,5   Chioronitrobenzènes   1614   Dichloronitrobenzène-3,5   Chioronitrobenzènes   1614   Dichloronitrobenzène-3,5   Chioronitrobenzènes   1614   Dichloronitrobenzène-3,5   Chioronitrobenzènes   1614   Dichloronitrobenzènes   1615   Dichloronitrobenzènes   1616   Dichloronitrobenzènes   1617   Dichloronitrobenzènes   1618   Dichloronitrobenzènes   1619   Dichloronitrobenzènes   1614   Dibenzo dichloronitrobenzènes   1615   Dichloronitrobenzènes   1616   Dichloronitrobenzènes   1617   Pesticides   1618   Dichloronitrobenzènes   1619   Dichloronitrobenzè   |       |                                |                               |                    |                     |                              |
| 1614   Dichloronitrobenzènes   1540   Chlorpyriphos méthyl   Pesticides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                                |                               |                    |                     |                              |
| 1614   Dichloronitrobenzènes   1359   Cyprodini   Pesticides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                |                               |                    |                     |                              |
| 2911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                |                               |                    |                     |                              |
| 2911 BDE153         Diphényléthers bromés         1144         DDP-p.p'         Pesticides           2920 BDE28         Diphényléthers bromés         1146         DDE-p.p'         Pesticides           2919 BDE47         Diphényléthers bromés         1146         DDE-p.p'         Pesticides           2916 BDE99         Diphényléthers bromés         1148         DDT-p.p'         Pesticides           2916 BDE99         Diphényléthers bromés         1148         DDT-p.p'         Pesticides           2815 Décabromodiphényléther         Diphényléthers bromés         1149         Deltaméthrine         Pesticides           1921 Pentabromodiphényléther         Diphényléthers bromés         1149         Deltaméthrine         Pesticides           1922 Pentabromodiphényléther         Diphényléthers bromés         1173         Dieldine         Pesticides           1922 Acénaphténe         HAP         1178         Endosulfan alpha         Pesticides           1458 Antracène         HAP         1179         Endosulfan alpha         Pesticides           1116 Benzo (a) Privêne         HAP         1174         Endosulfan sulfate         Pesticides           1117 Benzo (a) Privêne         HAP         1181         Enfosulfan sulfate         Pesticides           1118 Fluoranthène                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                |                               |                    |                     |                              |
| DDE-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                                |                               |                    |                     |                              |
| BDE28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                                |                               |                    |                     |                              |
| 2916   BDE47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                |                               |                    |                     |                              |
| BDE99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 920 E | 3DE28                          | Diphényléthers bromés         | 1146               | DDE-p,p'            | Pesticides                   |
| 1815   Décabromodiphényléther   Diphényléthers bromés   1169   Deltaméthrine   Pesticides   2609   Octabromodiphényléther   Diphényléthers bromés   1173   Dieldrine   Pesticides   1453   Acénaphtène   HAP   1814   Diffuénicanil   Pesticides   1458   Acénaphtène   HAP   1178   Endosulfan alpha   Pesticides   1458   Anthracène   HAP   1179   Endosulfan alpha   Pesticides   1458   Anthracène   HAP   1179   Endosulfan sulfate   Pesticides   1115   Benzo (a) Anthracène   HAP   1743   Endosulfan sulfate   Pesticides   1116   Benzo (b) Fluoranthène   HAP   1743   Endosulfan sulfate   Pesticides   1116   Benzo (b) Fluoranthène   HAP   1181   Endrine   Pesticides   Pesticides   1117   Benzo (k) Fluoranthène   HAP   1187   Fénitrothion   Pesticides   1119   Fluoranthène   HAP   1201   Fluoranthène   HAP   1201   Fluoranthène   HAP   1201   Fluoranthène   HAP   1201   HCH alpha   Pesticides   1117   Pesticides   Pesticides   1118   Pesticides   Pesticides   1119   Fluoranthène   HAP   1201   HCH alpha   Pesticides   1119   Fluoranthène   HAP   1200   HCH alpha   Pesticides   1117   Naphtalène   HAP   1201   HCH alpha   Pesticides   1117   Naphtalène   HAP   1202   HCH delta   Pesticides   1117   Naphtalène   HAP   1203   HCH alpha   Pesticides   1117   Naphtalène   HAP   1204   HCH alpha   Pesticides   1117   Naphtalène   HAP   1205   HCH alpha   Pesticides   1117   Naphtalène   HAP   1201   HCH alpha   Pesticides   1117   Naphtalène   HAP   1202   HCH delta   Pesticides   1117   Naphtalène   HAP   1203   HCH alpha   Pesticides   1117   Naphtalène   HAP   1204   HCH alpha   Pesticides   1117   Naphtalène   HAP   1205   HCH alpha   Pesticides   1117   Naphtalène   Pesticides     | 919 E | 3DE47                          | Diphényléthers bromés         | 1147               | DDT-o,p'            | Pesticides                   |
| Diphényléther   Diphényléthers bromés   1169   Dichlorprop   Pesticides   1921   Pentabromodiphényléther   Diphényléthers bromés   1173   Dieldrine   Pesticides   1453   Acénaphtène   HAP   1874   Diffufenicanii   Pesticides   1453   Acénaphtylène   HAP   1178   Endosulfan alpha   Pesticides   1458   Anthracène   HAP   1178   Endosulfan alpha   Pesticides   1115   Benzo (a) Anthracène   HAP   1179   Endosulfan beta   Pesticides   1116   Benzo (b) Fluoranthène   HAP   1742   Endosulfan sulfate   Pesticides   1116   Benzo (b) Fluoranthène   HAP   1744   Endosulfan sulfate   Pesticides   1116   Benzo (b) Fluoranthène   HAP   1181   Endrine   Pesticides   Pesticides   1117   Benzo (b) Fluoranthène   HAP   1187   Fénitrothion   Pesticides   1117   Benzo (b) Fluoranthène   HAP   11967   Fénitrothion   Pesticides   1117   Benzo (b) Fluoranthène   HAP   1967   Fénitrothion   Pesticides   1120   Pest   | 916 E | 3DE99                          | Diphényléthers bromés         | 1148               | DDT-p,p'            | Pesticides                   |
| Diphényléther   Diphényléthers bromés   1169   Dichlorprop   Pesticides   1921   Pentabromodiphényléther   Diphényléthers bromés   1173   Dieldrine   Pesticides   1453   Acénaphtène   HAP   1874   Diffufenicanii   Pesticides   1453   Acénaphtylène   HAP   1178   Endosulfan alpha   Pesticides   1458   Anthracène   HAP   1178   Endosulfan alpha   Pesticides   1115   Benzo (a) Anthracène   HAP   1179   Endosulfan beta   Pesticides   1116   Benzo (b) Fluoranthène   HAP   1742   Endosulfan sulfate   Pesticides   1116   Benzo (b) Fluoranthène   HAP   1744   Endosulfan sulfate   Pesticides   1116   Benzo (b) Fluoranthène   HAP   1181   Endrine   Pesticides   Pesticides   1117   Benzo (b) Fluoranthène   HAP   1187   Fénitrothion   Pesticides   1117   Benzo (b) Fluoranthène   HAP   11967   Fénitrothion   Pesticides   1117   Benzo (b) Fluoranthène   HAP   1967   Fénitrothion   Pesticides   1120   Pest   | 815 E | Décabromodiphényléther         | Diphényléthers bromés         | 1149               | Deltaméthrine       | Pesticides                   |
| Pentabromodiphényléther   Diphényléthers bromés   1173   Dieldrine   Pesticides   1453   Acénaphtène   HAP   1178   Endosulfan alpha   Pesticides   1458   Anthracène   HAP   1178   Endosulfan alpha   Pesticides   1458   Anthracène   HAP   1179   Endosulfan beta   Pesticides   1458   Anthracène   HAP   1174   Endosulfan beta   Pesticides   1115   Benzo (a) Pryène   HAP   1742   Endosulfan sulfate   Pesticides   1115   Benzo (a) Pryène   HAP   1743   Endosulfan Total   Pesticides   1116   Benzo (b) Fluoranthène   HAP   1181   Endrinne   Pesticides   1117   Benzo (k) Fluoranthène   HAP   1187   Endosulfan Total   Pesticides   1117   Benzo (k) Fluoranthène   HAP   1187   Fenitrothion   Pesticides   1117   Benzo (k) Fluoranthène   HAP   1187   Fénitrothion   Pesticides   1191   Fluoranthène   HAP   1202   Fluoroxearbe   Pesticides   1191   Fluoranthène   HAP   12547   Fluoroxypr-mepty   Pesticides   1623   Fluorène   HAP   1194   Flusilazole   Pesticides   1618   Méthyl-2-Paphtalène   HAP   1200   HCH alpha   Pesticides   1618   Méthyl-2-haphtalène   HAP   1200   HCH alpha   Pesticides   1517   Naphtalène   HAP   1202   HCH delta   Pesticides   1517   Naphtalène   HAP   1203   HCH gamma   Pesticides   1370   Aluminium   Métaux   1206   Iprodione   Pesticides   1376   Antimoline   Métaux   1207   Isodrine   Pesticides   1368   Argent   Métaux   1207   Isodrine   Pesticides   1369   Argenic   Métaux   1207   Isodrine   Pesticides   1379   Argenic   Métaux   1207   Isodrine   Pesticides   1388   Cadmium   Métaux   1208   Iprodione   Pesticides   1399   Baryum   Métaux   1208   Iprodione   Pesticides   1399   Argenic   Métaux   1664   Procymidone   Pesticides   1399   Fer   Métaux   1664   Procymidone   Pesticides   1399   Molybdène   Métaux   1664   Procymidone   Pesticides   1399   Molybdène   Métaux   1666   Térbaconazole   Pesticides   1399   Molybdène   Métaux   1660   Térbaconazole   Pesticides   1399   Molybdène   Métaux   1660   Térbaconazole   Pesticides   1399   Molybdène   Métaux   1660   Térbaconazole   Pe   |       |                                | Diphényléthers bromés         |                    |                     |                              |
| 1453   Acénaphtylène   HAP   1178   Endosulfan alpha   Pesticides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | , ,                            |                               |                    |                     |                              |
| 1178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                |                               |                    |                     |                              |
| 1458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                |                               |                    |                     |                              |
| 1082   Benzo (a) Anthracène   HAP   1742   Endosulfan Sulfate   Pesticides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                |                               |                    |                     |                              |
| 1115   Benzo (a) Pyrène   HAP   1181   Endrine   Pesticides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                                |                               |                    |                     |                              |
| 1116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                |                               |                    |                     |                              |
| 1118   Benzo (ghi) Pérylène   HAP   1744   Epoxiconazole   Pesticides   1117   Benzo (k) Fluoranthène   HAP   1967   Fénitrothion   Pesticides   1476   Chrysène   HAP   1967   Fénoxycarbe   Pesticides   1621   Dibenzo (ah) Anthracène   HAP   2022   Fludioxonil   Pesticides   1191   Fluoranthène   HAP   1194   Flusilazole   Pesticides   1204   Indéno (123c) Pyrène   HAP   1194   Flusilazole   Pesticides   1204   Indéno (123c) Pyrène   HAP   1200   HCH alpha   Pesticides   1618   Méthyl-2-naphtalène   HAP   1201   HCh beta   Pesticides   1517   Naphtalène   HAP   1202   HCH delta   Pesticides   1517   Naphtalène   HAP   1203   HCH gamma   Pesticides   1537   Pyrène   HAP   1203   HCH gamma   Pesticides   1537   Pyrène   HAP   1405   Hexaconazole   Pesticides   1368   Argent   Métaux   1206   Iprodione   Pesticides   1368   Argent   Métaux   1207   Sodrine   Pesticides   1369   Arsenic   Métaux   1950   Kresoxim méthyl   Pesticides   1377   Beryllium   Métaux   1209   Linuron   Pesticides   1388   Cadmium   Métaux   1667   Oxadiazon   Pesticides   1389   Chrome   Métaux   1667   Oxadiazon   Pesticides   1399   Chrome   Métaux   1667   Oxadiazon   Pesticides   1399   Cuvre   Métaux   1661   Tébutame   Pesticides   1390   Mercure   Métaux   1664   Procymidone   Pesticides   1399   Manganèse   Métaux   1664   Procymidone   Pesticides   1399   Mercure   Métaux   1666   Tébutame   Pesticides   1399   Mercure   Métaux   1660   Tétraconazole   Pesticides   1399   Mercure   Métaux   1268   Terbuthylazine   Pesticides   1395   Molybdène   Métaux   1268   Terbuthylazine   Pesticides   1386   Nickel   Métaux   1268   Terbuthylazine   Pesticides   1385   Sélénium   Métaux   1268   Terbuthylazine   Pesticides   1385   Polmb   Métaux   1268   Terbuthylazine   Pesticides   1385   Tellurium   Métaux   1268   Terbuthylazine   Pesticides   1385   Tellurium   Métaux   1268   Terbuthylazine   Pesticides   1385   Tellurium   Métaux   1268   Terbuthylazine   Pesticides   1386   Nickel   Métaux   1269   Terbuthylazine   Pesticides   1   |       |                                |                               |                    |                     |                              |
| 1117   Benzo (k) Fluoranthène   HAP   1867   Fénitrothion   Pesticides   1476   Chrysène   HAP   1967   Fénoxycarbe   Pesticides   1911   Fluoranthène   HAP   2022   Fludioxonil   Pesticides   1191   Fluoranthène   HAP   2547   Fluorxypyr-meptyl   Pesticides   1191   Fluoranthène   HAP   1194   Flusilazole   Pesticides   1194   Fluoranthène   HAP   1194   Flusilazole   Pesticides   1199   Méthyl-2-Fluoranthène   HAP   1200   HCH alpha   Pesticides   1618   Méthyl-2-naphtalène   HAP   1201   HCH beta   Pesticides   1517   Naphtalène   HAP   1202   HCH delta   Pesticides   1524   Phénanthrène   HAP   1203   HCH qesilon   Pesticides   1537   Pyrène   HAP   1405   Hexaconazole   Pesticides   1376   Antimoine   Métaux   1206   Hexaconazole   Pesticides   1368   Argent   Métaux   1207   Isodrine   Pesticides   1369   Arsenic   Métaux   1207   Isodrine   Pesticides   1396   Baryum   Métaux   1209   Linuron   Pesticides   1388   Cadmium   Métaux   1209   Linuron   Pesticides   1389   Chrome   Métaux   1209   Linuron   Pesticides   1389   Chrome   Métaux   1234   Pendiméthaline   Pesticides   1390   Cobalt   Métaux   1664   Procymidone   Pesticides   1390   Telorome   Métaux   1666   Procymidone   Pesticides   1390   Telorome   Métaux   1661   Tébutame   Pesticides   1391   Manganèse   Métaux   1661   Tébutame   Pesticides   1395   Molybdène   Métaux   1269   Terbutryne   Pesticides   1382   Plomb   Métaux   1486   Dichlorophénol-2,4,5   Phénols et chloro   2555   Tellurium   Métaux   1549   Trichlorophénol-2,4,5   Phénols et chloro   2555   Tellurium   Métaux   1549   Trichlorophénol-2,4,5   Phénols et chloro   2555   Tellurium   Métaux   1549   Trichlorophénol-2,4,6   Phénols et chloro   2555   Tellurium   Métaux   1549   Trichlorophénol-2,4,5   Phénols et chloro   2555   Tellurium   Métaux     |       |                                |                               |                    |                     |                              |
| 1476   Chrysène   HAP   1967   Fénoxycarbe   Pesticides   1621   Dibenzo (ah) Anthracène   HAP   2022   Fludioxonil   Pesticides   1911   Fluoranthène   HAP   2547   Fluroxypyr-meptyl   Pesticides   1823   Fluorène   HAP   1194   Flusilazole   Pesticides   1204   Indéno (123c) Pyrène   HAP   1200   HCH alpha   Pesticides   1818   Méthyl-2-naphtalène   HAP   1201   HCH beta   Pesticides   1817   Naphtalène   HAP   1202   HCH delta   Pesticides   1817   Naphtalène   HAP   1202   HCH delta   Pesticides   1837   Pyrène   HAP   1405   Hexaconazole   Pesticides   1376   Antimoine   Métaux   1206   Iprodione   Pesticides   1368   Argent   Métaux   1206   Iprodione   Pesticides   1369   Arsenic   Métaux   1950   Kresoxim méthyl   Pesticides   1377   Beryllium   Métaux   1519   Napropamide   Pesticides   1388   Cadmium   Métaux   1667   Coxadiazon   Pesticides   1389   Chrome   Métaux   1667   Coxadiazon   Pesticides   1392   Cuivre   Métaux   1694   Tébuconazole   Pesticides   1393   Fer   Métaux   1694   Tébuconazole   Pesticides   1394   Manganèse   Métaux   1269   Terbutrynacine   Pesticides   1395   Mercure   Métaux   1668   Tébutame   Pesticides   1395   Mercure   Métaux   1669   Tébutame   Pesticides   1396   Rero   Métaux   1694   Tébuconazole   Pesticides   1397   Mercure   Métaux   1694   Tébuconazole   Pesticides   1397   Mercure   Métaux   1694   Tébuconazole   Pesticides   1395   Mercure   Métaux   1666   Tébutame   Pesticides   1396   Nickel   Métaux   1694   Tébuconazole   Pesticides   1395   Mercure   Métaux   1696   Tébutame   Pesticides   1396   Nickel   Métaux   1269   Terbutrynacine   Pesticides   1395   Mercure   Métaux   1486   Dichorophénol-2   |       |                                |                               |                    |                     |                              |
| Dibenzo (ah) Anthracène   HAP   2022   Fludioxonil   Pesticides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                |                               |                    |                     |                              |
| 1191   Fluoranthène   HAP   1194   Flusilazole   Pesticides   1204   Indéno (123c) Pyrène   HAP   1204   HCH alpha   Pesticides   1204   Indéno (123c) Pyrène   HAP   1200   HCH alpha   Pesticides   1618   Méthyl-2-naphtalène   HAP   1201   HCH beta   Pesticides   1517   Naphtalène   HAP   1202   HCH delta   Pesticides   1517   Naphtalène   HAP   1203   HCH epsilon   Pesticides   1537   Pyrène   HAP   1203   HCH gamma   Pesticides   1370   Aluminium   Métaux   1206   Iprodione   Pesticides   1376   Antimoine   Métaux   1206   Iprodione   Pesticides   1368   Argent   Métaux   1206   Iprodione   Pesticides   1369   Arsenic   Métaux   1950   Kresoxim méthyl   Pesticides   1377   Beryllium   Métaux   1209   Lambda Cyhalothrine   Pesticides   1377   Beryllium   Métaux   1209   Lambda Cyhalothrine   Pesticides   1388   Cadmium   Métaux   1519   Napropamide   Pesticides   1388   Cadmium   Métaux   1667   Oxadiazon   Pesticides   1392   Cuivre   Métaux   1664   Procymidone   Pesticides   1393   Fer   Métaux   1664   Procymidone   Pesticides   1393   Fer   Métaux   1669   Terbutryne   Pesticides   1395   Molybdène   Métaux   1268   Terbutryne   Pesticides   1395   Molybdène   Métaux   1269   Terbutryne   Pesticides   1386   Nickel   Métaux   1486   Chlorométhylphénol-2,4,5   Phénols et chloro   2555   Tellurium   Métaux   1548   Tirchlorophénol-2,4,6   Phénols et chloro   1373   Titane   Métaux   1554   Biphényle   Semi volatils orge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                |                               |                    |                     |                              |
| 1623   Fluorène   HAP   1194   Flusilazole   Pesticides   1204   Indéno (123c) Pyrène   HAP   1200   HCH alpha   Pesticides   1619   Méthyl-2-Fluoranthène   HAP   1200   HCH alpha   Pesticides   1618   Méthyl-2-naphtalène   HAP   1202   HCH delta   Pesticides   1517   Naphtalène   HAP   1203   HCH gamma   Pesticides   1524   Phénanthrène   HAP   1203   HCH gamma   Pesticides   1537   Pyrène   HAP   1203   HCH gamma   Pesticides   1370   Aluminium   Métaux   1206   Iprodione   Pesticides   1376   Antimoine   Métaux   1207   Isodrine   Pesticides   1368   Argent   Métaux   1950   Kresoxim méthyl   Pesticides   1369   Arsenic   Métaux   1094   Lambda Cyhalothrine   Pesticides   1377   Beryllium   Métaux   1519   Napropamide   Pesticides   1388   Cadmium   Métaux   1667   Oxadiazon   Pesticides   1389   Chrome   Métaux   1664   Procymidone   Pesticides   1389   Chrome   Métaux   1664   Procymidone   Pesticides   1390   Etain   Métaux   1661   Tébutame   Pesticides   1390   Etain   Métaux   1661   Tébutame   Pesticides   1390   Molybdène   Métaux   1268   Terbuthylazine   Pesticides   1387   Mercure   Métaux   1268   Terbuthylazine   Pesticides   1387   Mercure   Métaux   1660   Tétraconazole   Pesticides   1386   Nickel   Métaux   1480   Tirchlorophénol-2,4   Phénols et chloro   1385   Sélénium   Métaux   1480   Tirchlorophénol   Phénols et chloro   2555   Tallium   Métaux   1548   Biphényle   Semi volatils orget   1584   Biphényle   Semi volatils orget   1586   Terbuthylazilia   Pesticides   1586     |       |                                |                               |                    |                     |                              |
| 1204   Indéno (123c) Pyrène   HAP   1200   HCH alpha   Pesticides   1619   Méthyl-2-Fluoranthène   HAP   1201   HCH beta   Pesticides   1517   Naphtalène   HAP   1202   HCH delta   Pesticides   1517   Naphtalène   HAP   1203   HCH qamma   Pesticides   1524   Phénanthrène   HAP   1203   HCH qamma   Pesticides   1537   Pyrène   HAP   1405   Hexaconazole   Pesticides   1370   Aluminium   Métaux   1206   Iprodione   Pesticides   1376   Antimoine   Métaux   1207   Isodrine   Pesticides   1368   Argent   Métaux   1950   Kresoxim méthyl   Pesticides   1396   Baryum   Métaux   1094   Lambda Cyhalothrine   Pesticides   1377   Beryllium   Métaux   1519   Napropamide   Pesticides   1388   Cadmium   Métaux   1234   Pendiméthaline   Pesticides   1389   Chrome   Métaux   1234   Pendiméthaline   Pesticides   1399   Cobalt   Métaux   1664   Procymidone   Pesticides   1390   Etain   Métaux   1664   Procymidone   Pesticides   1390   Etain   Métaux   1661   Tébutame   Pesticides   1391   Tébuconazole   Pesticides   1393   Fer   Métaux   1268   Terbuthylazine   Pesticides   1395   Molybdène   Métaux   1269   Terbutryne   Pesticides   1387   Mercure   Métaux   1268   Terbuthylazine   Pesticides   1386   Nickel   Métaux   1486   Dichlorophénol-4,3   Phénols et chloro   1385   Sélénium   Métaux   1486   Dichlorophénol-2,4,5   Phénols et chloro   1573   Titane   Métaux   1584   Biphényle   Semi volatils orget   1586   Potent volatils orge   |       | -luoranthène                   |                               |                    | Fluroxypyr-meptyl   | Pesticides                   |
| 1619   Méthyl-2-Fluoranthène   HAP   1201   HCH beta   Pesticides   1517   Naphtalène   HAP   1202   HCH delta   Pesticides   1517   Naphtalène   HAP   1203   HCH delta   Pesticides   1524   Phénanthrène   HAP   1203   HCH gamma   Pesticides   1537   Pyrène   HAP   1405   Hexaconazole   Pesticides   1370   Aluminium   Métaux   1206   Iprodione   Pesticides   1376   Antimoine   Métaux   1207   Isodrine   Pesticides   1368   Argent   Métaux   1950   Kresoxim méthyl   Pesticides   1369   Arsenic   Métaux   1950   Kresoxim méthyl   Pesticides   1396   Baryum   Métaux   1209   Linuron   Pesticides   1397   Beryllium   Métaux   1519   Napropamide   Pesticides   1388   Cadmium   Métaux   1667   Oxadiazon   Pesticides   1389   Chrome   Métaux   1234   Pendiméthaline   Pesticides   1392   Cuivre   Métaux   1414   Propyzamide   Pesticides   1392   Cuivre   Métaux   1664   Procymidone   Pesticides   1393   Fer   Métaux   1666   Tébutame   Pesticides   1393   Fer   Métaux   1268   Terbuthylazine   Pesticides   1397   Mercure   Métaux   1269   Terbuthylazine   Pesticides   1397   Mercure   Métaux   1269   Terbuthylazine   Pesticides   1397   Mercure   Métaux   1269   Terbuthyne   Pesticides   1397   Mercure   Métaux   1269   Terbuthyne   Pesticides   1398   Molybdène   Métaux   1269   Terbuthyne   Pesticides   1398   Metaux   1486   Dichorophénol-2,4   Phénols et chloro   1385   Selénium   Métaux   1486   Dichorophénol-2,4,5   Phénols et chloro   1373   Titane   Métaux   1584   Biphényle   Semi   | 623 F | -luorène                       | HAP                           | 1194               | Flusilazole         | Pesticides                   |
| 1618   Méthyl-2-naphtalène   HAP   1202   HCH delta   Pesticides   1517   Naphtalène   HAP   2046   HCH epsilon   Pesticides   1524   Phénanthrène   HAP   1203   HCH gamma   Pesticides   1537   Pyrène   HAP   1405   Hexaconazole   Pesticides   1370   Aluminium   Métaux   1206   Iprodione   Pesticides   1376   Antimoine   Métaux   1207   Isodrine   Pesticides   1368   Argent   Métaux   1950   Kresoxim méthyl   Pesticides   1369   Arsenic   Métaux   1950   Kresoxim méthyl   Pesticides   1369   Baryum   Métaux   1209   Linuron   Pesticides   1377   Beryllium   Métaux   1519   Napropamide   Pesticides   1388   Cadmium   Métaux   1667   Oxadiazon   Pesticides   1388   Cadmium   Métaux   1234   Pendiméthaline   Pesticides   1389   Chrome   Métaux   1664   Procymidone   Pesticides   1392   Cuivre   Métaux   1694   Tébuconazole   Pesticides   1392   Cuivre   Métaux   1661   Tébutame   Pesticides   1393   Fer   Métaux   1268   Terbutrylezine   Pesticides   1387   Mercure   Métaux   1269   Terbutryne   Pesticides   1386   Nickel   Métaux   1486   Dichlorophénol-2,4   Phénols et chloro   2555   Tellurium   Métaux   1549   Trichlorophénol-2,4,5   Phénols et chloro   2555   Thallium   Métaux   1584   Biphényle   Semi volatils orgalization   1584   Biphényle   Semi volatils   | 204 I | ndéno (123c) Pyrène            | HAP                           | 1200               | HCH alpha           | Pesticides                   |
| 1517 Naphtalène   HAP   2046 HCH epsilon   Pesticides   1524 Phénanthrène   HAP   1203 HCH gamma   Pesticides   1537 Pyrène   HAP   1405 Hexaconazole   Pesticides   1370 Aluminium   Métaux   1206 Iprodione   Pesticides   1376 Antimoine   Métaux   1207 Isodrine   Pesticides   1368 Argent   Métaux   1950 Kresoxim méthyl   Pesticides   1369 Arsenic   Métaux   1994 Lambda Cyhalothrine   Pesticides   1396 Baryum   Métaux   1209 Linuron   Pesticides   1377 Beryllium   Métaux   1519 Napropamide   Pesticides   1362 Bore   Métaux   1667 Oxadiazon   Pesticides   1388 Cadmium   Métaux   1664 Procymidone   Pesticides   1389 Chrome   Métaux   1664 Procymidone   Pesticides   1379 Cobalt   Métaux   1664 Procymidone   Pesticides   1392 Cuivre   Métaux   1694 Tébuconazole   Pesticides   1393 Fer   Métaux   1661 Tébutame   Pesticides   1393 Manganèse   Métaux   1668 Terbuthylazine   Pesticides   1394 Manganèse   Métaux   1269 Terbuthylazine   Pesticides   1387 Mercure   Métaux   1660 Tétraconazole   Pesticides   1386 Nickel   Métaux   1686 Chlorométhylphénol-4,3 Phénols et chloro   1385 Sélénium   Métaux   1486 Dichlorophénol-2,4 Phénols et chloro   2555 Thallium   Métaux   1584 Biphényle   Semi volatils orgalization   1584 Biphényle   1584 Biphényle   1584 Bi   | 619 N | Méthyl-2-Fluoranthène          | HAP                           | 1201               | HCH beta            | Pesticides                   |
| 1517 Naphtalène   HAP   2046 HCH epsilon   Pesticides   1524 Phénanthrène   HAP   1203 HCH gamma   Pesticides   1537 Pyrène   HAP   1405 Hexaconazole   Pesticides   1370 Aluminium   Métaux   1206 Iprodione   Pesticides   1376 Antimoine   Métaux   1207 Isodrine   Pesticides   1368 Argent   Métaux   1950 Kresoxim méthyl   Pesticides   1369 Arsenic   Métaux   1994 Lambda Cyhalothrine   Pesticides   1396 Baryum   Métaux   1209 Linuron   Pesticides   1377 Beryllium   Métaux   1519 Napropamide   Pesticides   1362 Bore   Métaux   1667 Oxadiazon   Pesticides   1388 Cadmium   Métaux   1664 Procymidone   Pesticides   1389 Chrome   Métaux   1664 Procymidone   Pesticides   1379 Cobalt   Métaux   1664 Procymidone   Pesticides   1392 Cuivre   Métaux   1694 Tébuconazole   Pesticides   1393 Fer   Métaux   1661 Tébutame   Pesticides   1393 Manganèse   Métaux   1668 Terbuthylazine   Pesticides   1394 Manganèse   Métaux   1269 Terbuthylazine   Pesticides   1387 Mercure   Métaux   1660 Tétraconazole   Pesticides   1386 Nickel   Métaux   1686 Chlorométhylphénol-4,3 Phénols et chloro   1385 Sélénium   Métaux   1486 Dichlorophénol-2,4 Phénols et chloro   2555 Thallium   Métaux   1584 Biphényle   Semi volatils orgalization   1584 Biphényle   1584 Biphényle   1584 Bi   | 618 N | Méthyl-2-naphtalène            | HAP                           | 1202               | HCH delta           | Pesticides                   |
| 1524   Phénanthrène   HAP   1203   HCH gamma   Pesticides   1537   Pyrène   HAP   1405   Hexaconazole   Pesticides   1370   Aluminium   Métaux   1206   Iprodione   Pesticides   1376   Antimoine   Métaux   1207   Isodrine   Pesticides   1368   Argent   Métaux   1950   Kresoxim méthyl   Pesticides   1369   Arsenic   Métaux   1950   Kresoxim méthyl   Pesticides   1369   Baryum   Métaux   1209   Linuron   Pesticides   1377   Beryllium   Métaux   1519   Napropamide   Pesticides   1382   Bore   Métaux   1667   Oxadiazon   Pesticides   1388   Cadmium   Métaux   1667   Oxadiazon   Pesticides   1389   Chrome   Métaux   1664   Procymidone   Pesticides   1379   Cobalt   Métaux   1414   Propyzamide   Pesticides   1392   Cuivre   Métaux   1694   Tébuconazole   Pesticides   1392   Cuivre   Métaux   1661   Tébutame   Pesticides   1393   Fer   Métaux   1268   Terbuthylazine   Pesticides   1394   Manganèse   Métaux   1268   Terbuthylazine   Pesticides   1395   Molybdène   Métaux   1269   Terbutryne   Pesticides   1386   Nickel   Métaux   1636   Chlorométhylphénol-4,3   Phénols et chloro   1385   Sélénium   Métaux   1486   Dichlorophénol-2,4   Phénols et chloro   2555   Tellurium   Métaux   1549   Tirchlorophénol-2,4,5   Phénols et chloro   1373   Titane   Métaux   1584   Biphényle   Semi volatils orgalization   1584   B   |       |                                |                               |                    |                     |                              |
| 1537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                |                               |                    |                     |                              |
| 1370 Aluminium Métaux 1376 Antimoine Métaux 1376 Antimoine Métaux 1368 Argent Métaux 1369 Arsenic Métaux 1390 Baryum Métaux 1391 Napropamide 1367 Oxadiazon Pesticides 1377 Beryllium Métaux 1388 Cadmium Métaux 1388 Cadmium Métaux 1389 Chrome Métaux 1399 Cobalt Métaux 1390 Cobalt Métaux 1414 Propyzamide Pesticides 1390 Civre Métaux 1664 Procymidone Pesticides 1390 Civre Métaux 1664 Procymidone Pesticides 1390 Etain Métaux 1664 Propyzamide Pesticides 1390 Fer Métaux 1664 Propyzamide Pesticides 1390 Fer Métaux 1664 Protymidone Pesticides 1390 Fer Métaux 1669 Tébuconazole Pesticides 1390 Fer Métaux 1660 Tébuconazole Pesticides 1390 Fer Métaux 1661 Tébutame Pesticides 1390 Fer Métaux 1660 Tétraconazole Pesticides 1390 Molybdène Métaux 1269 Terbutyne Pesticides 1387 Mercure Métaux 1660 Tétraconazole Pesticides 1386 Nickel Métaux 1680 Chlorométhylphénol-4,3 Phénols et chloro 1385 Sélénium Métaux 1486 Dichlorophénol-2,4,5 Phénols et chloro 1370 Titane Métaux 1584 Biphényle Semi volatils orga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                                |                               |                    |                     |                              |
| 1376AntimoineMétaux1207IsodrinePesticides1368ArgentMétaux1950Kresoxim méthylPesticides1399BaryumMétaux1094Lambda CyhalothrinePesticides1396BaryumMétaux1209LinuronPesticides1377BerylliumMétaux1519NapropamidePesticides1362BoreMétaux1667OxadiazonPesticides1388CadmiumMétaux1234PendiméthalinePesticides1389ChromeMétaux1664ProcymidonePesticides1379CobaltMétaux1414PropyzamidePesticides1392CuivreMétaux1694TébuconazolePesticides1380EtainMétaux1661TébutamePesticides1393FerMétaux1268TerbuthylazinePesticides1394ManganèseMétaux1269TerbutrynePesticides1387MercureMétaux1660TétraconazolePesticides1385MélopheneMétaux1636Chlorométhylphénol-4,3Phénols et chloro1382PlombMétaux1486Dichlorophénol-2,4Phénols et chloro1385SéléniumMétaux1548Trichlorophénol-2,4,5Phénols et chloro2555ThalliumMétaux1549Trichlorophénol-2,4,6Phénols et chloro1373TitaneMétaux1584Biphényle <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                |                               |                    |                     |                              |
| 1368 Argent   Métaux   1950   Kresoxim méthyl   Pesticides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                |                               |                    |                     |                              |
| 1369 Arsenic Métaux 1396 Baryum Métaux 1209 Linuron Pesticides 1377 Beryllium Métaux 1519 Napropamide Pesticides 1362 Bore Métaux 1567 Oxadiazon Pesticides 1388 Cadmium Métaux 1234 Pendiméthaline Pesticides 1389 Chrome Métaux 1539 Cobalt Métaux 1664 Procymidone Pesticides 1379 Cobalt Métaux 1414 Propyzamide Pesticides 1392 Cuivre Métaux 1592 Cuivre Métaux 1664 Tébuconazole Pesticides 1393 Fer Métaux 16661 Tébutame Pesticides 1393 Fer Métaux 16661 Tébutame Pesticides 1394 Manganèse Métaux 1669 Terbuthylazine Pesticides 1397 Mercure Métaux 1660 Tétraconazole Pesticides 1387 Mercure Métaux 1660 Tétraconazole Pesticides 1387 Mercure Métaux 1660 Tétraconazole Pesticides 1386 Nickel Métaux 1680 Chlorométhylphénol-4,3 Phénols et chloro 1382 Plomb Métaux 1486 Dichlorophénol-2,4 Phénols et chloro 1385 Sélénium Métaux 1549 Trichlorophénol-2,4,5 Phénols et chloro 1555 Thallium Métaux 1584 Biphényle Semi volatils orga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                                |                               |                    |                     |                              |
| 1396 Baryum Métaux 1209 Linuron Pesticides 1377 Beryllium Métaux 1519 Napropamide Pesticides 1362 Bore Métaux 1667 Oxadiazon Pesticides 1388 Cadmium Métaux 1234 Pendiméthaline Pesticides 1389 Chrome Métaux 1664 Procymidone Pesticides 1379 Cobalt Métaux 1664 Procymidone Pesticides 1392 Cuivre Métaux 1414 Propyzamide Pesticides 1392 Cuivre Métaux 1664 Procymidone Pesticides 1390 Etain Métaux 1661 Tébuconazole Pesticides 1393 Fer Métaux 1661 Tébutame Pesticides 1393 Fer Métaux 1268 Terbuthylazine Pesticides 1393 Manganèse Métaux 1268 Terbuthylazine Pesticides 1387 Mercure Métaux 1660 Tètraconazole Pesticides 1386 Nickel Métaux 1636 Chlorométhylphénol-4,3 Phénols et chloro 1382 Plomb Métaux 1486 Dichlorophénol Phénols et chloro 2559 Tellurium Métaux 1548 Trichlorophénol-2,4,5 Phénols et chloro 1373 Titane Métaux 1584 Biphényle Semi volatils orga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                                |                               |                    |                     |                              |
| 1377 Beryllium Métaux 1519 Napropamide Pesticides 1362 Bore Métaux 1667 Oxadiazon Pesticides 1388 Cadmium Métaux 1234 Pendiméthaline Pesticides 1389 Chrome Métaux 1664 Procymidone Pesticides 1379 Cobalt Métaux 1664 Procymidone Pesticides 1379 Cobalt Métaux 1414 Propyzamide Pesticides 1392 Cuivre Métaux 1694 Tébuconazole Pesticides 1380 Etain Métaux 1661 Tébutame Pesticides 1393 Fer Métaux 1268 Terbuthylazine Pesticides 1394 Manganèse Métaux 1268 Terbuthylazine Pesticides 1387 Mercure Métaux 1660 Tétraconazole Pesticides 1386 Nickel Métaux 1686 Trifluraline Pesticides 1386 Nickel Métaux 1686 Chlorométhylphénol-4,3 Phénols et chloro 1382 Plomb Métaux 1486 Dichlorophénol Phénols et chloro 2555 Thallium Métaux 1548 Trichlorophénol-2,4,5 Phénols et chloro 1373 Titane Métaux 1584 Biphényle Semi volatils orga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                |                               |                    |                     |                              |
| 1362 Bore   Métaux   1667   Oxadiazon   Pesticides     1388   Cadmium   Métaux   1234   Pendiméthaline   Pesticides     1389   Chrome   Métaux   1664   Procymidone   Pesticides     1379   Cobalt   Métaux   1414   Propyzamide   Pesticides     1392   Cuivre   Métaux   1694   Tébuconazole   Pesticides     1380   Etain   Métaux   1661   Tébutame   Pesticides     1393   Fer   Métaux   1268   Terbuthylazine   Pesticides     1394   Manganèse   Métaux   1269   Terbutryne   Pesticides     1387   Mercure   Métaux   1660   Tétraconazole   Pesticides     1387   Mercure   Métaux   1660   Tétraconazole   Pesticides     1395   Molybdène   Métaux   1289   Trifluraline   Pesticides     1386   Nickel   Métaux   1636   Chlorométhylphénol-4,3   Phénols et chloro     1382   Plomb   Métaux   1486   Dichlorophénol-2,4   Phénols et chloro     1385   Sélénium   Métaux   1548   Trichlorophénol-2,4,5   Phénols et chloro     2555   Thallium   Métaux   1549   Trichlorophénol-2,4,6   Phénols et chloro     1373   Titane   Métaux   1584   Biphényle   Semi volatils organism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                |                               |                    |                     |                              |
| 1388     Cadmium     Métaux     1234     Pendiméthaline     Pesticides       1389     Chrome     Métaux     1664     Procymidone     Pesticides       1379     Cobalt     Métaux     1414     Propyzamide     Pesticides       1392     Cuivre     Métaux     1694     Tébuconazole     Pesticides       1380     Etain     Métaux     1661     Tébutame     Pesticides       1393     Fer     Métaux     1268     Terbuthylazine     Pesticides       1394     Manganèse     Métaux     1269     Terbutyne     Pesticides       1387     Mercure     Métaux     1660     Tétraconazole     Pesticides       1386     Nickel     Métaux     1289     Trifluraline     Pesticides       1386     Nickel     Métaux     1636     Chlorométhylphénol-4,3     Phénols et chloro       1385     Sélénium     Métaux     1486     Dichlorophénol-2,4     Phénols et chloro       2555     Tellurium     Métaux     1548     Trichlorophénol-2,4,5     Phénols et chloro       1373     Titane     Métaux     1584     Biphényle     Semi volatils orga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                |                               |                    |                     |                              |
| 1389 Chrome Métaux 1664 Procymidone Pesticides 1379 Cobalt Métaux 1414 Propyzamide Pesticides 1392 Cuivre Métaux 1694 Tébuconazole Pesticides 1380 Etain Métaux 1661 Tébuconazole Pesticides 1393 Fer Métaux 1268 Terbuthylazine Pesticides 1394 Manganèse Métaux 1269 Terbutryne Pesticides 1387 Mercure Métaux 1269 Terbutryne Pesticides 1385 Molybdène Métaux 1269 Terbutryne Pesticides 1386 Nickel Métaux 1289 Trifluraline Pesticides 1386 Nickel Métaux 1636 Chlorométhylphénol-4,3 Phénols et chloro 1382 Plomb Métaux 1486 Dichlorophénol Phénols et chloro 1385 Sélénium Métaux 1235 Pentachlorophénol Phénols et chloro 2559 Tellurium Métaux 1548 Trichlorophénol-2,4,5 Phénols et chloro 1373 Titane Métaux 1584 Biphényle Semi volatils orga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                                |                               |                    |                     |                              |
| 1379 Cobalt Métaux 1392 Cuivre Métaux 1694 Tébuconazole Pesticides 1390 Etain Métaux 1661 Tébutame Pesticides 1393 Fer Métaux 1268 Terbuthylazine Pesticides 1394 Manganèse Métaux 1269 Terbutryne Pesticides 1395 Molybdène Métaux 1395 Molybdène Métaux 1396 Nickel Métaux 1289 Trifluraline Pesticides 1380 Nickel Métaux 1660 Tétraconazole Pesticides 1380 Nickel Métaux 1630 Chlorométhylphénol-4,3 Phénols et chloro 1382 Plomb Métaux 1486 Dichlorophénol-2,4 Phénols et chloro 1385 Sélénium Métaux 1235 Pentachlorophénol Phénols et chloro 1360 Tellurium Métaux 1235 Pentachlorophénol Phénols et chloro 1360 Titalium Métaux 1548 Trichlorophénol-2,4,5 Phénols et chloro 1373 Titane Métaux 1584 Biphényle Semi volatils orga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                                |                               |                    |                     |                              |
| 1392     Cuivre     Métaux     1694     Tébuconazole     Pesticides       1380     Etain     Métaux     1661     Tébutame     Pesticides       1393     Fer     Métaux     1268     Terbuthylazine     Pesticides       1394     Manganèse     Métaux     1269     Terbuthyne     Pesticides       1387     Mercure     Métaux     1660     Tétraconazole     Pesticides       1395     Molybdène     Métaux     1289     Trifluraline     Pesticides       1386     Nickel     Métaux     1636     Chlorométhylphénol-4,3     Phénols et chloro       1382     Plomb     Métaux     1486     Dichlorophénol-2,4     Phénols et chloro       1385     Sélénium     Métaux     1235     Pentachlorophénol     Phénols et chloro       2555     Tellurium     Métaux     1548     Trichlorophénol-2,4,5     Phénols et chloro       2555     Thallium     Métaux     1549     Trichlorophénol-2,4,6     Phénols et chloro       1373     Titane     Métaux     1584     Biphényle     Semi volatils organization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                |                               |                    |                     |                              |
| 1380     Etain     Métaux     1661     Tébutame     Pesticides       1393     Fer     Métaux     1268     Terbuthylazine     Pesticides       1387     Mercure     Métaux     1660     Tétraconazole     Pesticides       1395     Molybdène     Métaux     1680     Tifluraline     Pesticides       1386     Nickel     Métaux     1636     Chlorométhylphénol-4,3     Phénols et chloro       1385     Plomb     Métaux     1486     Dichlorophénol-2,4     Phénols et chloro       1385     Sélénium     Métaux     1235     Pentachlorophénol     Phénols et chloro       2555     Tellurium     Métaux     1548     Trichlorophénol-2,4,5     Phénols et chloro       1373     Titane     Métaux     1584     Biphényle     Semi volatils orga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                |                               |                    |                     |                              |
| 1380     Etain     Métaux     1661     Tébutame     Pesticides       1393     Fer     Métaux     1268     Terbuthylazine     Pesticides       1394     Manganèse     Métaux     1269     Terbutryne     Pesticides       1387     Mercure     Métaux     1660     Tétraconazole     Pesticides       1395     Molybdène     Métaux     1289     Trifluraline     Pesticides       1386     Nickel     Métaux     1636     Chlorométhylphénol-4,3     Phénols et chloro       1382     Plomb     Métaux     1486     Dichlorophénol-2,4     Phénols et chloro       1385     Sélénium     Métaux     1235     Pentachlorophénol     Phénols et chloro       2555     Tellurium     Métaux     1548     Trichlorophénol-2,4,5     Phénols et chloro       1373     Titane     Métaux     1584     Biphényle     Semi volatils orga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 392 C | Cuivre                         | Métaux                        | 1694               | Tébuconazole        | Pesticides                   |
| 1393     Fer     Métaux     1268     Terbuthylazine     Pesticides       1394     Manganèse     Métaux     1269     Terbutryne     Pesticides       1387     Mercure     Métaux     1660     Tétraconazole     Pesticides       1395     Molybdène     Métaux     1289     Trifluraline     Pesticides       1386     Nickel     Métaux     1636     Chlorométhylphénol-4,3     Phénols et chloro       1382     Plomb     Métaux     1486     Dichlorophénol-2,4     Phénols et chloro       1385     Sélénium     Métaux     1235     Pentachlorophénol     Phénols et chloro       2559     Tellurium     Métaux     1548     Trichlorophénol-2,4,5     Phénols et chloro       2555     Thallium     Métaux     1549     Trichlorophénol-2,4,6     Phénols et chloro       1373     Titane     Métaux     1584     Biphényle     Semi volatils orga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | <u> Etain</u>                  | Métaux                        | 1661               | Tébutame            | Pesticides                   |
| 1394     Manganèse     Métaux     1269     Terbutryne     Pesticides       1387     Mercure     Métaux     1660     Tétraconazole     Pesticides       1395     Molybdène     Métaux     1289     Trifluraline     Pesticides       1386     Nickel     Métaux     1636     Chlorométhylphénol-4,3     Phénols et chloro       1382     Plomb     Métaux     1486     Dichlorophénol-2,4     Phénols et chloro       1385     Sélénium     Métaux     1235     Pentachlorophénol     Phénols et chloro       2559     Tellurium     Métaux     1548     Trichlorophénol-2,4,5     Phénols et chloro       2555     Thallium     Métaux     1549     Trichlorophénol-2,4,6     Phénols et chloro       1373     Titane     Métaux     1584     Biphényle     Semi volatils orga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                |                               |                    |                     |                              |
| 1387     Mercure     Métaux     1660     Tétraconazole     Pesticides       1395     Molybdène     Métaux     1289     Trifluraline     Pesticides       1386     Nickel     Métaux     1636     Chlorométhylphénol-4,3     Phénols et chloro       1382     Plomb     Métaux     1486     Dichlorophénol-2,4     Phénols et chloro       1385     Sélénium     Métaux     1235     Pentachlorophénol     Phénols et chloro       2559     Tellurium     Métaux     1548     Trichlorophénol-2,4,5     Phénols et chloro       2555     Thallium     Métaux     1549     Trichlorophénol-2,4,6     Phénols et chloro       1373     Titane     Métaux     1584     Biphényle     Semi volatils orga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                |                               |                    |                     |                              |
| 1395MolybdèneMétaux1289TrifluralinePesticides1386NickelMétaux1636Chlorométhylphénol-4,3Phénols et chloro1382PlombMétaux1486Dichlorophénol-2,4Phénols et chloro1385SéléniumMétaux1235PentachlorophénolPhénols et chloro2559TelluriumMétaux1548Trichlorophénol-2,4,5Phénols et chloro2555ThalliumMétaux1549Trichlorophénol-2,4,6Phénols et chloro1373TitaneMétaux1584BiphényleSemi volatils orga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                |                               |                    |                     |                              |
| 1386NickelMétaux1636Chlorométhylphénol-4,3Phénols et chloro1382PlombMétaux1486Dichlorophénol-2,4Phénols et chloro1385SéléniumMétaux1235PentachlorophénolPhénols et chloro2559TelluriumMétaux1548Trichlorophénol-2,4,5Phénols et chloro2555ThalliumMétaux1549Trichlorophénol-2,4,6Phénols et chloro1373TitaneMétaux1584BiphényleSemi volatils orga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                |                               |                    |                     |                              |
| 1382PlombMétaux1486Dichlorophénol-2,4Phénols et chloro1385SéléniumMétaux1235PentachlorophénolPhénols et chloro2559TelluriumMétaux1548Trichlorophénol-2,4,5Phénols et chloro2555ThalliumMétaux1549Trichlorophénol-2,4,6Phénols et chloro1373TitaneMétaux1584BiphényleSemi volatils orga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                                |                               |                    |                     |                              |
| 1385     Sélénium     Métaux     1235     Pentachlorophénol     Phénols et chloro       2559     Tellurium     Métaux     1548     Trichlorophénol-2,4,5     Phénols et chloro       2555     Thallium     Métaux     1549     Trichlorophénol-2,4,6     Phénols et chloro       1373     Titane     Métaux     1584     Biphényle     Semi volatils orga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                                |                               |                    |                     |                              |
| 2559TelluriumMétaux1548Trichlorophénol-2,4,5Phénols et chloro2555ThalliumMétaux1549Trichlorophénol-2,4,6Phénols et chloro1373TitaneMétaux1584BiphényleSemi volatils orga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                |                               |                    |                     | Phénols et chlorophénols     |
| 2555ThalliumMétaux1549Trichlorophénol-2,4,6Phénols et chloro1373TitaneMétaux1584BiphényleSemi volatils orga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                                |                               |                    |                     | Phénols et chlorophénols     |
| 1373 Titane Métaux 1584 Biphényle Semi volatils orga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                |                               |                    |                     | Phénols et chlorophénols     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                |                               |                    |                     | Phénols et chlorophénols     |
| 1004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 373   | Гitane                         | Métaux                        |                    |                     | Semi volatils organiques div |
| 1361 Uranium Métaux 1461 DEPH Semi volatils orga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 361 l | Uranium                        | Métaux                        | 1461               | DEPH                | Semi volatils organiques div |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                |                               |                    |                     | Semi volatils organiques div |

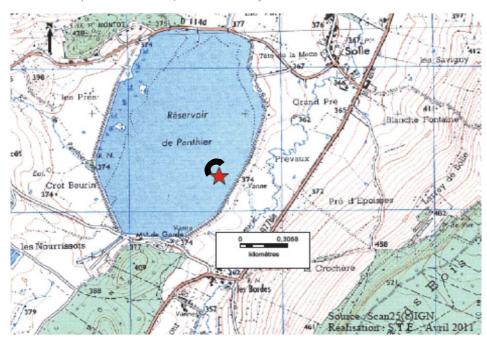
| Age | nce o | de l'Eau Rhône -<br>Etude des plai |           |        |              | bassin | s Rhône-Méditerranée et | Corse – Réservoir de Panthie | r (21) |
|-----|-------|------------------------------------|-----------|--------|--------------|--------|-------------------------|------------------------------|--------|
|     | 3.    | COMPTES                            | RENDUS    | DES    | CAMPAGNES    | DE     | PRELEVEMENTS            | PHYSICOCHIMIQUES             | ET     |
|     |       | PHYTOPLA                           | NCTONIOUI | ES SUR | L'ANNEE 2010 |        |                         |                              |        |

#### DONNEES GENERALES PLAN D'EAU - STATION

Plan d'eau : Date : 08/03/2011
Type (naturel, artificiel,...) : artificiel Code lac : U1305043
Organisme / opérateur : S.T.E.: S. Meistermann et A. Gravouille
Organisme demandeur Agence de l'eau RM&C marché n° 08M082

#### LOCALISATION PLAN D'EAU

Commune: Commarin


Lac marnant : oui Type : A2

Temps de séjour 480 jours retenues de moyennes montagnes, calcaire, peu

Superficie du plan d'eau : 119 ha profondes

Profondeur maximale: 14.3 m

Carte: (extrait SCAN25, IGN 1/25 000)



 $\bigstar$ 

localisation du point de prélèvements

angle de prise de vue de la photographie

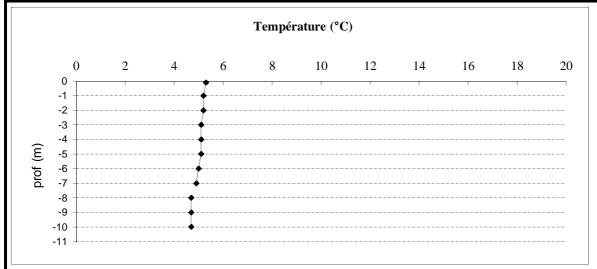
#### STATION

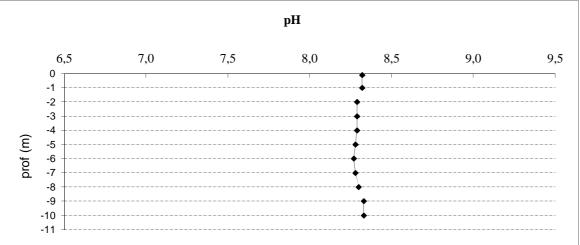
Photo du site:

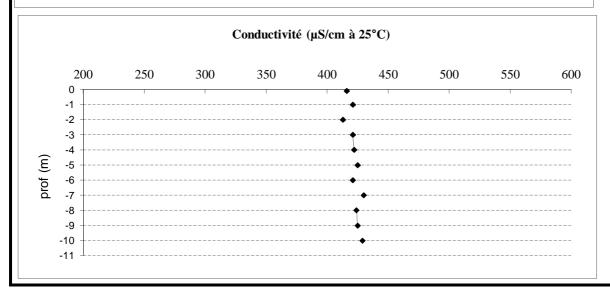


| Relevé phytoplanctonique et phy<br>DONNEES GENERALES CAM | * *                                                       |                       |                       |
|----------------------------------------------------------|-----------------------------------------------------------|-----------------------|-----------------------|
| Plan d'eau :                                             | Panthier (lac de )                                        |                       | Date: 08/03/2011      |
| Type (naturel, artificiel,):                             | artificiel                                                |                       | Code lac: U1305043    |
| Organisme / opérateurs :                                 | S.T.E.: S. Meistermann et                                 | A.Gravouille          | Campagne 1 page 2/5   |
| Organisme demandeur                                      | Agence de l'eau RM&C                                      |                       | marché n° 08M082      |
| STATION                                                  | rigorio de rode raviero                                   |                       | 00112002              |
| Coordonnées de la station                                | relevées sur : GPS                                        |                       |                       |
| Lambert 93                                               |                                                           | Y: 668358             | 2 alt.: 373 m         |
| WGS 84 (systinternational)                               |                                                           | Y:                    | alt.: m               |
| Profondeur:                                              | 11,5 m                                                    | <u> </u>              | <u> </u>              |
| 11010Hucui .                                             | vent : faible                                             |                       |                       |
|                                                          | météo : soleil                                            |                       |                       |
|                                                          | meteo: solen                                              |                       |                       |
| Conditions d'observation :                               | Surface de l'eau : faible                                 | ement agitée          |                       |
|                                                          | Hauteur des vagues : 0,2                                  | m P atm stand         | lard: 969 hPa         |
|                                                          | Bloom algal: non                                          | Pression at           |                       |
| Marnage:                                                 | non                                                       | Hauteur de la band    |                       |
| wiamage.                                                 | HOII                                                      | Tradicul de la band   | .c. 0,0 III           |
| Campagne : PRELEVEMENTS                                  | 1 campagne de fin d'hiver : h<br>de l'activité biologique | omothermie du plan    | d'eau avant démarrage |
| Heure de début du relevé :                               | 13:50 Heur                                                | e de fin du relevé :  | 15:00                 |
| Prélèvements pour analyses :                             | eau<br>chlorophylle matéi<br>phytoplancton                | riel employé :        | pompe                 |
|                                                          |                                                           |                       |                       |
| Gestion:                                                 | VNF pour l'alimentation des canau                         | ux de navigation      |                       |
|                                                          | Police de l'eau : DDT Côte d'Or                           |                       |                       |
| Contact préalable :                                      | DDT: M. Claude Remond, respon                             | nsable de la subdivis | sion navigation       |
|                                                          | Tél: 03.80.53.16.30 Fax: 03.80.                           | 53.16.34              |                       |
|                                                          | Mail: claude.remond@cote-d'or.g                           | gouv.fr               |                       |
|                                                          | 1                                                         | 06 00 02 62 46        |                       |
|                                                          | VNF: M. Leblanc, garde barrage                            | 00.09.02.02.40        |                       |
| Remarques, observations:                                 |                                                           | 00.09.02.02.40        |                       |
| Remarques, observations:                                 | Le réservoir est plein.                                   | 00.09.02.02.40        |                       |
| Remarques, observations:                                 |                                                           | 00.09.02.02.40        |                       |
| Remarques, observations:                                 | Le réservoir est plein.                                   | 00.09.02.02.40        |                       |
| Remarques, observations:                                 | Le réservoir est plein.                                   | 00.09.02.02.40        |                       |
| Remarques, observations:                                 | Le réservoir est plein.                                   | 00.09.02.02.40        |                       |

| Relevé phytoplanctonique et p<br>DONNEES PHYSICO-CHIM |                                                                                  | iimique ei                                              | n plan d | l'eau       |        |           |                   |  |
|-------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------|----------|-------------|--------|-----------|-------------------|--|
| Plan d'eau:                                           | Panthier (                                                                       | lac de )                                                |          |             |        | Date :    | 08/03/2011        |  |
| Type (naturel, artificiel,):                          | artificiel                                                                       | iac ac j                                                |          |             |        |           | U1305043          |  |
|                                                       |                                                                                  | S.T.E.: S. Meistermann A.Gravouille Campagne 1 page 3/5 |          |             |        |           |                   |  |
| Organisme / opérateur :                               | Agence de l'eau RM&C Campagne 1 page 3/3  Magence de l'eau RM&C marché n° 08M082 |                                                         |          |             |        |           |                   |  |
| Organisme demandeur                                   | Agence de                                                                        | e reau Kiv                                              | 1&C      |             |        | marche n° | 08M082            |  |
| TRANSPARENCE                                          |                                                                                  |                                                         |          |             |        |           |                   |  |
| Secchi en m:                                          | 2,1                                                                              | 2,1 Z euphotique (2,5 x Secchi): 5,3 m                  |          |             |        |           |                   |  |
| PROFIL VERTICAL                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
| Moyen de mesure utilisé :                             |                                                                                  | in-situ à                                               |          |             | X      |           | dans un récipient |  |
| Volume prélevé (en litres) :                          | Prof.                                                                            | Temp.                                                   | pН       | Cond.       | $O_2$  | $O_2$     | Heure             |  |
|                                                       | (m)                                                                              | (°C)                                                    |          | (µS/cm 25°) | (mg/l) | (%)       |                   |  |
| prélèvement intégré (2 L)                             | -0,1                                                                             | 5,3                                                     | 8,32     | 416         | 12,8   | 105%      | 14:00             |  |
| prélèvement intégré (2 L)                             | -1,0                                                                             | 5,2                                                     | 8,32     | 421         | 12,7   | 104%      |                   |  |
| prélèvement intégré (2 L)                             | -2,0                                                                             | 5,2                                                     | 8,29     | 413         | 12,8   | 105%      |                   |  |
| prélèvement intégré (2 L)                             | -3,0                                                                             | 5,1                                                     | 8,29     | 421         | 12,7   | 104%      |                   |  |
| prélèvement intégré (2 L)                             | -4,0                                                                             | 5,1                                                     | 8,29     | 422         | 12,7   | 104%      |                   |  |
| prélèvement intégré (2 L)                             | -5,0                                                                             | 5,1                                                     | 8,28     | 425         | 12,7   | 104%      | 14:20             |  |
|                                                       | -6,0                                                                             | 5,0                                                     | 8,27     | 421         | 12,6   | 103%      |                   |  |
|                                                       | -7,0                                                                             | 4,9                                                     | 8,28     | 430         | 12,5   | 101%      |                   |  |
|                                                       | -8,0                                                                             | 4,7                                                     | 8,30     | 424         | 12,5   | 101%      |                   |  |
|                                                       | -9,0                                                                             | 4,7                                                     | 8,33     | 425         | 12,5   | 101%      |                   |  |
| prélèvement de fond                                   | -10,0                                                                            | 4,7                                                     | 8,33     | 429         | 12,5   | 101%      | 14:50             |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |
|                                                       |                                                                                  |                                                         |          |             |        |           |                   |  |


#### DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES


Plan d'eau : Panthier (lac de )


Type (naturel, artificiel,...): artificiel
Organisme / opérateur: S.T.E.: S. Meistermann A.Gravouille

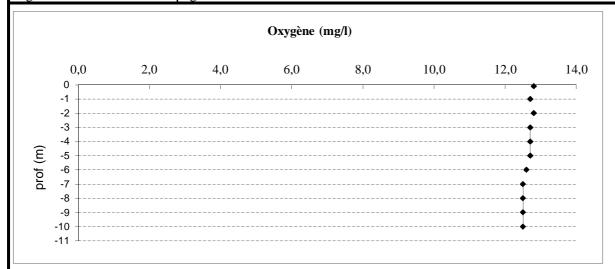
Organisme demandeur Agence de l'eau RM&C

Date: 08/03/2011 Code lac: U1305043 Campagne 1 page 4/5 marché n° 08M082








#### DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES


Plan d'eau : Panthier (lac de ) Date : 08/03/2011

Type (naturel, artificiel,...) : artificiel Code lac : U1305043

Organisme / opérateur : S.T.E. : S. Meistermann A. Gravouille Campagne 1 page 5/5

Organisme demandeur Agence de l'eau RM&C marché n° 08M082





#### Prélèvement d'eau de fond, pour analyses physicochimiques :

Distance au fond : 1.5 m soit à Zf = -10.0 m

Remarques et observations :

#### Remise des échantillons :

Echantillons pour analyses physicochimiques (Laboratoire LDA26)

échantillon intégré n° 1759376 Bon transport intégré : EE 323 334 773 EE échantillon de fond n° 1759211 Bon transport fond: EE 323 334 756 EE

remise par S.T.E.: le à

Au transporteur : Chronopost le 08/03/11 à 18h 00

Arrivée au laboratoire LDA 26 dans la matinée du : 09/03/11

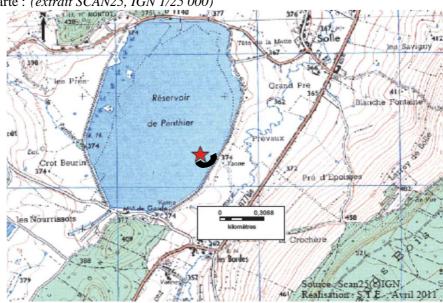
Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le 11/04/11

#### DONNEES GENERALES PLAN D'EAU - STATION

Panthier (lac de ) Date: 14/06/2011 Plan d'eau: Type (naturel, artificiel,...): artificiel Code lac: U1305043 Organisme / opérateur : **S.T.E.**: F. Lledo et H.Coppin Campagne 2 page 1/5 Organisme demandeur marché n° 08M082 Agence de l'eau RM&C

#### LOCALISATION PLAN D'EAU

Commune : Commarin


Lac marnant : oui Type: A2

Temps de séjour 480 retenues de moyennes montagnes, calcaire, peu jours

profondes Superficie du plan d'eau: 119 ha

Profondeur maximale: m

Carte: (extrait SCAN25, IGN 1/25 000)



localisation du point de prélèvements

angle de prise de vue de la photographie

#### STATION

#### Photo du site:

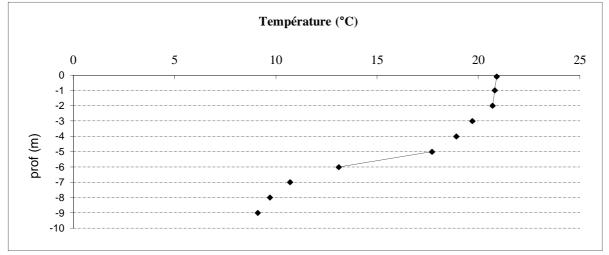


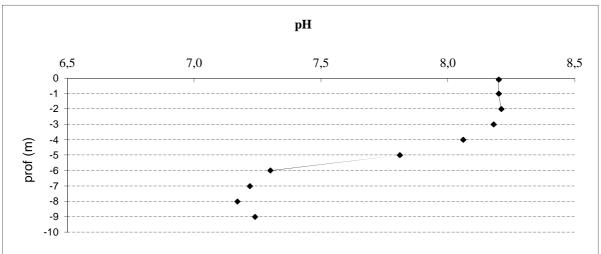
| Relevé phytoplanctonique et phy<br>DONNEES GENERALES CAM     | *                                                                                                                                                                                                                   |                                                                      |                                 |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------|
|                                                              |                                                                                                                                                                                                                     |                                                                      | Date: 14/06/2011                |
| Plan d'eau:                                                  | Panthier (lac de )                                                                                                                                                                                                  |                                                                      | Code lac: U1305043              |
| Type (naturel, artificiel,):                                 | artificiel                                                                                                                                                                                                          | и.с. :                                                               |                                 |
| Organisme / opérateurs :                                     | S.T.E.: F. Lledo et                                                                                                                                                                                                 | H.Coppin                                                             | Campagne 2 page 2/5             |
| Organisme demandeur                                          | Agence de l'eau RM&C                                                                                                                                                                                                |                                                                      | marché n° 08M082                |
| STATION                                                      |                                                                                                                                                                                                                     |                                                                      |                                 |
| Coordonnées de la station                                    | relevées sur : GPS                                                                                                                                                                                                  |                                                                      |                                 |
| Lambert 93                                                   |                                                                                                                                                                                                                     |                                                                      | 6683585 alt.: 372 m             |
| WGS 84 (systinternational)                                   |                                                                                                                                                                                                                     | Y:                                                                   | alt.: m                         |
| Profondeur :                                                 | 9,7 m                                                                                                                                                                                                               |                                                                      |                                 |
|                                                              | vent : nul<br>météo : faiblement nua                                                                                                                                                                                | TAILY                                                                |                                 |
|                                                              | incteo: Taroiement nua;                                                                                                                                                                                             | SCUA                                                                 |                                 |
| Conditions d'observation :                                   | Surface de l'eau :                                                                                                                                                                                                  | aiblement agitée                                                     |                                 |
|                                                              | Hauteur des vagues : (                                                                                                                                                                                              | ).05 m P atn                                                         | n standard : 969 hPa            |
|                                                              | Bloom algal: non                                                                                                                                                                                                    | Press                                                                | sion atm. : 975 hPa             |
| Marnage:                                                     | oui                                                                                                                                                                                                                 | Hauteur de l                                                         | la bande: -1,0 m                |
| <u>S</u>                                                     |                                                                                                                                                                                                                     |                                                                      | ŕ                               |
| Campagne : PRELEVEMENTS                                      | 2 campagne printaniere la thermocline                                                                                                                                                                               | de croissance du p                                                   | hytoplancton : mise en place de |
|                                                              |                                                                                                                                                                                                                     |                                                                      |                                 |
| Heure de début du relevé :                                   | 15:00                                                                                                                                                                                                               | Heure de fin du rel                                                  | levé : 15:40                    |
| Heure de début du relevé :  Prélèvements pour analyses :     | eau                                                                                                                                                                                                                 | Heure de fin du rel                                                  |                                 |
| Prélèvements pour analyses :                                 | eau<br>chlorophylle 1<br>phytoplancton                                                                                                                                                                              |                                                                      |                                 |
|                                                              | eau<br>chlorophylle 1<br>phytoplancton                                                                                                                                                                              |                                                                      |                                 |
| Prélèvements pour analyses :                                 | eau<br>chlorophylle 1<br>phytoplancton                                                                                                                                                                              | matériel employé :                                                   |                                 |
| Prélèvements pour analyses :  Gestion :                      | eau chlorophylle phytoplancton                                                                                                                                                                                      | natériel employé :                                                   | pompe                           |
| Prélèvements pour analyses :  Gestion :                      | eau chlorophylle phytoplancton  VNF Police de l'eau : DDT Côte d'                                                                                                                                                   | natériel employé :<br>Or<br>Or<br>Or de la su                        | pompe                           |
| Prélèvements pour analyses :  Gestion :                      | eau chlorophylle phytoplancton  VNF Police de l'eau : DDT Côte d' DDT : M. Claude Remond, re                                                                                                                        | or<br>esponsable de la su<br>3.80.53.16.34                           | pompe                           |
| Prélèvements pour analyses :  Gestion :                      | eau chlorophylle phytoplancton  VNF Police de l'eau : DDT Côte d' DDT : M. Claude Remond, re Tél : 03.80.53.16.30 Fax : 03                                                                                          | Or esponsable de la su 3.80.53.16.34                                 | pompe ubdivision navigation     |
| Prélèvements pour analyses :  Gestion :  Contact préalable : | eau chlorophylle phytoplancton  VNF Police de l'eau : DDT Côte d' DDT : M. Claude Remond, re Tél : 03.80.53.16.30 Fax : 03 Mail : claude.remond@cote-c                                                              | Or esponsable de la su 3.80.53.16.34 l'or.gouv.fr rage 06.09.02.62.4 | pompe ubdivision navigation     |
| Prélèvements pour analyses :  Gestion :  Contact préalable : | eau chlorophylle phytoplancton  VNF Police de l'eau : DDT Côte d' DDT : M. Claude Remond, re Tél : 03.80.53.16.30 Fax : 03 Mail : claude.remond@cote-c VNF : M. Leblanc, garde bar Le plan d'eau est bien stratifie | Or esponsable de la su 3.80.53.16.34 l'or.gouv.fr rage 06.09.02.62.4 | pompe ubdivision navigation     |
| Prélèvements pour analyses :  Gestion :  Contact préalable : | eau chlorophylle phytoplancton  VNF Police de l'eau : DDT Côte d' DDT : M. Claude Remond, re Tél : 03.80.53.16.30 Fax : 03 Mail : claude.remond@cote-c                                                              | Or esponsable de la su 3.80.53.16.34 l'or.gouv.fr rage 06.09.02.62.4 | pompe ubdivision navigation     |
| Prélèvements pour analyses :  Gestion :  Contact préalable : | eau chlorophylle phytoplancton  VNF Police de l'eau : DDT Côte d' DDT : M. Claude Remond, re Tél : 03.80.53.16.30 Fax : 03 Mail : claude.remond@cote-c VNF : M. Leblanc, garde bar Le plan d'eau est bien stratifie | Or esponsable de la su 3.80.53.16.34 l'or.gouv.fr rage 06.09.02.62.4 | pompe ubdivision navigation     |
| Prélèvements pour analyses :  Gestion :  Contact préalable : | eau chlorophylle phytoplancton  VNF Police de l'eau : DDT Côte d' DDT : M. Claude Remond, re Tél : 03.80.53.16.30 Fax : 03 Mail : claude.remond@cote-c VNF : M. Leblanc, garde bar Le plan d'eau est bien stratifie | Or esponsable de la su 3.80.53.16.34 l'or.gouv.fr rage 06.09.02.62.4 | pompe ubdivision navigation     |
| Prélèvements pour analyses :  Gestion :  Contact préalable : | eau chlorophylle phytoplancton  VNF Police de l'eau : DDT Côte d' DDT : M. Claude Remond, re Tél : 03.80.53.16.30 Fax : 03 Mail : claude.remond@cote-c VNF : M. Leblanc, garde bar Le plan d'eau est bien stratifie | Or esponsable de la su 3.80.53.16.34 l'or.gouv.fr rage 06.09.02.62.4 | pompe ubdivision navigation     |

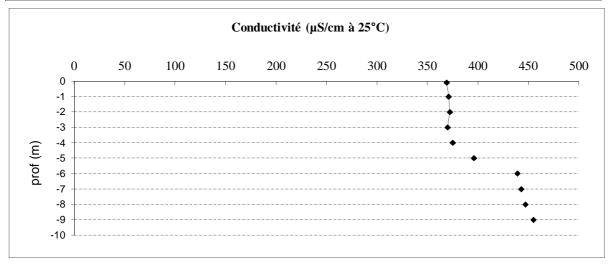
| Relevé phytoplanctonique et p                              | hysico-ch    | imique en   | plan d'      | еаи               |            |                |                  |
|------------------------------------------------------------|--------------|-------------|--------------|-------------------|------------|----------------|------------------|
| DONNEES PHYSICO-CHIM                                       | IIQUES       |             |              |                   |            |                |                  |
| Plan d'eau:                                                | Panthier     | (lac de )   |              |                   |            | Date:          | 14/06/2011       |
| Type (naturel, artificiel,):                               | artificiel   |             |              |                   |            | Code lac:      | U1305043         |
| Organisme / opérateur :                                    | S.T.E. :     | F. Lledo    | Campagne     | 2 page 3/5        |            |                |                  |
| Organisme demandeur                                        |              | e l'eau RM  |              | H.Coppin          |            | marché n°      |                  |
| TRANSPARENCE                                               | 1 1801100 0  | - 1000 101  | 100          |                   |            | 111011 0110 11 | 001/1002         |
| Secchi en m :                                              | 3,4          |             | 7 eupho      | otique (2,5 x Se  | ecchi) :   | 8,5            | m                |
| PROFIL VERTICAL                                            | ۶,¬          |             | Z cupito     | 7.11que (2,5 x 5) | ccciii).   | 0,5            | III              |
| Moyen de mesure utilisé :                                  |              | in-situ à c | rhaque n     | rof               | X          | en surface d   | ans un récipient |
| ·                                                          | Prof.        | Temp.       | pH           | Cond.             | $O_2$      | O <sub>2</sub> | Heure            |
| Volume prélevé (en litres) :                               | (m)          | (°C)        | pm           | (μS/cm 25°)       | (mg/l)     | (%)            | Ticurc           |
| prélèvement intégré (1.5 L)                                | -0,1         | 20,9        | 8,20         | 369               | 10,2       | 118%           | 15:10            |
| prélèvement intégré (1.5 L)                                | -1,0         | 20,8        | 8,20         | 371               | 10,3       | 119%           | 15.10            |
| prélèvement intégré (1.5 L)                                | -2,0         | 20,7        | 8,21         | 372               | 10,4       | 120%           |                  |
| prélèvement intégré (1.5 L)                                | -3,0         | 19,7        | 8,18         | 370               | 11,0       | 124%           |                  |
| prélèvement intégré (1.5 L)                                | -4,0         | 18,9        | 8,06         | 375               | 10,8       | 120%           |                  |
| prélèvement intégré (1.5 L)                                | -5,0         | 17,7        | 7,81         | 396               | 9,3        | 102%           |                  |
| prélèvement intégré (1.5 L)                                | -6,0         | 13,1        | 7,30         | 439               | 3,7        | 36%            |                  |
| prélèvement intégré (1.5 L)<br>prélèvement intégré (1.5 L) | -7,0<br>-8,0 | 10,7<br>9,7 | 7,22<br>7,17 | 443<br>447        | 2,5<br>1,2 | 23%<br>11%     | 15:20            |
| prélèvement de fond                                        | -9,0         | 9,7         | 7,17         | 455               | 1,2        | 10%            | 15:30            |
| prefevement de fond                                        | -7,0         | 7,1         | 7,24         | 433               | 1,2        | 1070           | 13.30            |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |
|                                                            |              |             |              |                   |            |                |                  |

#### DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES

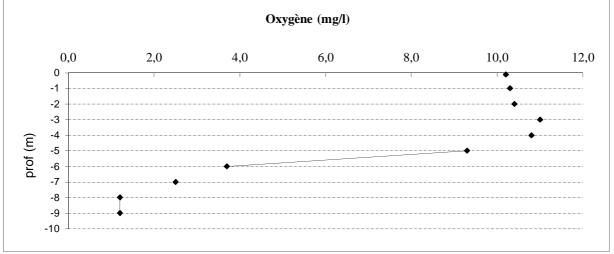
Plan d'eau: Panthier (lac de ) Type (naturel, artificiel,...): artificiel

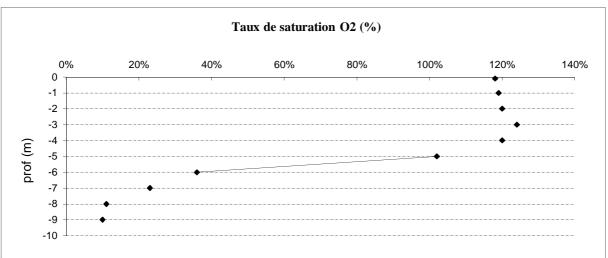

Organisme / opérateur : S.T.E.: F. Lledo et Organisme demandeur


Agence de l'eau RM&C


H.Coppin

Code lac: U1305043 Campagne 2 page 4/5 marché n° 08M082


Date: 14/06/2011








# Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Plan d'eau : Panthier (lac de ) Date : 14/06/2011 Type (naturel, artificiel,...) : artificiel Code lac : U1305043 Organisme / opérateur : S.T.E. : F. Lledo et H.Coppin Campagne 2 page 5/5 Organisme demandeur Agence de l'eau RM&C marché n° 08M082





| Prélèvement d'eau de fond, pou<br>Distance au fond : | <i>J</i> 1    | soit à Zf =     | -9.0 m          |           |            |      |       |
|------------------------------------------------------|---------------|-----------------|-----------------|-----------|------------|------|-------|
| Distance au fond.                                    | 0,7 111       | son a Zi –      | -9,0 III        |           |            |      |       |
| Remarques et observations :                          |               |                 |                 |           |            |      |       |
|                                                      |               |                 |                 |           |            |      |       |
| Remise des échantillons :                            |               |                 |                 |           |            |      |       |
| Echantillons pour analyses phy                       | sicochimique  | es (Laboratoire | LDA26)          |           |            |      |       |
| échantillon intégré n°                               | 1759396       |                 | Bon transport   | intégré : | EE33858829 | 2EE  |       |
| échantillon de fond n°                               | 1759226       |                 | Bon transport   | fond:     | EE33858830 | 1EE  |       |
| remise par S.T.E.:                                   |               |                 | le              |           |            | à    |       |
| Au transporteur:                                     | Chronopost    |                 | le              | 14/06/11  |            | à    | 18h00 |
|                                                      | Arrivée au la | aboratoire LDA  | A 26 dans la ma | atinée du | :          | 15/0 | 06/11 |
|                                                      |               |                 |                 |           |            |      |       |
| Echantillons pour analyses phy                       | toplanctoniq  | ues à BECQ'E    | AU, le          | 08/07/11  |            |      |       |

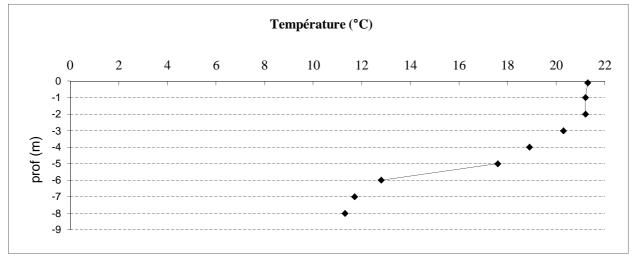
### Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES GENERALES PLAN D'EAU - STATION Plan d'eau: Panthier (lac de ) Date: 04/08/2011 Code lac: U1305043 Type (naturel, artificiel,...): artificiel Organisme / opérateur : **S.T.E.**: Campagne 3 page 1/5 S. Meistermann et T. Vulliet marché n° 08M082Organisme demandeur Agence de l'eau RM&C LOCALISATION PLAN D'EAU Commune : Commarin Lac marnant : oui Type: A2 Temps de séjour 480 retenues de moyennes montagnes, calcaire, peu jours profondes Superficie du plan d'eau : 119 ha Profondeur maximale: Carte: (extrait SCAN25, IGN 1/25 000) Réservoir de Panthier Crot Beurin ★localisation du point de prélèvements **C** angle de prise de vue de la photographie STATION Photo du site:

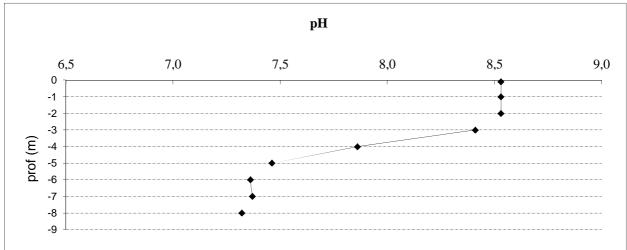
| Relevé phytoplanctonique et p<br>DONNEES GENERALES CA                              | physico-chimique en plan d'eau<br>AMPAGNE                |
|------------------------------------------------------------------------------------|----------------------------------------------------------|
| Plan d'eau:                                                                        | Panthier (lac de ) Date : 04/08/2011                     |
| Type (naturel, artificiel,):                                                       | artificiel Code lac: U1305043                            |
| Organisme / opérateurs :                                                           | S.T.E.: S. Meistermann et T. Vulliet Campagne 3 page 2/5 |
| Organisme demandeur                                                                | Agence de l'eau RM&C marché n° 08M082                    |
| STATION                                                                            | rigenee de reda riffee                                   |
| Coordonnées de la station                                                          | relevées sur : GPS                                       |
| Lambert 93                                                                         |                                                          |
| WGS 84 (systinternational)                                                         |                                                          |
| Profondeur:                                                                        |                                                          |
| Troiondeur .                                                                       | vent : nul                                               |
|                                                                                    | météo : soleil                                           |
|                                                                                    | ineteo . Soleii                                          |
| Conditions d'observation :                                                         | Surface de l'eau : lisse                                 |
|                                                                                    | Harton da anno 1900 170                                  |
|                                                                                    | Hauteur des vagues: 0 m P atm standard: 969 hPa          |
|                                                                                    | Bloom algal: non Pression atm.: 980 hPa                  |
| Marnage:                                                                           | oui Hauteur de la bande : -2,5 m                         |
| Campagne :  PRELEVEMENTS  Heure de début du relevé :  Prélèvements pour analyses : | croissance du phytopiancton                              |
|                                                                                    | <del>-</del>                                             |
| Gestion:                                                                           |                                                          |
|                                                                                    | Police de l'eau : DDT Côte d'Or                          |
|                                                                                    |                                                          |
| Contact préalable :                                                                | DDT: subdivision navigation Dijon                        |
| Contact préalable :                                                                |                                                          |
| Contact préalable :                                                                | DDT: subdivision navigation Dijon                        |
|                                                                                    | DDT: subdivision navigation Dijon                        |

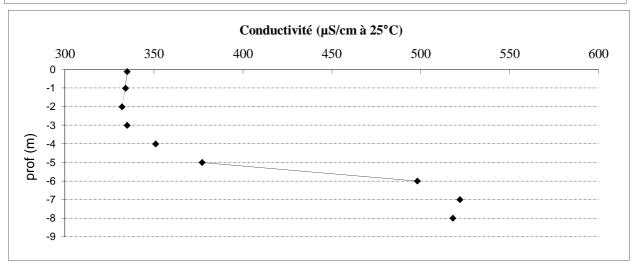
| Relevé phytoplanctonique et physico-chimique en plan d'eau<br>DONNEES PHYSICO-CHIMIQUES |                                        |                                     |              |             |            |                  |                     |  |  |
|-----------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------|--------------|-------------|------------|------------------|---------------------|--|--|
|                                                                                         |                                        | 1 1- )                              |              |             |            | Data             | 04/09/2011          |  |  |
| Plan d'eau :                                                                            | Panthier (                             | (lac de )                           |              |             |            |                  | 04/08/2011          |  |  |
| 71 ( , , , , , , , , , , , , , , , , , ,                                                | artificiel                             |                                     |              |             |            |                  | U1305043            |  |  |
| Organisme / opérateur :                                                                 | S.T.E. :                               | S.T.E.: S. Meistermann e T. Vulliet |              |             |            |                  | Campagne 3 page 3/5 |  |  |
| Organisme demandeur                                                                     | Agence de                              | e l'eau Rl                          | M&C          |             |            | marché n° 08M082 |                     |  |  |
| TRANSPARENCE                                                                            |                                        |                                     |              |             |            |                  |                     |  |  |
| Secchi en m:                                                                            | 2,0 Z euphotique (2,5 x Secchi): 5,0 m |                                     |              |             |            |                  | m                   |  |  |
| PROFIL VERTICAL                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
| Moyen de mesure utilisé:                                                                | in-situ à chaque prof. X               |                                     |              |             | X          | en surface da    | ns un récipient     |  |  |
| Volume málová (an litros)                                                               | Prof.                                  | Temp.                               | pН           | Cond.       | $O_2$      | $O_2$            | Heure               |  |  |
| Volume prélevé (en litres) :                                                            | (m)                                    | (°C)                                |              | (µS/cm 25°) | (mg/l)     | (%)              |                     |  |  |
| prélèvement intégré (2 L)                                                               | -0,1                                   | 21,3                                | 8,53         | 335         | 9,8        | 115%             | 09:20               |  |  |
| prélèvement intégré (2 L)                                                               | -1,0                                   | 21,2                                | 8,53         | 334         | 9,8        | 115%             |                     |  |  |
| prélèvement intégré (2 L)                                                               | -2,0                                   | 21,2                                | 8,53         | 332         | 9,9        | 116%             |                     |  |  |
| prélèvement intégré (2 L)                                                               | -3,0                                   | 20,3                                | 8,41         | 335         | 9,8        | 113%             |                     |  |  |
| prélèvement intégré (2 L)                                                               | -4,0                                   | 18,9                                | 7,86         | 351<br>377  | 6,5        | 73%              | 00.20               |  |  |
| prélèvement intégré (2 L)                                                               | -5,0                                   | 17,6<br>12,8                        | 7,46         | 498         | 1,2<br>1,0 | 14%<br>9%        | 09:30               |  |  |
|                                                                                         | -6,0<br>-7,0                           | 11,7                                | 7,36<br>7,37 | 522         | 0,9        | 9%<br>8%         |                     |  |  |
| prélèvement de fond                                                                     | -8,0                                   | 11,7                                | 7,37         | 518         | 0,9        | 7%               | 09:40               |  |  |
| preievement de rond                                                                     | 0,0                                    | 11,5                                | 7,32         | 310         | 0,0        | 7 70             | 07.40               |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |
|                                                                                         |                                        |                                     |              |             |            |                  |                     |  |  |

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Panthier (lac de )

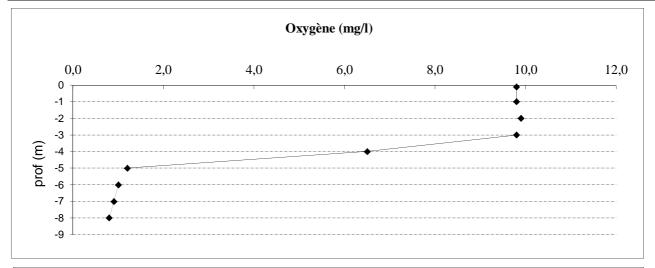
Plan d'eau: Type (naturel, artificiel,...):

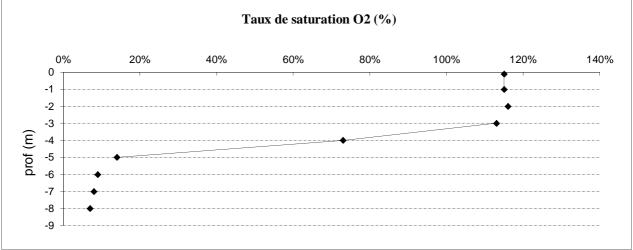

artificiel


Organisme / opérateur :


S.T.E.: S. Meistermann e T. Vulliet Organisme demandeur Agence de l'eau RM&C

Date: 04/08/2011 Code lac: U1305043


Campagne 3 page 4/5 marché n° 08M082



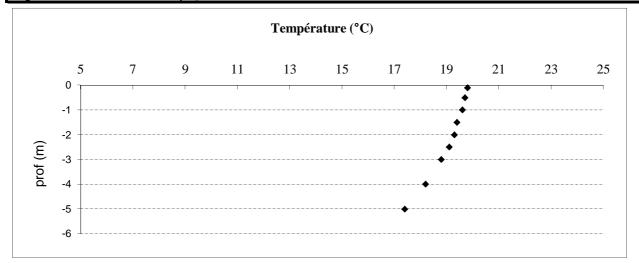


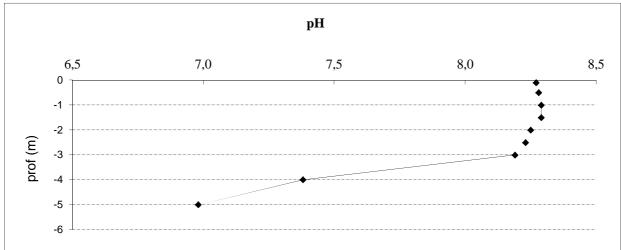


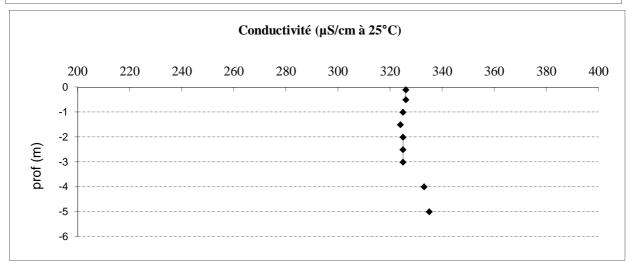

| Relevé phytoplanctonique et physico-chimique en plan d'eau |                                     |                     |  |  |  |
|------------------------------------------------------------|-------------------------------------|---------------------|--|--|--|
| DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES                     |                                     |                     |  |  |  |
| Plan d'eau:                                                | Panthier (lac de )                  | Date: 04/08/2011    |  |  |  |
| Type (naturel, artificiel,):                               | artificiel                          | Code lac: U1305043  |  |  |  |
| Organisme / opérateur :                                    | S.T.E.: S. Meistermann e T. Vulliet | Campagne 3 page 5/5 |  |  |  |
| Organisme demandeur                                        | Agence de l'eau RM&C                | marché n° 08M082    |  |  |  |



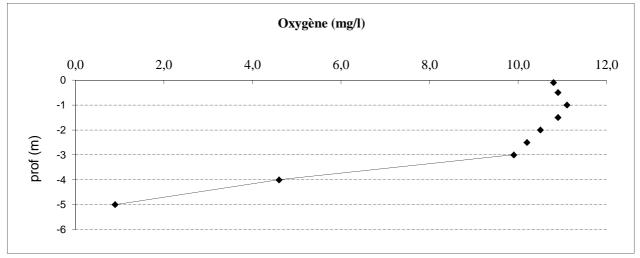


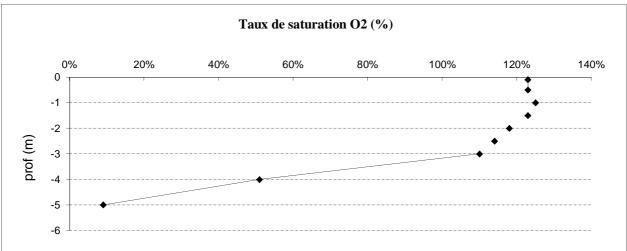

| Distance au fond : 1,0             | m soit à $Zf =$         | -8,0 m                    |    |         |
|------------------------------------|-------------------------|---------------------------|----|---------|
| Remarques et observations :        |                         |                           |    |         |
| Remise des échantillons :          |                         |                           |    |         |
| Echantillons pour analyses physico | chimiques (Laboratoire  | LDA26)                    |    |         |
| échantillon intégré n° 175         | 9420                    | Bon transport intégré :   |    |         |
| échantillon de fond n° 175         | 9241                    | Bon transport fond:       |    |         |
| remise par S.T.E.:                 |                         | le                        | à  |         |
| Au transporteur : Chr              | onopost                 | le 04/08/11               | à  | 16h 00  |
| Arri                               | ivée au laboratoire LDA | A 26 dans la matinée du : | 0: | 5/08/11 |


### Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES GENERALES PLAN D'EAU - STATION Plan d'eau: Panthier (lac de ) Date: 27/09/2011 Code lac: U1305043 Type (naturel, artificiel,...): artificiel Organisme / opérateur : E.Bertrand et F. Lledo **S.T.E.**: Campagne 4 page 1/6 marché n° 08M082Organisme demandeur Agence de l'eau RM&C LOCALISATION PLAN D'EAU Commune : Commarin Lac marnant : oui Type: A2 Temps de séjour 480 retenues de moyennes montagnes, calcaire, peu jours profondes Superficie du plan d'eau: 119 ha Profondeur maximale: Carte: (extrait SCAN25, IGN 1/25 000) Réservoir de Panthier Crot Beuri Prá d'Epois Tocalisation du point de prélèvements **C** angle de prise de vue de la photographie STATION Photo du site:


|                                         | physico-chimique en plan d'eau                                                                                                                                                                                                                                                                              |                                     |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| DONNEES GENERALES C                     |                                                                                                                                                                                                                                                                                                             |                                     |
| Plan d'eau:                             | Panthier (lac de )                                                                                                                                                                                                                                                                                          | Date: 27/09/2011                    |
| Type (naturel, artificiel,):            |                                                                                                                                                                                                                                                                                                             | Code lac: U1305043                  |
| Organisme / opérateurs :                | S.T.E.: E.Bertrand et F. Lledo                                                                                                                                                                                                                                                                              | Campagne 4 page 2/6                 |
| Organisme demandeur                     | Agence de l'eau RM&C                                                                                                                                                                                                                                                                                        | marché n° 08M082                    |
| STATION                                 |                                                                                                                                                                                                                                                                                                             |                                     |
| Coordonnées de la station               | relevées sur : GPS                                                                                                                                                                                                                                                                                          |                                     |
| Lambert 93                              | X:823516 Y:                                                                                                                                                                                                                                                                                                 | 6683585 alt.: 367 m                 |
| WGS 84 (systinternational)              | GPS (en dms) X: Y:                                                                                                                                                                                                                                                                                          | alt.: m                             |
| Profondeur :                            | 6,0 m                                                                                                                                                                                                                                                                                                       |                                     |
| 11010111111                             | vent : faible                                                                                                                                                                                                                                                                                               |                                     |
|                                         | météo : faiblement nuageux                                                                                                                                                                                                                                                                                  |                                     |
|                                         | nieteo. Tarotenent naageax                                                                                                                                                                                                                                                                                  |                                     |
| Conditions d'observation :              | Surface de l'eau : faiblement agitée                                                                                                                                                                                                                                                                        |                                     |
|                                         |                                                                                                                                                                                                                                                                                                             |                                     |
|                                         | Hauteur des vagues: 0 m P at                                                                                                                                                                                                                                                                                | m standard : 969 hPa                |
|                                         | Bloom algal: non Pres                                                                                                                                                                                                                                                                                       | ssion atm. : 979 hPa                |
| Marnage:                                | oui Hauteur de                                                                                                                                                                                                                                                                                              | la bande : -5,0 m                   |
| 8                                       |                                                                                                                                                                                                                                                                                                             | ,                                   |
| Campagne :                              | campagne de fin d'été : fin de stratificat température                                                                                                                                                                                                                                                      | ion estivale, avant baisse de la    |
| PRELEVEMENTS                            |                                                                                                                                                                                                                                                                                                             |                                     |
| Heure de début du relevé :              | 16:10 Heure de fin du re                                                                                                                                                                                                                                                                                    | elevé : 17:00                       |
|                                         | eau<br>chlorophylle matériel employé                                                                                                                                                                                                                                                                        |                                     |
| Prélèvements pour analyses :            | phytoplancton<br>sédiments                                                                                                                                                                                                                                                                                  | : pompe<br>benne Ekmann             |
|                                         | phytoplancton<br>sédiments                                                                                                                                                                                                                                                                                  |                                     |
| Prélèvements pour analyses :  Gestion : | phytoplancton<br>sédiments                                                                                                                                                                                                                                                                                  |                                     |
|                                         | phytoplancton<br>sédiments                                                                                                                                                                                                                                                                                  |                                     |
| Gestion:                                | phytoplancton<br>sédiments<br>VNF                                                                                                                                                                                                                                                                           | benne Ekmann                        |
| Gestion:                                | phytoplancton sédiments  VNF Police de l'eau : DDT Côte d'Or                                                                                                                                                                                                                                                | benne Ekmann                        |
| Gestion:                                | phytoplancton sédiments  VNF Police de l'eau : DDT Côte d'Or DDT : M. Claude Remond, responsable de la s Tél : 03.80.53.16.34                                                                                                                                                                               | benne Ekmann                        |
| Gestion:                                | phytoplancton sédiments  VNF Police de l'eau : DDT Côte d'Or DDT : M. Claude Remond, responsable de la s Tél : 03.80.53.16.30 Fax : 03.80.53.16.34 Mail : claude.remond@cote-d'or.gouv.fr                                                                                                                   | benne Ekmann subdivision navigation |
| Gestion :  Contact préalable :          | phytoplancton sédiments  VNF Police de l'eau : DDT Côte d'Or DDT : M. Claude Remond, responsable de la s Tél : 03.80.53.16.30 Fax : 03.80.53.16.34 Mail : claude.remond@cote-d'or.gouv.fr VNF : M. Leblanc, garde barrage 06.09.02.62                                                                       | benne Ekmann subdivision navigation |
| Gestion:                                | phytoplancton sédiments  VNF Police de l'eau : DDT Côte d'Or DDT : M. Claude Remond, responsable de la s Tél : 03.80.53.16.30 Fax : 03.80.53.16.34 Mail : claude.remond@cote-d'or.gouv.fr VNF : M. Leblanc, garde barrage 06.09.02.62 Eau de couleur verdâtre.                                              | benne Ekmann subdivision navigation |
| Gestion :  Contact préalable :          | phytoplancton sédiments  VNF Police de l'eau : DDT Côte d'Or DDT : M. Claude Remond, responsable de la s Tél : 03.80.53.16.30 Fax : 03.80.53.16.34 Mail : claude.remond@cote-d'or.gouv.fr VNF : M. Leblanc, garde barrage 06.09.02.62 Eau de couleur verdâtre. Le plan d'eau présente un marnage important. | benne Ekmann subdivision navigation |
| Gestion :  Contact préalable :          | phytoplancton sédiments  VNF Police de l'eau : DDT Côte d'Or DDT : M. Claude Remond, responsable de la s Tél : 03.80.53.16.30 Fax : 03.80.53.16.34 Mail : claude.remond@cote-d'or.gouv.fr VNF : M. Leblanc, garde barrage 06.09.02.62 Eau de couleur verdâtre.                                              | benne Ekmann subdivision navigation |
| Gestion :  Contact préalable :          | phytoplancton sédiments  VNF Police de l'eau : DDT Côte d'Or DDT : M. Claude Remond, responsable de la s Tél : 03.80.53.16.30 Fax : 03.80.53.16.34 Mail : claude.remond@cote-d'or.gouv.fr VNF : M. Leblanc, garde barrage 06.09.02.62 Eau de couleur verdâtre. Le plan d'eau présente un marnage important. | benne Ekmann subdivision navigation |
| Gestion :<br>Contact préalable :        | phytoplancton sédiments  VNF Police de l'eau : DDT Côte d'Or DDT : M. Claude Remond, responsable de la s Tél : 03.80.53.16.30 Fax : 03.80.53.16.34 Mail : claude.remond@cote-d'or.gouv.fr VNF : M. Leblanc, garde barrage 06.09.02.62 Eau de couleur verdâtre. Le plan d'eau présente un marnage important. | benne Ekmann subdivision navigation |

| Relevé phytoplanctonique et physico-chimique en plan d'eau |                                |            |          |                |                |                     |                 |  |
|------------------------------------------------------------|--------------------------------|------------|----------|----------------|----------------|---------------------|-----------------|--|
| DONNEES PHYSICO-CHIMIQUES                                  |                                |            |          |                |                |                     |                 |  |
| Plan d'eau:                                                | Panthier (                     | lac de )   |          |                |                | Date:               | 27/09/2011      |  |
| Type (naturel, artificiel,):                               | artificiel                     |            |          |                |                | Code lac:           | U1305043        |  |
| Organisme / opérateur :                                    | S.T.E.: E.Bertrand et F. Lledo |            |          |                |                | Campagne 4 page 3/6 |                 |  |
| Organisme demandeur                                        | Agence de                      | e l'eau Rl | M&C      |                |                | marché n°           | 08M082          |  |
| TRANSPARENCE                                               | 8                              |            |          |                |                |                     |                 |  |
| Secchi en m :                                              | 1,2                            |            | Zone eur | hotique (2,5 x | Secchi):       | 3,0                 | m               |  |
| PROFIL VERTICAL                                            | 1,2                            |            | Zone cup | monque (2,3 x  | Beecin).       | 3,0                 | 111             |  |
| Moyen de mesure utilisé :                                  |                                | in-citu à  | chaque p | rof            | X              | en surface dar      | ns un récipient |  |
| Woyen de mesure demse .                                    | Prof.                          | Temp.      | рН       | Cond.          | $O_2$          | O <sub>2</sub>      | Heure           |  |
| Volume prélevé (en litres) :                               | (m)                            | (°C)       | pm       | (μS/cm 25°)    | _              | (%)                 | Heure           |  |
| prélèvement intégré (2 L)                                  | -0,1                           | 19,8       | 8,27     | 326            | (mg/l)<br>10,8 | 123%                | 16:30           |  |
| prélèvement intégré (2 L)                                  | -0,1                           | 19,7       | 8,28     | 326            | 10,8           | 123%                | 10.30           |  |
| prélèvement intégré (2 L)                                  | -1,0                           | 19,6       | 8,29     | 325            | 11,1           | 125%                |                 |  |
| prélèvement intégré (2 L)                                  | -1,5                           | 19,4       | 8,29     | 324            | 10,9           | 123%                |                 |  |
| prélèvement intégré (2 L)                                  | -2,0                           | 19,3       | 8,25     | 325            | 10,5           | 118%                |                 |  |
| prélèvement intégré (2 L)                                  | -2,5                           | 19,1       | 8,23     | 325            | 10,2           | 114%                |                 |  |
| prélèvement intégré (2 L)                                  | -3,0                           | 18,8       | 8,19     | 325            | 9,9            | 110%                | 16:20           |  |
|                                                            | -4,0                           | 18,2       | 7,38     | 333            | 4,6            | 51%                 |                 |  |
| prélèvement de fond                                        | -5,0                           | 17,4       | 6,98     | 335            | 0,9            | 9%                  | 16:10           |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
| -                                                          |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
| <u> </u>                                                   |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |
|                                                            |                                |            |          |                |                |                     |                 |  |


# Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Plan d'eau: Panthier (lac de ) Date: 27/09/2011 Type (naturel, artificiel,...): artificiel Code lac: U1305043 Organisme / opérateur: S.T.E.: E.Bertrand et F. Lledo Campagne 1 page 4/6 Organisme demandeur Agence de l'eau RM&C marché n° 08M082








| Relevé phytoplanctonique et physico-chimique en plan d'eau |                                |                     |  |  |  |  |
|------------------------------------------------------------|--------------------------------|---------------------|--|--|--|--|
| DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES                     |                                |                     |  |  |  |  |
| Plan d'eau :                                               | Panthier (lac de )             | Date: 27/09/2011    |  |  |  |  |
| Type (naturel, artificiel,):                               | artificiel                     | Code lac: U1305043  |  |  |  |  |
| Organisme / opérateur :                                    | S.T.E.: E.Bertrand et F. Lledo | Campagne 1 page 5/6 |  |  |  |  |
| Organisme demandeur                                        | Agence de l'eau RM&C           | marché n° 08M082    |  |  |  |  |





| Prélèvement d'eau de fond, pour analyses physicochimiques :           |                            |                           |               |  |  |  |  |
|-----------------------------------------------------------------------|----------------------------|---------------------------|---------------|--|--|--|--|
| Distance au fond:                                                     | 1,0 m soit à $Zf =$        | -5,0 m                    |               |  |  |  |  |
| Remarques et observations :                                           |                            |                           |               |  |  |  |  |
| Remise des échantillons :                                             | Remise des échantillons :  |                           |               |  |  |  |  |
| Echantillons pour analyses ph                                         | ysicochimiques (Laboratoir | e LDA26)                  |               |  |  |  |  |
| échantillon intégré n°                                                | 1759450                    | Bon transport intégré : I | EE338589647EE |  |  |  |  |
| échantillon de fond n°                                                | 1759256                    | Bon transport fond:       | EE338589390EE |  |  |  |  |
| remise par S.T.E.:                                                    |                            | le                        | à             |  |  |  |  |
| Au transporteur:                                                      | Chronopost                 | le 27/09/11               | à 19h 00      |  |  |  |  |
|                                                                       | Arrivée au laboratoire LDA | A 26 dans la matinée du : | 28/09/11      |  |  |  |  |
|                                                                       | •                          |                           |               |  |  |  |  |
| Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le 13/10/11 |                            |                           |               |  |  |  |  |

| Prélèvements de sédiments pour analyses      | •                   |                |              |                  |           |  |
|----------------------------------------------|---------------------|----------------|--------------|------------------|-----------|--|
| DONNEES GENERALES PLAN D'EAU                 |                     | NT DE SEDI     | MENTS        |                  |           |  |
| Plan d'eau : Panthier (la                    | c de )              |                |              | Date: 27/        |           |  |
| Type (naturel, artificiel,): artificiel      |                     |                |              | Code lac: U13    | 305043    |  |
| Organisme / opérateur : S.T.E.               | E.Bertrand e        | E.Bertrand et  |              | heu              | re: 16:50 |  |
| Organisme demandeur : Agence de l'           | eau RM&C            |                |              | marché n° 08M082 |           |  |
|                                              |                     |                |              | pag              | e 6/6     |  |
| Conditions de milieu                         |                     |                |              |                  |           |  |
| chaud, ensoleillé X période estir            | mée favorable à :   |                | dét          | oits des affluen | ts        |  |
| couvert mort et sédir                        | mentation du plai   | ncton          | X            |                  | •         |  |
|                                              | on de MES de tou    |                | >>           | turbidité affl   | uent      |  |
| Vent                                         |                     |                |              | Secchi (m)       |           |  |
| VOIL                                         |                     |                |              | Secon (III)      |           |  |
| Matériel                                     |                     |                |              |                  |           |  |
| drague fond plat pelle à main                | ı                   | benne X        | piège        | care             | ottie     |  |
|                                              | 1 (                 | 4. 1. 37.37    |              |                  |           |  |
| Localisation générale de la zone de prélè    | vements (en par     | ucuner, X Y    | Lambert 93   | ))               |           |  |
| Point de plus grande profondeur (cf campa    | gne 4) X:           | 823516         |              | Y: 6683585       | 5         |  |
|                                              |                     |                |              |                  |           |  |
|                                              |                     |                |              |                  |           |  |
| Duślawamanta                                 | 1                   | 2              | 3            | 4                | 5         |  |
| Prélèvements                                 | 1                   | 2              | 3            | 4                | 3         |  |
| profondeur (en m)                            | 6                   | 6              |              | -                |           |  |
| épaisseur échantillonnée                     |                     |                |              |                  |           |  |
| récents (<2cm)                               | X                   | X              |              |                  |           |  |
| anciens (>2cm)                               |                     |                |              |                  |           |  |
| <u>indéterminé</u>                           |                     |                |              |                  |           |  |
| épaisseur, en cm :                           |                     |                |              |                  |           |  |
| granulomérie dominante                       |                     |                |              |                  |           |  |
| graviers                                     |                     |                |              |                  |           |  |
| sables                                       |                     |                |              |                  |           |  |
| limons                                       |                     |                |              |                  |           |  |
| vases                                        | X                   | X              |              |                  |           |  |
| argile                                       |                     |                |              |                  |           |  |
| aspect du sédiment                           |                     |                |              |                  |           |  |
| homogène                                     |                     |                |              |                  |           |  |
| hétérogène                                   | X                   | X              |              |                  |           |  |
| couleur                                      | gris+beige          | gris+beige     |              |                  |           |  |
| odeur                                        | non                 | non            |              |                  |           |  |
| présence de débris végétx non décomp         | non                 | non            |              | 1                |           |  |
| présence d'hydrocarbures                     | non                 | non            | 1            | 1                |           |  |
| présence d'autres débris                     | non                 | non            | ]            | 1                |           |  |
|                                              |                     |                |              |                  |           |  |
| Remarques générales :                        |                     |                |              |                  |           |  |
| Deux couches se distinguent : l'une gris fon | ncé en surface et i | une autre beig | e marron plu | ıs en profonde   | ır.       |  |
| Remise des échantillons :                    |                     |                |              |                  |           |  |
| Echantillons pour analyses physicochimiqu    | es (Laboratoire I   | DA26)          |              |                  |           |  |

échantillons n° eau insterstitielle : 1856690 sédiment : 1856732

remise par S.T.E.: le à

Au transporteur: chronopost le 27/10/2011 à 19h 00

arrivée au laboratoire LDA 26 en mi-journée du : 28/10/2011