

SURVEILLANCE DE LA QUALITÉ DES PLANS D'EAU DES BASSINS RHÔNE MÉDITERRANÉE CORSE – LOT 1

ÉTANG DE MONTAUBRY (SAÔNE-ET-LOIRE) SUIVI 2022

RAPPORT DE DONNÉES ET D'INTERPRÉTATION

Décembre 2023

Source : Google Earth 2023

AERMC – Surveillance de la qualité des plans d'eau – Suivi 2022 – Étang de Montaubry (Saône-et-Loire)

Propriétaire du rapport :

Agence de l'eau Rhône Méditerranée & Corse 2-4 Allée de Lodz 69 363 LYON Cedex 07

Interlocuteurs :	IMBERT Loïc
Titre :	Surveillance de la qualité des plans d'eau des bassins Rhône Méditerranée Corse – Suivi 2022 – Rapport de données et d'interprétation – Étang de Montaubry (Saône-et-Loire).
Mots-Clés :	Agence de l'eau Rhône Méditerranée Corse, Programme de Surveillance, DCE, suivi 2022, plans d'eau, Saône-et-Loire, étang de Montaubry
Travail de laboratoire :	 DUTAUT Mathilde (Phytoplancton) MARTIN David, PATTARD Laëtitia, BURGET Aline, PONCHON Simon (Macroinvertébrés)
Rédacteurs :	CAMPIONE LouiseMARTIN David (§ 5.2)
Relectrice :	CAMPIONE Louise
Version:	Version définitive
Date :	Décembre 2023
Nombre de pages (+annexes) :	32(+43)

Réalisation:

Groupe de Recherche et d'Etudes Biologie et Environnement

23 rue Saint-Michel - 69007 LYON
Tel: 04 72 71 03 79 - Fax: 04 72 72 06 12
contact@grebe.fr
www.grebe.fr

Sommaire

PF	RÉAMBU	LE	6
1	INTRO	DDUCTION	7
	1.1 Or	ganisation du rapport	7
		pologie naturelle des plans d'eau	
2	-		
		ysico-chimie des eaux et du sédiment	
	2.1.1 2.1.2 2.1.2.2 2.1.2.2 2.1.3 2.1.3.2	Campagnes de mesures Prélèvements Prélèvement d'eau Prélèvements de sédiments Paramètres mesurés Paramètres de pleine eau	
		mpartiment biologique	
	2.2.1 2.2.2	Phytoplancton	
		llendrier du suivi 2022	
3		exte général et caractéristiques du plan d'eau	
4		co-chimie des eaux et des sédiments	
	4.1 Ph 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5	Profils verticaux Paramètres de minéralisation Paramètres physico-chimiques généraux (hors micropolluants) Micropolluants minéraux Micropolluants organiques	
	4.2 Ph	ysico-chimie des sédiments	
	4.2.1 4.2.2 4.2.3	Paramètres physico-chimiques généraux (hors micropolluants) Micropolluants minéraux Micropolluants organiques	23
5	Comp	artiment biologique	25
	5.1 Ph	ytoplancton	25
	5.2 Ma	acroinvertébrés	28
6		eciation globale de la qualité du plan d'eau	

LISTE DES TABLEAUX

Tableau 1 – Calendrier des interventions sur l'étang de Montaubry en 2022	12
Tableau 2 - Résultats d'analyses pour les paramètres de minéralisation des prélèvements réalisés sur l'étang de	
Montaubry en 2022	18
Tableau 3 – Résultats des analyses physico-chimiques (hors micropolluants) quantifiés sur l'étang de Montaubry en	
2022	18
Tableau 4 – Résultats des analyses de métaux sur eau filtrée sur l'étang de Montaubry en 2022	20
Tableau 5 – Résultats d'analyses des micropolluants organiques sur eau brute sur l'étang de Montaubry en 2022	22
Tableau 6 - Résultats des analyses de la physico-chimie et granulométrie des sédiments sur l'étang de Montaubry le	è
15/09/2022	23
Tableau 7 – Micropolluants minéraux quantifiés dans les sédiments de l'étang de Montaubry le 15/09/2022	23
Tableau 8 - Micropolluants organiques quantifiés dans les sédiments de l'étang de Montaubry le 15/09/2022	24
Tableau 9 - Liste floristique du phytoplancton échantillonné au cours de 4 campagnes en 2022 sur l'étang de	
Montaubry. Les taxons dont le biovolume est supérieur à 2% du biovolume total par campagne sont présentés en	
concentration (cell./mL) et en biovolume (mm³/L)	27
Tableau 10 – Liste faunistique des taxons invertébrés retrouvés sur les 15 points de prélèvements effectués sur l'éta	ing
de Montaubry le 21/03/22	30
LISTE DES FIGURES Figure 1 - Formes théoriques de la cuvette lacustre. La ligne pointillée indique la limite théorique de profondeur	
maximale de la thermocline en été (figure issue de la circulaire 2005/11)	7
Figure 2 - Carte de localisation de l'étang de Montaubry (base carte IGN 1:100000)	
Figure 3 - Bathymétrie de l'étang de Montaubry	
Figure 4 – Données météorologiques de 2022 à « Savigny-lès-Beaune » (source : Infloclimat.fr). (a) Évolution des	
températures (°C) en 2022 ; (b) Évolution des précipitations en 2022 ; (c) Diagramme ombrothermique de 2022	15
Figure 5 - Profils physico-chimiques du suivi 2022 sur l'étang de Montaubry	
Figure 6 - Évolution des concentrations pigmentaires (chlorophylle a + phéopigments en μg/L), de la transparence (n	
et des matières en suspension (MES mg/L) au cours du suivi 2022	
Figure 7 - Prélèvement de fond sur l'étang de Montaubry le 15/09/2022 (C4)	19
Figure 8 - Évolution de la structure des populations phytoplanctoniques de l'étang de Montaubry lors des 4 campagn	
de prélèvements 2022 (regroupées selon leurs embranchements). (a) Évolution en termes de biovolume algal (mm³/	
(b) Évolution en termes de concentration (nombre de cellules/mL)	

PRÉAMBULE

Cette étude de diagnostic écologique de plans d'eau a été réalisée dans le cadre du programme de surveillance établi lors de la mise en œuvre de la directive cadre européenne sur l'eau (DCE)¹, prescrivant une atteinte des objectifs environnementaux tendant vers un « bon état » écologique des masses d'eau en 2027. En application de cette dernière, il est demandé à chaque état membre d'évaluer l'état écologique des masses d'eau d'origine naturelle ou le potentiel écologique des masses d'eau fortement modifiées et artificielles. Le dernier diagnostic écologique sur l'étang de Montaubry a été réalisé en 2019.

L'agence de l'eau Rhône Méditerranée Corse a mandaté le bureau d'études GREBE pour l'acquisition de données écologiques sur un certain nombre de masses d'eau de plans d'eau (MEPE) de plus de 50 hectares du nord du bassin Rhône-Méditerranée. Les prestations ont été réalisées en application de l'arrêté du 17 octobre 2018², modifiant l'arrêté du 25 janvier 2010 établissant le programme de surveillance de l'état des eaux.

Étang de Montaubry le 07/06/2022

¹ DCE. Cadre pour une politique communautaire dans le domaine de l'eau. Directive 2000/60/CE.

² Ministre d'Etat, ministre de la transition écologique et solidaire, et ministre des solidarités et de la santé. Arrêté du 17 octobre 2018 modifiant l'arrêté du 25 janvier 2010 établissant le programme de surveillance de l'état des eaux en application de l'article R.212-22 du code de l'environnement.

1 INTRODUCTION

1.1 Organisation du rapport

Les résultats du suivi de l'année 2022 sont présentés sous la forme d'un dossier par plan d'eau, soit un rapport de données brutes et d'interprétation commentée des résultats, présentant également les méthodologies mises en œuvre et les comptes rendus de campagnes de terrain.

1.2 Typologie naturelle des plans d'eau

La typologie naturelle des plans d'eau utilisée dans le rapport est définie dans l'arrêté du 12 janvier 2010³ relatif aux méthodes et aux critères à mettre en œuvre pour délimiter et classer les masses d'eau. La typologie est basée sur l'origine des plans d'eau (naturelle ou anthropique), leur hydro-écorégion⁴, la forme de leur cuvette et leur fonctionnement hydraulique. Les formes théoriques de cuvettes lacustres sont présentées *Figure 1*, et sont définies comme suit :

- Forme L : lac peu profond, zone littorale largement prépondérante, stratification thermique peu étendue et/ou instable (lac polymictique).
- Forme P: lac profond, stratification thermique stable (lac monomictique ou dimictique) et une zone littorale réduite, la cuvette pouvant être symétrique ou asymétrique.
- Forme LP: lac ayant à la fois une zone profonde stratifiée stable (monomictique ou dimictique) et une zone littorale étendue, la cuvette pouvant être symétrique ou asymétrique.

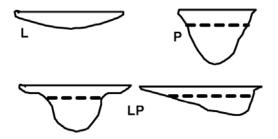


Figure 1 - Formes théoriques de la cuvette lacustre. La ligne pointillée indique la limite théorique de profondeur maximale de la thermocline en été (figure issue de la circulaire 2005/11)

³ Ministère de l'écologie, de l'énergie, du développement durable et de la mer, en charge des technologies vertes et des négociations sur le climat. *Arrêté du 12 janvier 2010 relatif aux méthodes et aux critères à mettre en œuvre pour délimiter et classer les masses d'eau et dresser l'état des lieux prévu à l'article R. 212-3 du code de l'environnement.* Journal Officiel de la République Française.

⁴ Wasson, J. G., Chandesris, A., Pella, H., & Blanc, L. (Juin 2002). Les hydro-écorégions de France métropolitaine, approche régionale de la typologie des eaux courantes et éléments pour la définition des peuplements de référence d'invertébrés. Cemagref.

2 Protocoles de prélèvement et d'analyse

2.1 Physico-chimie des eaux et du sédiment

2.1.1 Campagnes de mesures

Quatre campagnes de mesures sont réalisées au cours de l'année :

- campagne 1 : le 21/03/22, correspondant à la période de brassage et d'homothermie des eaux ;
- campagne 2 : le 07/06/22, correspondant au début de période de stratification thermique ;
- campagne 3 : le 25/07/22, correspondant à la période estivale ;
- campagne 4 : le 15/09/22, correspondant à la fin de la période de production végétale et à la période de stratification maximale du plan d'eau, avant le refroidissement de la masse d'eau.

2.1.2 Prélèvements

2.1.2.1 Prélèvement d'eau

Le prélèvement d'eau est réalisé au niveau du point de plus grande profondeur du plan d'eau. Dans le cas de retenues artificielles, une zone de sécurité interdite à la navigation, généralement matérialisée par une ligne de bouées, peut être présente à proximité des ouvrages. La zone de prospection se limite alors à l'extérieur de cette dernière.

La **zone euphotique** prélevée correspond à 2,5 fois la transparence de l'eau. Cette dernière est mesurée à l'aide d'un disque de Secchi de 20 cm de diamètre, à quarts alternativement blancs ou noirs.

- Un premier échantillonnage est destiné aux dosages de micropolluants. Il est réalisé avec une bouteille à prélèvement verticale de type Kemmerer de 1,2 L en téflon. Les prélèvements unitaires sont répartis de manière équidistante sur l'ensemble de la zone euphotique puis homogénéisés dans un seau de 17 L en polyéthylène haute densité (PEHD). Cette opération peut être répétée si besoin jusqu'à obtention du volume nécessaire aux analyses. Le contenu est ensuite versé directement dans les différents flaconnages ou à l'aide d'un entonnoir en PEHD dans le cas de contenants à col étroit.
- Un second échantillonnage est destiné aux analyses phytoplanctoniques, aux analyses physico-chimiques classiques et à la quantification de la chlorophylle a. Si la zone euphotique est supérieure à 7 m, alors le prélèvement est réalisé au tuyau. Sinon, il est effectué à l'aide de la même bouteille à prélèvement verticale de type Kemmerer de 1,2 L en téflon.

La **zone profonde** est échantillonnée à profondeur fixe, entre 1 et 2 m du sédiment. L'opération est répétée jusqu'à l'obtention du volume nécessaire aux analyses. Dans le cas d'un échantillonnage à profondeur fixe et d'un grand volume d'eau souhaité, une bouteille téflonisée de type Niskin de 8 L peut être utilisée.

2.1.2.2 Prélèvements de sédiments

Les sédiments sont échantillonnés lors de la campagne 4 (septembre/octobre) à la benne Ekman, 15 cm x 15 cm. Les premiers centimètres de l'échantillon de la benne sont prélevés directement à l'aide d'une petite pelle en PEHD et transvasés dans les flaconnages fournis par le laboratoire d'analyse. Le prélèvement est répété un nombre de fois suffisant pour l'obtention du volume souhaité.

2.1.3 Paramètres mesurés

Les analyses physico-chimiques de pleine eau ont été confiées au Laboratoire Santé Environnement Hygiène de Lyon (CARSO-LSEHL), et les analyses sur sédiments au Laboratoire Départemental de la Drôme (LDA 26).

2.1.3.1 Paramètres de pleine eau

Deux types de paramètres de pleine eau ont été pris en considération :

- les paramètres mesurés in situ à chaque campagne :
 - température (°C), oxygène dissous (concentration en mg/L et taux de saturation en %), pH, conductivité à 25°C (μS/cm) et concentration en pigments chlorophylliens (μg/L). Ces paramètres sont mesurés sur l'ensemble de la colonne d'eau à l'aide d'une sonde multi paramètres munie d'un câble ;
 - o transparence (m) mesurée au disque de Secchi de 20 cm de diamètre, à quarts alternativement blancs ou noirs.
- les paramètres analysés en laboratoire sur prélèvements intégrés au niveau de la zone trophogène :
 - paramètres généraux: azote Kjeldahl, ammonium, nitrates, nitrites, orthophosphates, phosphore total, carbone organique total, matières en suspension, turbidité, chlorophylle a et phéopigments, silice dissoute, demande biologique en oxygène (DBO), demande chimique en oxygène (DCO);
 - o paramètres de minéralisation : chlorures, sulfates, bicarbonates, calcium, magnésium, sodium, potassium, dureté totale, titre alcalimétrique complet (TAC) ;

o micropolluants: substances prioritaires, autres substances et pesticides en référence à l'arrêté du 17 octobre 2018 établissant le programme de surveillance de l'état des eaux. Les micropolluants organiques ont été mesurés sur les échantillons d'eau brute et les micropolluants minéraux sur l'eau filtrée du même prélèvement.

2.1.3.2 Paramètres du sédiment

Sur les sédiments, les échantillonnages ont été réalisés au cours de la quatrième campagne au niveau du point de plus grande profondeur, et prennent en compte les deux compartiments et les paramètres suivants :

- I'eau interstitielle : orthophosphates, phosphore total et ammonium ;
- la phase solide : carbone organique, azote Kjeldahl, phosphore total, matières organiques volatiles, granulométrie inférieure à 2 mm (argiles, limons fins et grossiers et sables fins et grossiers), et micropolluants suivant l'arrêté du 17 octobre 2018 établissant le programme de surveillance de l'état des eaux.

2.2 Compartiment biologique

2.2.1 Phytoplancton

Le suivi du phytoplancton est effectué lors des mêmes campagnes que pour la physico-chimie des eaux et selon la norme d'échantillonnage du phytoplancton dans les eaux intérieures (XP T 90-719)⁵. Un prélèvement intégré est réalisé sur l'ensemble de la zone euphotique à l'aide d'un tuyau ou d'une bouteille à prélèvement (cf. §2.1.2.1) au droit du point le plus profond du plan d'eau (il s'agit du même prélèvement que celui réalisé pour l'analyse des paramètres physico-chimiques). Les échantillons de phytoplancton sont fixés au lugol, puis stockés au réfrigérateur avant détermination et comptage des objets algaux⁶ au sein du laboratoire du GREBE, selon la méthode Utermöhl⁷. L'inventaire et le dénombrement du phytoplancton sont réalisés, après passage en chambre de sédimentation, sous microscope inversé. En cas de difficulté d'identification ou de fortes abondances, une vérification des diatomées (algues microscopiques siliceuses) est réalisée en parallèle, entre lame et lamelle sous microscope droit, selon le mode préparatoire décrit par la norme NF T90-354⁸.

⁵ AFNOR. (2017). Qualité de l'eau - Échantillonnage du phytoplancton dans les eaux intérieures. XP T90-719 Septembre 2017.

⁶ Laplace-Treyture, C. ; Barbe, J. ; Dutartre, A. ; Druart, J.-C. ; Rimet, F. ; Anneville, O. ; *et al.* (Septembre 2009). *Protocole Standardisé d'échantillonnage, de conservation et d'observation du phytoplancton en plan d'eau*, v3.3.1. INRA, Cemagref. ⁷ AFNOR. (2006). *Norme guide pour le dénombrement du phytoplancton par microscopie inversée (méthode Uthermöhl). NF EN 15204.*

⁸ AFNOR. (2016). Échantillonnage, traitement et analyse de diatomées benthiques en cours d'eau et canaux. NF T90-354.

Les résultats sont présentés sous forme d'inventaires taxinomiques précisant pour chaque taxon le nombre de cellules dénombrées par mL et le biovolume total du taxon (mm³/L), accompagnés d'une représentation de l'évolution du peuplement algal en termes d'abondance relative des différents groupes algaux. L'Indice Phytoplanctonique Lacustre (IPLAC)⁹ est calculé à l'aide de l'outil SEEE (version 1.1.0 de l'indicateur).

2.2.2 Macroinvertébrés

L'échantillonnage des macro-invertébrés a été réalisé sur 15 points de prélèvements en berge du plan d'eau selon la méthode décrite par le protocole de l'université de Franche-Comté (UFC)¹⁰.

Les points sont cartographiés au préalable dans un plan d'échantillonnage selon la représentativité des différents substrats minéraux et végétaux présents (annexe 5). La période d'échantillonnage préconisée est déterminée selon la typologie nationale des plans d'eau, tout en intervenant avant les émergences massives des imagos d'insectes, au début de la période de réchauffement des eaux au printemps. Par ailleurs, le niveau d'eau du plan d'eau doit être stabilisé au cours des 15 derniers jours.

Sur place, les prélèvements sont réalisés à l'aide d'un filet haveneau sur une bande littorale de 10 m de large et dans une gamme de profondeur comprise entre 50 cm et 1 m.

Les déterminations sont réalisées sous loupe binoculaire, en règle générale jusqu'au genre et intègrent la plupart des taxons (groupes de la norme NF T90-388) à l'exception d'un certain nombre d'entre eux dont les oligochètes. La détermination générique des Chironomidae nécessite un montage entre lame et lamelle pour une observation des capsules céphaliques. La méthode prévoit un sous-échantillonnage en fonction du nombre et du type d'individus en présence. Sur la base des listes faunistiques, un IMLE-PE (Indice d'évaluation de l'État écologique de tous les lacs naturels et du Potentiel Écologique des lacs artificiels dont le marnage maximal est inférieur ou égal 2m) ou un IMLPE (Indice d'évaluation du Potentiel Écologique pour les lacs artificiels (masses d'eau artificielles et fortement modifiées) dont le marnage maximal est supérieur à 2m) est calculé via le formulaire IML_v1.0.1 du beta-test du SEEE. Les résultats ne sont pas validés par l'Université de Bourgogne-Franche-Comté.

_

⁹ Laplace-Treyture, C.; Feret, T. (2016) Performance of the Phytoplankton Index for Lakes (IPLAC): A multimetric phytoplankton index to assess the ecological status of water bodies in France. Irstea UR EABX.

¹⁰ Dedieu N. & Verneaux V., UMR 6249 CNRS-UFC (mars 2022). *Indice Macroinvertébrés Lacustres (IML) – Guide technique – Notice d'application et de calcul.*

Les résultats de l'indice sont donnés à titre indicatif, celui-ci n'étant pas encore intégré aux règles officielles d'évaluation de l'état des plans d'eau (arrêté du 27/07/2018 modifiant l'arrêté « Evaluation » du 25 janvier 2010).

2.3 Calendrier du suivi 2022

Le *Tableau 1* présente les dates et types d'interventions réalisés au cours de ce suivi 2022. L'étang de Montaubry appartient au réseau de contrôle de surveillance (RCS) et au contrôle opérationnel (CO), mis en place pour répondre aux exigences de la Directive Cadre sur l'Eau en matière de surveillance des milieux. L'objectif du RCS est d'évaluer l'état général des eaux à l'échelle de chaque bassin tandis que le CO vise à évaluer l'état des masses d'eau identifiées comme risquant de ne pas atteindre leurs objectifs environnementaux et rendre compte de l'efficacité des mesures mises en œuvre.

Tableau 1 – Calendrier des interventions sur l'étang de Montaubry en 2022

		Physic	co-chimie	Compartiment biologique				
		Eau Sédiments		Phytoplancton	Macroinvertébrés			
C1	21/03/2022	Χ		X	X			
C2	07/06/2022	Χ		X				
C3	25/07/2022	Χ		X				
C4	15/09/2022	Χ	X	X				

Étang de Montaubry le 21/03/2022

3 Contexte général et caractéristiques du plan d'eau

L'étang de Montaubry est situé en Saône-et-Loire, en limite du bassin Rhône-Méditerranée-Corse, sur les communes du Creusot et d'Écuisses. Mis en service en 1861, sa digue, de 135 m de long et 16,6 m de hauteur, retient près de 4,35 Mm³ d'eau sur 91 ha, à 280 m d'altitude. Propriété des Voies Navigables de France (VNF), l'étang a été créé pour l'alimentation du canal du Centre, ce qui peut induire un marnage de l'ordre de 3 m en période estivale. L'étang est alimenté par de petits ruisseaux drainant un petit bassin versant d'environ 16 km², essentiellement agricole et forestier. Ses eaux rejoignent ensuite après un court linéaire la Dheune qui alimente le canal. Une carte de localisation de l'étang de Montaubry est présentée *Figure* 2.

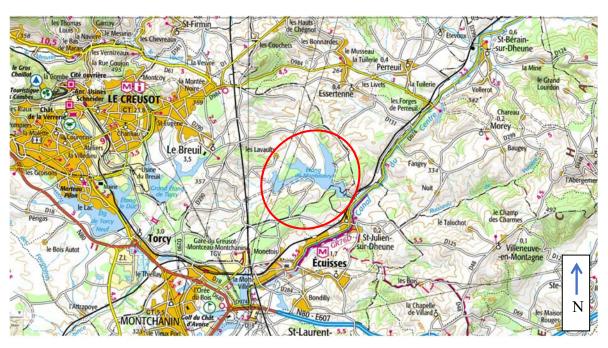


Figure 2 - Carte de localisation de l'étang de Montaubry (base carte IGN 1:100000)

La profondeur maximale théorique de la retenue est de 15,2 m pour une profondeur moyenne 5,6 m. Une bathymétrie du plan d'eau est présentée Figure 3. Le temps de séjour des eaux n'est pas défini, dépendant de la pluviométrie alimentant les affluents intermittents, mais il est estimé relativement élevé en rapport avec le volume de la retenue (> 30 jours). L'étang est classé en seconde catégorie piscicole, les navigations à voile et motorisée y sont autorisées.

L'étang de Montaubry est une masse d'eau de type A13b selon la typologie nationale, correspondant à un plan d'eau de plaine obtenu par l'aménagement d'une digue, alimenté par des sources temporaires et subissant une gestion hydraulique contrôlée. Il est contenu au sein de l'hydro-écorégion de niveau 1 « Massif-Central Nord » (HER-1 21), et de l'hydro-écorégion de niveau 2 « Morvan - Charollais » (HER-2 87).

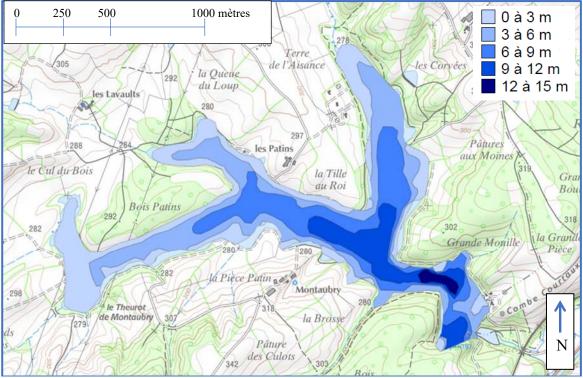
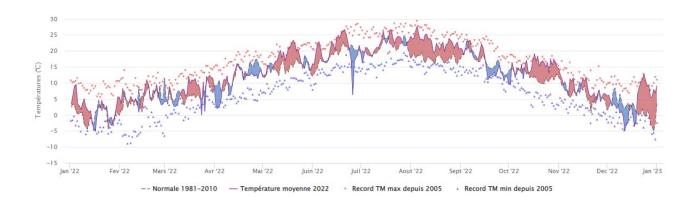
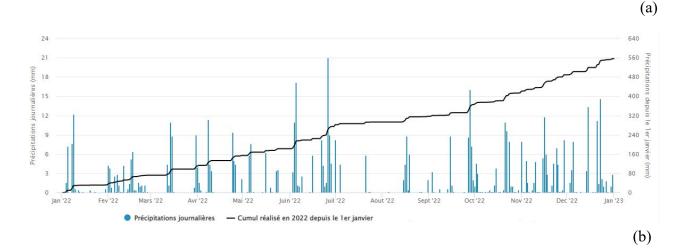




Figure 3 - Bathymétrie de l'étang de Montaubry

Les pollutions par les nutriments agricoles sont à l'origine du risque de non atteinte des objectifs environnementaux de l'étang. Au vu des suivis antérieurs précédents, l'étang de Montaubry est en bon état chimique au sens de la DCE. Cependant, l'état écologique du plan d'eau tend vers un état eutrophe et est donc classé comme « moyen ».

Le climat régional est tempéré à influence continentale, avec des températures moyennes annuelles de l'ordre de 11°C, et une pluviométrie moyenne annuelle de l'ordre de 841 mm. La *Figure 4* présente les températures, le cumul des précipitations, ainsi que le diagramme ombrothermique de l'année 2022 à Savigny-les-Beaunes (21), à 275 m d'altitude. Ce dernier permet de visualiser les mois de sécheresse pour un climat tempéré, il s'agit des mois de mai, juillet et août. Par conséquent, l'année 2022 présente un important déficit hydrique en période estivale, le cumul annuel étant de 556 mm. De plus, les températures étaient particulièrement chaudes avec une moyenne annuelle de 12,6°C (+ 1,53°C par rapport aux normes sur la période 1981-2010). Le niveau de l'étang a baissé au fil des campagnes, la profondeur maximale atteinte était seulement de 9 m lors de la C4.

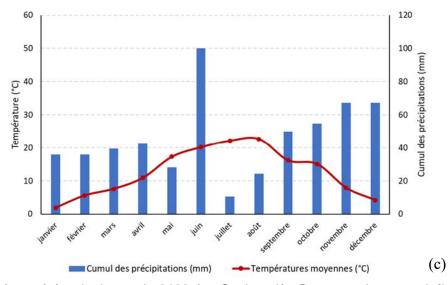


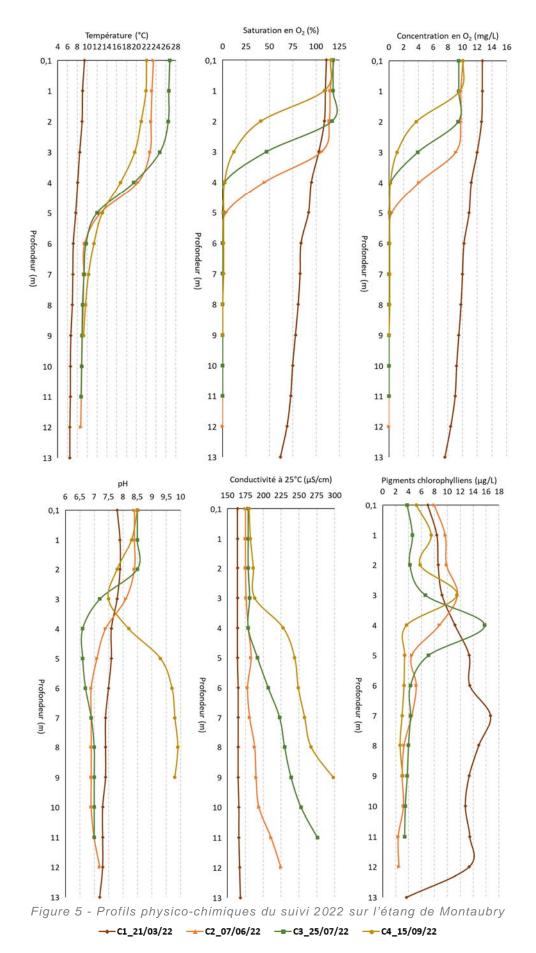
Figure 4 – Données météorologiques de 2022 à « Savigny-lès-Beaune » (source : Infloclimat.fr). (a) Évolution des températures (°C) en 2022 ; (b) Évolution des précipitations en 2022 ; (c) Diagramme ombrothermique de 2022

4 Physico-chimie des eaux et des sédiments

4.1 Physico-chimie des eaux

4.1.1 Profils verticaux

Les profils de mesures réalisés *in situ* (température, oxygène dissous, pH, conductivité et teneurs en pigments chlorophylliens) au cours des quatre campagnes de prélèvements du suivi 2022 sur l'étang de Montaubry sont illustrés *Figure 5*.


En mars (C1), la zone euphotique est en moyenne à 9°C avec un gradient de températures entre la surface et le fond de 3°C. Dès la C2 en juin, une stratification thermique semble bien marquée autour de 4 m avec une amplitude thermique de 14,8°C et persiste jusqu'à la C4. Elle atteint un maximum lors de la C3 (juillet) à 18°C, alors que la température de surface est importante (26,8°C).

Les eaux sont bien oxygénées en mars et restent supérieures à 50 % de saturation au fond de la colonne d'eau. Toutefois, dès la C2, la désoxygénation est drastique dès 4 m de profondeur (au niveau de la thermocline) et totale à partir de 5 m. Cette désoxygénation s'intensifie au cours du suivi en atteignant moins de 5 % de saturation à 4 m en C3 et C4. La colonne d'eau semble bien oxygénée (> 50 % de saturation) seulement sur le premier mètre lors de la dernière campagne en septembre.

Les valeurs de pH montrent une activité photosynthétique sur les premiers mètres entre la C2 et la C4, par comparaison entre le pH de la C1 (7,9 sur les 3 premiers mètres) et le pH moyen des autres campagnes (en moyenne à 8,4). Au-delà de 2 m, les eaux s'acidifient montrant une prévalence des hétérotrophes produisant du CO₂. En revanche, le profil de pH de la dernière campagne (C4) est étonnant et difficilement interprétable.

Les profils de conductivité mettent en évidence une augmentation en profondeur dû à la remise en suspension des sels minéraux et au relargage actif des sédiments en milieu anoxique (cf. § 4.2) qui s'intensifie également jusqu'en septembre avec une différence de 118 μ S/cm entre la surface et le fond à partir de 3 m de profondeur.

Les profils des concentrations en pigments chlorophylliens permettent d'indiquer des pics d'activité à des profondeurs correspondant au métalimnion (zone à l'interface entre la zone euphotique plus chaude, oxygénée et la zone de fond avec des nutriments relargués). Ainsi, le phytoplancton semble s'y développer préférentiellement à 4 m en C3 (15,8 µg/L) et à 3 m en C4 (11,5 µg/L). Lors de la C1, le plan d'eau n'étant pas encore stratifié et l'activité phytoplanctonique étant moindre, l'augmentation en profondeur des concentrations pigmentaires perçue pourrait s'expliquer par des matières organiques en suspension, mais reste néanmoins surprenante.

GREBE eau.sol.environnement

4.1.2 Paramètres de minéralisation

Les paramètres de minéralisation, analysés dans l'échantillon intégré et l'échantillon de fond de la colonne d'eau à chaque campagne de prélèvements, sont présentés *Tableau 2*. Ils reflètent les faibles concentrations en magnésium et calcium correspondant à une eau très douce, dont la dureté est inférieure à 8°F. Ces paramètres semblent globalement assez stables selon la campagne et la profondeur. Les bicarbonates semblent se concentrer en profondeur (+ 38 mg(HCO₃-)/L), tandis que la concentration en sulfate baisse au fil des campagnes dans le prélèvement de fond (- 5,9 mg(SO₄²-)/I, réduction des sulfates dans l'hypolimnion anoxique).

Tableau 2 - Résultats d'analyses pour les paramètres de minéralisation des prélèvements réalisés sur l'étang de Montaubry en 2022

			Limite de	C	1	C	2	C	3	C4	
Code sandre	Paramètre	Unité	quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
1327	Bicarbonates*	mg(HCO3)/L	6,1	71	71	77	88	79	99	82	109
1337	Chlorures*	mg(CI)/L	0,1	7,8	7,7	7,6	7,6	8,2	7,8	8,7	8
1338	Sulfates*	mg(SO4)/L	0,2	9,1	9,1	7,9	7	7,9	4,1	7,2	3,2
1345	Dureté*	°F	0,5	6,15	5,94	6,3	6,62	6,78	7,27	6,59	7,37
1347	TAC*	°F	0,5	5,85	5,8	6,35	7,25	6,5	8,1	6,7	8,9
1367	Potassium*	mg(K)/L	0,1	4,9	4,7	4,5	4,7	4,9	5	5,1	4,9
1372	Magnésium*	mg(Mg)/L	0,05	4,5	4,3	4,5	4,6	4,8	4,9	4,9	4,9
1374	Calcium*	mg(Ca)/L	0,1	17,2	16,7	17,8	18,9	19,2	21	18,3	21,4
1375	Sodium*	mg(Na)/L	0,2	6,1	5,9	5,9	5,9	6,5	6,2	6,8	6,3

^{*} paramètres analysés sur eau filtrée

4.1.3 Paramètres physico-chimiques généraux (hors micropolluants)

Le *Tableau 3* fournit les résultats des analyses sur les paramètres généraux hors micropolluants de l'étang de Montaubry en 2022. La *Figure 6* illustre plus spécifiquement les évolutions conjointes des pigments chlorophylliens, des matières en suspension totales comparées à l'évolution de la transparence sur ce même suivi 2022.

Tableau 3 – Résultats des analyses physico-chimiques (hors micropolluants) quantifiés sur l'étang de Montaubry en 2022

			Limite de	C	1	С	2	С	3	С	4
Code sandre	Paramètre	Unité	quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
1436	Phéopigments	μg/L	1	1	-	2	-	<lq< td=""><td>-</td><td><lq< td=""><td>-</td></lq<></td></lq<>	-	<lq< td=""><td>-</td></lq<>	-
1439	Chlorophylle a	μg/L	1	7	-	7	-	15	-	<lq< td=""><td>-</td></lq<>	-
1332	Transparence	m	0,01	1,4	-	1,9	-	1,9	-	1,2	-
1295	Turbidité (Formazine Néphélométrique)	NFU	0,1	3,2	4,8	2,2	13	6,5	20	17	18
1305	MeS	mg/L	1	3,2	6,4	3,8	8,2	4,7	7,5	9,4	9,8
6048	Matières Minérales en Suspension (M.M.S)	mg/L	100	<lq< td=""><td>-</td><td><lq< td=""><td>-</td><td><lq< td=""><td>-</td><td><lq< td=""><td>-</td></lq<></td></lq<></td></lq<></td></lq<>	-	<lq< td=""><td>-</td><td><lq< td=""><td>-</td><td><lq< td=""><td>-</td></lq<></td></lq<></td></lq<>	-	<lq< td=""><td>-</td><td><lq< td=""><td>-</td></lq<></td></lq<>	-	<lq< td=""><td>-</td></lq<>	-
1313	DBO	mg(O2)/L	0,5	2,6	1,2	2	2,3	1,4	1,1	2,2	2,3
1314	DCO	mg(O2)/L	20	27	27	30	29	33	31	31	27
1841	Carbone organique*	mg(C)/L	0,2	9	8,8	9,4	9,1	10	11	10	10
1342	Silicates*	mg(SiO2)/L	0,05	0,09	0,7	1	3,5	0,7	5,2	<lq< td=""><td>5,6</td></lq<>	5,6
1319	Azote Kjeldahl	mg(N)/L	0,5	0,79	0,93	0,95	1,5	<lq< td=""><td>2,51</td><td>0,97</td><td>2,1</td></lq<>	2,51	0,97	2,1
1335	Ammonium*	mg(NH4)/L	0,01	0,03	0,11	0,04	1	0,01	1,9	0,01	1,8
1339	Nitrites*	mg(NO2)/L	0,01	0,03	0,04	0,02	0,04	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
1340	Nitrates*	mg(NO3)/L	0,5	2,9	2,7	<lq< td=""><td>0,51</td><td>4,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	0,51	4,7	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
1350	Phosphore total	mg(P)/L	0,005	0,035	0,035	0,035	0,11	0,039	0,32	0,057	0,23
1433	Phosphates*	mg(PO4)/L	0,01	0,03	0,02	0,02	0,11	0,04	0,75	0,14	0,49

^{*} paramètres analysés sur eau filtrée

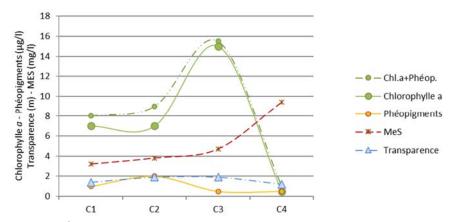


Figure 6 - Évolution des concentrations pigmentaires (chlorophylle a + phéopigments en $\mu g/L$), de la transparence (m) et des matières en suspension (MES mg/L) au cours du suivi 2022

Les concentrations des pigments chlorophylliens sont relativement élevées entre la C1 et la C3 sur le suivi 2022, entre 8 et 15,5 μg/L. Toutefois, le pic perçu à 3 m en C4 sur le profil des pigments (cf. § 4.1.1) ne transparaît pas sur le prélèvement analysé en laboratoire. La transparence moyenne sur l'ensemble du suivi est faible (1,6 m) avec une transparence minimale lors de la C4 où les matières en suspension sont bien concentrées (9,6 mg/L en moyenne) et la turbidité élevée (17,5 NTU en moyenne). La colonne d'eau paraissait en effet très colorée lors de la C4 (*Figure 7*).

Figure 7 - Prélèvement de fond sur l'étang de Montaubry le 15/09/2022 (C4)

Les valeurs de la DCO (Demande Chimique en Oxygène) sont importantes (> $25 \text{ mg}(O_2)/L$) sur toutes les campagnes indiquant une

certaine pollution avec des matières peu biodégradables. Les concentrations élevées en carbone organique confirment ce résultat (moyenne à 9,7 mg(C)/L) et favorisent potentiellement les organismes hétérotrophes et mixotrophes¹¹ (cf. § 5.1).

En termes de nutriments, la concentration hivernale du phosphore total, représentant une partie du potentiel nutritif pour les organismes phytoplanctoniques, est relativement élevée (0,035 mg(P)/L). Entre la C2 et la C4, les concentrations en phosphore total et orthophosphates deviennent très élevées, indiquant une augmentation de la matière organique dans les couches profondes ainsi que des phénomènes de relargage des sédiments en milieu anoxique. Lors de la C1, les concentrations en azote minéral sont moyennes, tandis que les concentrations en azote total sont élevées. L'azote Kjeldahl (azote organique et ammonium) s'accumule au fond de la colonne d'eau entre la C2 et la C4, l'ammonium mettant en évidence un déficit en oxygène qui bloque la nitrification (passage de

 $^{^{11}}$ Un organisme mixotrophe métabolise à la fois le carbone organique et le carbone inorganique (comme le CO_2 par photosynthèse).

l'ammonium NH₄⁺ aux nitrates NO₃⁻). Toutefois, les nitrates sont rarement quantifiés entre la C2 et la C4 (à l'exception de la C3 en zone euphotique avec 4,7 mg(NO₃⁻)/L), ce qui rend dans une certaine mesure l'azote plus limitant que le phosphore et favorise les taxons cyanobactériens (cf. § 5.1).

4.1.4 Micropolluants minéraux

Le *Tableau 4* présente les métaux ayant été quantifiés au moins une fois au cours des quatre campagnes du suivi 2022. La liste de l'ensemble des micropolluants recherchés est présentée en annexe. 17 micropolluants minéraux ont été retrouvés au moins une fois lors du suivi. Les concentrations en nickel, plomb et zinc sont faibles. En revanche, <u>la concentration moyenne en arsenic de 5,1 µg/L dépasse le seuil de moyenne annuelle de la norme de qualité environnementale (0,83 µg/L) sans prise en compte du fond géochimique ¹². La concentration en cuivre se situe proche du seuil de moyenne annuelle de la norme de qualité environnementale (1 µg/L) lors de la C1. Certaines concentrations de minéraux varient beaucoup selon les campagnes. Par exemple, l'aluminium est plus concentré lors de la C1, le baryum se concentre plus dans les prélèvements de fond en C3 et C4. <u>Les différentiels de concentrations entre la zone de surface et de fond sont particulièrement élevés pour le fer et le manganèse entre la C2 et la C4, incidence de l'anoxie de l'hypolimnion et du relargage sédimentaire (réduction des oxydes de fer et de manganèse).</u></u>

Tableau 4 — Résultats des analyses de métaux sur eau filtrée sur l'étang de Montaubry en 2022

	Code		C	1	C	2	C	3	(24
Paramètre	sandre	Unité	Intégré	Fond	<u>Intégré</u>	Fond	<u>Intégré</u>	Fond	<u>Intégré</u>	Fond
Aluminium	1370	μg(AI)/L	47,4	49,7	7,3	6,5	12,9	6,2	15,7	12,4
Arsenic	1369	μg(As)/L	1,11	1,18	1,31	3,82	1,93	17,4	2,32	12,1
Baryum	1396	μg(Ba)/L	29,2	30,4	28	47,9	25,2	78,3	17,1	62,3
Beryllium	1377	μg(Be)/L	0,037	0,039	0,02	0,023	0,017	0,037	0,015	0,038
Bore	1362	μg(B)/L	15,9	15,1	14,2	13,1	13,5	<10	17,6	13,8
Cobalt	1379	μg(Co)/L	0,13	0,15	0,12	0,56	0,07	0,71	0,07	0,6
Cuivre	1392	μg(Cu)/L	1,2	1,1	0,94	0,75	0,73	0,29	0,47	0,17
Fer	1393	μg(Fe)/L	185	205	90,3	1170	55,3	6710	116	4010
Lithium	1364	μg(Li)/L	2,5	2,5	2,3	2,2	2,3	1,8	2,4	2,2
Manganèse	1394	μg(Mn)/L	2,4	18,6	24,7	1200	3,3	2270	6	2360
Nickel	1386	μg(Ni)/L	1,1	1,1	1	1	0,7	0,7	0,8	0,6
Plomb	1382	μg(Pb)/L	0,14	0,12	0,08	0,11	0,06	0,14	0,13	0,24
Sélénium	1385	μg(Se)/L	0,17	0,17	0,13	<0,1	<0,1	<0,1	0,18	0,12
Titane	1373	μg(Ti)/L	1,7	1,8	<0,5	<0,5	<0,5	<0,5	0,6	0,8
Uranium	1361	μg(U)/L	0,3	0,3	0,26	0,27	0,35	0,31	0,42	0,27
Vanadium	1384	μg(V)/L	0,29	0,31	0,22	0,19	0,31	0,89	0,25	0,85
Zinc	1383	μg(Zn)/L	2,19	1,07	<1	1,85	<1	1,3	<1	2,96

¹² Ministre d'Etat, ministre de la transition écologique et solidaire, et ministre des solidarités et de la santé. *Arrêté du 27 juillet 2018 modifiant l'arrêté du 25 janvier 2010 relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface pris en application des articles R. 212-10, R. 212-11 et R. 212-18 du code de l'environnement*

4.1.5 Micropolluants organiques

Le *Tableau 5* présente les micropolluants organiques quantifiés au moins une fois dans les prélèvements intégrés et de fond lors des quatre campagnes du suivi 2022.

35 micropolluants organiques ont été quantifiés sur l'ensemble du suivi. On retrouve ainsi :

- des substances pharmaceutiques : 7 médicaments sont quantifiés dans au moins un des prélèvements sur les quatre campagnes du suivi. <u>La metformine (antidiabétique) est systématiquement quantifiée dans les deux types de prélèvements à chaque campagne.</u> Les 6 autres ne sont généralement quantifiés que lors d'une campagne de prélèvements qui diffère selon la substance. D'autres traceurs humains sont identifiés dont la nicotine et son produit dérivé, la cotinine qui est quantifiée à chaque campagne. La caféine et la paraxanthine (1,7-Dimethylxanthine, dérivé de la caféine), sont également identifiées au cours du suivi, la dernière étant également quantifiée à chaque campagne.
- des produits issus de l'industrie chimique (plastifiants, tensioactifs fluorés...): 10 molécules sont recensées. Les cyanures libres sont quantifiés systématiquement. Il est intéressant de noter le seuil de 0,2 μg/L, au-delà duquel les concentrations de cyanures libres sont considérées comme moyennes d'après le Système d'Évaluation de la Qualité de l'Eau en cours d'eau (SEQ-Eau V2)¹³. Le DEHP est quantifié à chaque campagne. Cependant, la concentration mesurée sur l'échantillon de fond de C2 a été qualifiée d'incertaine par l'Agence de l'Eau lors de la validation annuelle des résultats (quantification isolée dans cette gamme de valeur par rapport à l'historique et pollution identifiée en DEHP par le laboratoire durant l'année de suivi).
- des pesticides (herbicide, fongicide et insecticide): 13 pesticides sont quantifiés dont une majorité d'herbicides comme l'AMPA, métabolite du glyphosate, le prosulfocarbe, très utilisé pour désherber les cultures céréalières ou le métolachlore, quantifié à chaque campagne en faible concentration. Ce dernier est interdit depuis 2003, tandis que le S-métolachlore est, pour l'instant, encore autorisé. Ses trois métabolites (ESA, OXA, NOA) sont également quantifiés sur la plupart des campagnes. Toutefois, l'ANSES a engagé une procédure pour retirer les usages des principaux herbicides contenant ces molécules¹⁴ car, d'après l'étude menée par l'ANSES en 2021, les concentrations estimées dans les eaux souterraines sont supérieures au seuil défini dans le règlement (UE) n°546/2011.

¹³ MEDD & Agences de l'eau (2003). Système d'évaluation de la qualité de l'eau des cours d'eau (SEQ-Eau V2).

¹⁴ https://www.anses.fr/fr/content/s-metolachlor-preserver-qualite-eaux

 un hydrocarbure aromatique polycyclique (HAP): le naphtalène quantifié en C1 et C4 en faibles concentrations.

Tableau 5 — Résultats d'analyses des micropolluants organiques sur eau brute sur l'étang de Montaubry en 2022

	Code			С	1	C	2	C	:3	C	4
Paramètre	sandre	Famille	Unité	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
1,7-Dimethylxanthine	6751	Psychotropes	μg/L	0,034	0,025	0,09	0,169	<0,02	0,02	<0,02	0,028
2-Hydroxy Ibuprofen	7012	-	μg/L	<0,05	<0,05	0,017	<0,05	0,058	0,022	<0,01	<0,05
4-tert-butylphénol	2610	Phénols	μg/L	<0,01	<0,015	0,027	<0,01	<0,01	0,022	<0,13	<0,07
Acide perfluoro-n- heptanoïque (PFHpA)	5977	-	μg/L	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	0,003	<0,002
Acide salicylique	5355	Antalgiques	μg/L	<0,05	<0,05	0,127	<0,05	<0,05	<0,05	<0,05	<0,05
AMPA	1907	Divers	μg/L	<0,02	<0,02	<0,02	<0,02	<0,02	0,043	<0,02	0,046
Cafeine	6519	-	μg/L	<0,036	<0,025	0,084	0,133	<0,02	<0,025	0,044	0,036
Chloroalcanes C10-C13	1955	Chloroalcanes	μg/L	<0,15	<0,15	0,57	<0,15	<0,15	<0,15	<0,15	<0,15
Cotinine	6520	-	μg/L	0,011	0,009	0,042	0,01	0,007	<0,005	0,013	0,015
Cyanures libres	1084	-	μg(CN)/L	0,54	0,61	0,59	0,69	0,93	1,19	0,77	0,41
DEHP	6616	Phtalates	μg/L	1,53	1,67	<0,2	3,3	1,6	1,73	<0,2	0,27
Dicamba	1480	Dérivés de l'acide benzoïque	μg/L	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	0,04
Diflufénicanil	1814	Carboxamides	μg/L	<0,001	0,001	<0,001	0,002	<0,001	0,001	<0,001	<0,001
Diisobutyl phthalate	5325	Phtalates	μg/L	0,44	<0,4	<0,4	<0,4	<0,4	<0,4	<0,4	<0,4
Dioctyletain cation	7494	Organo étains	μg/L	<0,00058	<0,00058	<0,00058	<0,00058	<0,00058	<0,00058	<0,00058	0,036
Fenbendazole	6482	Benzimidazole	μg/L	0,011	0,013	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
Flufenacet sulfonic acid	6864	Thiafluamides	μg/L	<0,01	<0,05	<0,01	<0,01	0,014	<0,01	<0,01	<0,01
Formaldéhyde	1702	Aldéhydes	μg/L	<1	<1	<1	2	1	<1	<1	<1
Gabapentine	7602	Antiépileptique	μg/L	<0,01	<0,01	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Isodrine	1207	Organo chlorés	μg/L	<0,001	<0,001	0,001	<0,001	<0,001	<0,001	<0,001	<0,001
Metformine	6755	Antidiabétiques	μg/L	0,0321	0,0313	0,0248	0,0195	0,0231	0,017	0,0144	0,0112
Metolachlor ESA	6854	Organo chlorés	μg/L	0,068	0,123	0,107	0,106	0,14	0,064	<0,02	0,12
Metolachlor OXA	6853	Organo chlorés	μg/L	0,063	<0,1	0,071	0,068	0,064	0,04	<0,02	0,071
Métolachlore	1221	Chloroacetamides	μg/L	0,007	0,007	0,006	0,006	0,007	0,006	0,006	<0,005
Monobutyletain cation	2542	Organo étains	μg/L	0,033	0,0058	0,027	0,039	<0,0025	<0,0025	<0,0025	0,16
Monooctyletain cation	7496	Organo étains	μg/L	<0,00039	<0,00039	<0,00039	<0,00039	<0,00039	<0,00039	<0,00039	1,5
Naphtalène	1517	HAP	μg/L	0,00867	<0,005	<0,005	<0,005	<0,005	<0,005	0,0059	<0,005
n-Butyl Phtalate	1462	Phtalates	μg/L	<0,145	<0,125	0,18	0,1	0,06	0,11	<0,05	<0,05
N-Butylbenzenesulfonamide	5299	Benzènes	μg/L	<0,1	<0,1	<0,1	0,287	<0,1	<0,1	0,18	<0,1
Nicotine	5657	-	μg/L	<0,311	<0,153	1,44	0,333	0,024	<0,02	0,046	0,092
NOA 413173	7729	Acétamides et métabolites	μg/L	<0,03	<0,15	<0,03	0,031	<0,03	<0,03	<0,03	0,03
Paracetamol	5354	Antalgiques	μg/L	0,137	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025
Prosulfocarbe	1092	Thiocarbamates	μg/L	0,009	0,009	<0,005	0,007	<0,005	0,008	<0,005	0,007
Tributyletain cation	2879	Organo étains	μg/L	0,00015	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0005
Trimethoprime	5357	-	μg/L	<0,005	<0,005	<0,005	<0,005	0,005	<0,005	<0,005	<0,005

Il s'agit d'une présentation des résultats bruts, certaines valeurs pouvant être qualifiées d'incertaines suite à la validation finale des résultats (cas par exemple des valeurs mesurées en BTEX, DEHP, formaldéhyde, dont une contamination via la chaîne de prélèvement et/ou d'analyse de laboratoire est parfois privilégiée).

4.2 Physico-chimie des sédiments

4.2.1 Paramètres physico-chimiques généraux (hors micropolluants)

Les paramètres physico-chimiques généraux et la granulométrie des sédiments ont été analysés à partir du prélèvement effectué le 15/09/22 et sont présentés *Tableau 6*. Les sédiments de l'étang de Montaubry sont constitués à 81 % d'éléments fins, comprenant principalement des argiles et des limons fins (20 - 63 µm). La part des matières organiques des sédiments (perte au feu à 550°C) est élevée (16,1 % MS). Les teneurs sont élevées en azote Kjeldahl (> 1 % MS) et très importante en phosphore total (0,32 % MS, correspondant à un niveau hypereutrophe de l'indice de stockage des minéraux du sédiments selon la diagnose rapide du Cemagref, valeur parmi les plus fortes observées en plan d'eau dans le cadre de la surveillance). Les eaux interstitielles sont très chargées en azote, la concentration en ammonium étant de 14 mg(NH₄+)/L, et la concentration en phosphore

est également élevée avec 1,5 mg(P)/L, témoignant d'un relargage certain au fond de la colonne d'eau.

Tableau 6 - Résultats des analyses de la physico-chimie et granulométrie des sédiments sur l'étang de Montaubry le 15/09/2022

				Limite de	
Fraction	Code sandre	Paramètre	Unité	quantification	Valeur
Particule inf. 2 mm	1307	Matière sèche à 105°C	%	0,1	22,5
Particule inf. 2 mm	5539	Matière Sèche Minérale (M.S.M)	% MS	-	83,9
Particule inf. 2 mm	6578	Perte au feu à 550°C	% MS	0,1	16,1
Particule inf. 2 mm	1841	Carbone organique	mg/(kg MS)	1000	76500
Eau intersticielle filtrée	1433	Phosphates	mg(PO4)/L	1,5	<lq< td=""></lq<>
Eau intersticielle brute	1350	Phosphore total	mg(P)/L	0,1	1,5
Eau intersticielle filtrée	1335	Ammonium	mg(NH4)/L	0,5	14
Particule inf. 2 mm	1319	Azote Kjeldahl	mg/(kg MS)	200	10400
Particule inf. 2 mm	1350	Phosphore total	mg/(kg MS)	2	3200
Particule inf. 2 mm	6228	Teneur en fraction inférieure à 20 µm	% MS	-	56
Particule inf. 2 mm	3054	Teneur en fraction de 20 à 63 μm	% MS	-	25,2
Particule inf. 2 mm	7042	Teneur en fraction de 63 à 150 μm	% MS	-	11,1
Particule inf. 2 mm	7043	Teneur en fraction de 150 à 200 μm	% MS	-	2,9
Particule inf. 2 mm	7044	Teneur en fraction supérieure à 200 μm	% MS	-	4,8

4.2.2 Micropolluants minéraux

25 micropolluants minéraux sont recensés dans le *Tableau 7* à partir de l'analyse des sédiments de l'étang de Montaubry le 15/09/2022. La liste de l'ensemble des micropolluants recherchés au sein des sédiments est disponible en annexe.

Tableau 7 – Micropolluants minéraux quantifiés dans les sédiments de l'étang de Montaubry le 15/09/2022

Limite de

			Lillite de	
Paramètre	Code sandre	Unité	quantification	Valeur
Aluminium	1370	mg/(kg MS)	5	74200
Antimoine	1376	mg/(kg MS)	0,2	2,3
Argent	1368	mg/(kg MS)	0,1	0,3
Arsenic	1369	mg/(kg MS)	0,2	68,7
Baryum	1396	mg/(kg MS)	0,4	445
Beryllium	1377	mg/(kg MS)	0,2	8,2
Bore	1362	mg/(kg MS)	1	339
Cadmium	1388	mg/(kg MS)	0,1	0,4
Chrome	1389	mg/(kg MS)	0,2	58,7
Cobalt	1379	mg/(kg MS)	0,1	13
Cuivre	1392	mg/(kg MS)	0,2	28,9
Etain	1380	mg/(kg MS)	0,2	11,6
Fer	1393	mg/(kg MS)	5	51900
Lithium	1364	mg/(kg MS)	0,2	158
Manganèse	1394	mg/(kg MS)	0,4	1140
Mercure	1387	mg/(kg MS)	0,01	0,06
Molybdène	1395	mg/(kg MS)	0,2	1,5
Nickel	1386	mg/(kg MS)	0,2	27,9
Plomb	1382	mg/(kg MS)	0,1	47,3
Sélénium	1385	mg/(kg MS)	0,2	1,4
Thallium	2555	mg/(kg MS)	0,1	1,2
Titane	1373	mg/(kg MS)	1	2590
Uranium	1361	mg/(kg MS)	0,2	6,5
Vanadium	1384	mg/(kg MS)	0,2	78,8
Zinc	1383	mg/(kg MS)	0,4	136

Les teneurs de certains éléments sont relativement moyennes (chrome, nickel, plomb et zinc) alors que celle observée en arsenic est élevée, proche de 70 mg/kg MS (valeur semblable aux suivis précédents). Les concentrations en cadmium, cuivre et mercure sont relativement faibles. L'aluminium et le fer sont naturellement abondants et présentent les concentrations les plus élevées dans les micropolluants minéraux, respectivement de 74 200 mg/kg MS et 51 900 mg/kg MS.

4.2.3 Micropolluants organiques

Les micropolluants organiques quantifiés dans les sédiments de l'étang de Montaubry le 15/09/2022 sont présentés dans le *Tableau 8*. La liste de l'ensemble des micropolluants recherchés est fournie en annexe.

26 composés sont quantifiés dans les sédiments :

- 18 HAP dont la somme atteint une concentration relativement moyenne de 872 μg/kg MS;
- 2 PCB sont quantifiés en très faibles concentrations, la somme étant de 2 μg/kg MS;
- 6 molécules sont issues de l'industrie chimique : le crésol-para, le DEHP, le dibenzofurane, le n-butyl phtalate, l'octrocrylène et le crésol-méta, ce dernier issu de la synthèse de pesticides.

Tableau 8 - Micropolluants organiques quantifiés dans les sédiments de l'étang de Montaubry le 15/09/2022

				Limite de	
Paramètre	Code sandre	Famille	Unité	quantification	Valeur
Anthanthrene	7102	HAP	μg/(kg MS)	10	16,5
Anthracène	1458	HAP	μg/(kg MS)	10	13
Anthraquinone	2013	HAP	μg/(kg MS)	4	8
Benzo (a) Anthracène	1082	HAP	μg/(kg MS)	10	45
Benzo (a) Pyrène	1115	HAP	μg/(kg MS)	10	69
Benzo (b) Fluoranthène	1116	HAP	μg/(kg MS)	10	107
Benzo (ghi) Pérylène	1118	HAP	μg/(kg MS)	10	56
Benzo (k) Fluoranthène	1117	HAP	μg/(kg MS)	10	36
Benzo(e)pyrène	1460	HAP	μg/(kg MS)	10	56,4
Chrysène	1476	HAP	μg/(kg MS)	10	45
Crésol-méta	1639	Divers	μg/(kg MS)	20	20
Crésol-para	1638	Phénols	μg/(kg MS)	20	31
DEHP	6616	Phtalates	μg/(kg MS)	50	308
Dibenzofuran	2763	Furanes	μg/(kg MS)	5	5,8
Fluoranthène	1191	HAP	μg/(kg MS)	10	90
Indéno(1,2,3-cd)pyrène	1204	HAP	μg/(kg MS)	10	47
Méthyl-2-Fluoranthène	1619	HAP	μg/(kg MS)	10	11
Méthyl-2-Naphtalène	1618	HAP	μg/(kg MS)	10	23
n-Butyl Phtalate	1462	Phtalates	μg/(kg MS)	50	170
Octocrylene	6686	Esters	μg/(kg MS)	5	6
PCB 138	1244	PCB	μg/(kg MS)	1	1
PCB 153	1245	PCB	μg/(kg MS)	1	1
Pérylène	1620	HAP	μg/(kg MS)	10	119
Phénanthrène	1524	HAP	μg/(kg MS)	10	38
Pyrène	1537	HAP	μg/(kg MS)	10	77
Triphenylene	7124	HAP	μg/(kg MS)	10	15,3

5 Compartiment biologique

5.1 Phytoplancton

Le phytoplancton de la zone trophogène a été échantillonné lors des quatre campagnes du suivi 2022. La *Figure 8* présente l'évolution du peuplement phytoplanctonique divisé en embranchements en termes de concentrations (nombre de cellules par mL) et de biovolumes algaux (mm³/L). Le *Tableau 9* présente les listes floristiques en biovolume et concentration au cours des quatre campagnes pour les taxons dont le biovolume est supérieur à 2 % du biovolume total par campagne. Les listes floristiques complètes sont disponibles en annexe du rapport. 102 taxons différents sont identifiés au cours de ce suivi 2022, avec une moyenne de 45 taxons par campagne. Les biovolumes et concentrations augmentent au fil des campagnes en atteignant un maximum de 6,7 mm³/L pour une concentration d'environ 142 000 cell./mL en septembre.

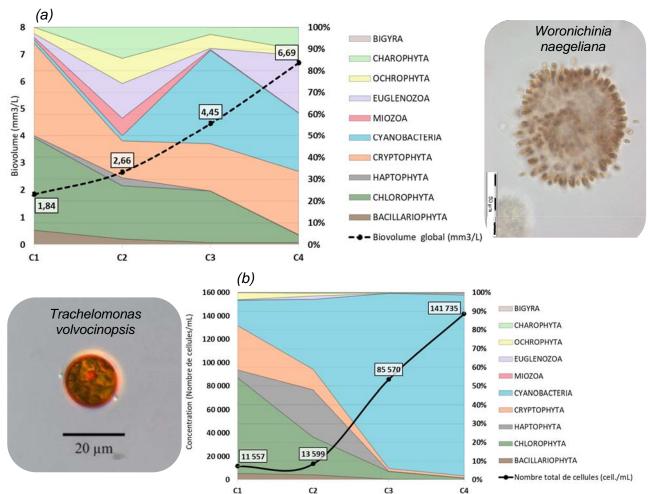


Figure 8 - Évolution de la structure des populations phytoplanctoniques de l'étang de Montaubry lors des 4 campagnes de prélèvements 2022 (regroupées selon leurs embranchements). (a) Évolution en termes de biovolume algal (mm³/L) ; (b) Évolution en termes de concentration (nombre de cellules/mL)

La composition du cortège phytoplanctonique lors de la C1, en mars, est proche d'un peuplement estival avec une codominance des chlorophytes et cryptophytes. Les premières sont principalement représentées par *Lemmermannia tetrapedia* (34% du biovolume total), tandis que les cryptophytes

sont composées de plusieurs taxons de *Cryptomonas* (30%), ainsi que de *Plagioselmis* nannoplanctica (7,4%) qui prolifère préférentiellement dans les plans d'eau méso-eutrophes. Lors de la C2, le peuplement phytoplanctonique évolue avec une répartition plus équilibrée entre les embranchements. Les taxons majoritaires reflètent une fin de successions avec l'ochrophyte *Mallomonas sp.* (11%), la charophyte *Staurastrum sp.* (10%), la dinophycée (Miozoa) *Ceratium sp.* (6,9%). Ces taxons de grande taille sont souvent compétitifs et spécialisés avec une meilleure résistance aux prédateurs et une meilleure capacité d'absorption des nutriments. Ils sont accompagnés d'euglènes *Trachelomonas sp.* et *volvocina* (16%). Ces taxons témoignent d'un milieu méso-eutrophe, peu profond. Ils peuvent être adaptés à un milieu turbide grâce aux pigments accessoires (caroténoïdes) leur permettant d'absorber un plus large spectre de lumière. En effet, la turbidité et les concentrations en carbone dissous étant élevées (cf. § 4.1.3), les taxons mixotrophes, voire hétérotrophes sont favorisés. Par exemple, l'espèce *Bicosoeca planctonica*, qui apparaît à la C4, est strictement hétérotrophe et ne détient pas de chloroplaste mais possède une enveloppe protectrice appelée lorica. Les *Trachelomonas* ont également une lorica, composée de

cellulose et de minéraux comme le fer et le manganèse très abondants dans la colonne d'eau (cf.

En juillet (C3), les cryptophytes, taxons flagellés cosmopolites, sont toujours bien représentés (20 %), ainsi que les chlorophytes à tendance méso-eutrophe avec *Sphaerocystis planctonica* (18 %). La campagne estivale est particulièrement marquée par l'efflorescence de cyanobactéries répartie entre *Woronichinia naegeliana* (18 %), *Aphanizomenon klebahnii* (13 %) et *Dolichospermum sp.* (12 %), qui sont toutes potentiellement toxiques. Par ailleurs, *W. naegeliana* dépasse les seuils de risques en eau douce selon l'ANSES avec un biovolume de 0,79 mm³/L et une concentration de ~53 000 cell./mL, puis lors de la C4 avec un biovolume de 1,74 mm³/L et une concentration de ~116 000 cell./mL. En septembre, *W. naegeliana* représente alors 26 % du biovolume total. La cyanobactérie coloniale est accompagnée de *Trachelomonas volvocinopsis* (24 %) et de cryptophytes (26 %). L'efflorescence de *W. naegeliana* était déjà perçue lors des deux dernières campagnes du suivi de 2019 sur l'étang de Montaubry.

14 autres taxons cyanobactériens sont identifiés au cours du suivi dont au moins 10 sont potentiellement toxiques¹⁶. Toutefois, ces taxons sont présents en faibles concentrations ou biovolumes.

L'indice phytoplancton lacustre (IPLAC) calculé sur les trois campagnes estivales atteint **0,645**, soit un « **état bon** » pour ce paramètre. Les deux sous-métriques qui composent l'indice sont également

-

§ 4.1.4).

¹⁵ ANSES (2020). Évaluation des risques liés aux cyanobactéries et leurs toxines dans les eaux douces.

¹⁶ De Boutray M.L. (2017). Les cyanobactéries et leurs toxines dans les sources d'eau potable. Ingénierie de l'environnement. Université Paris-Est; Ecole polytechnique (Montréal, Canada). Français. NNT : 2017PESC1069

du même ordre : celle de la biomasse algale basée sur les concentrations en chlorophylle a (MBA) est de 0,609, tandis que la métrique de composition spécifique (MCS) s'appuyant sur une liste de référence et sur les biovolumes des taxons présents est de 0,660. En revanche, 54 % des taxons identifiés ne sont pas pris en compte dans le calcul de l'indice dont *Staurastrum sp., Trachelomonas sp., Cryptomonas sp., Dolichospermum sp., Sphaerocystis planctonica...* Ceci pourrait expliquer la différence entre le bon état affiché par l'indice et l'image reflétée par les listes floristiques.

En 2019, l'IPLAC était de 0,461, soit une note plus faible due aux concentrations des pigments chlorophylliens. Le biovolume maximal était également plus élevé (16,4 mm³/L), avec la dominance des taxons cyanobactériens dont *W. naegeliana*. Toutefois, la répartition des embranchements était similaire.

Tableau 9 - Liste floristique du phytoplancton échantillonné au cours de 4 campagnes en 2022 sur l'étang de Montaubry. Les taxons dont le biovolume est supérieur à 2% du biovolume total par campagne sont présentés en concentration (cell./mL) et en biovolume (mm³/L)

							CAN	/IPAGNE			
				C	1	(2	C	3	C4	ļ
EMBRANCHEMENT	CLASSE	TAXON	Code Sandre	Conc.	Biovol.	Conc.	Biovol.	Conc.	Biovol.	Conc.	Biovol.
BACILLARIOPHYTA	MEDIOPHYCEAE	Diatomées centriques indéterminées > 10 μm	6598	182	0,10						
СНАКОРНУТА	ZYGNEMATOPHYCEAE	Closterium aciculare Staurastrum	5528 1128			19 37	0,10	15	0,12	83	0,62
		Constitution Court	5640			624	0.44				
4		Coenochloris fottii	5618	424	0.04	631	0,11				
Ĕ		Desmodesmus armatus	31930	121	0,04						
H G	CHLOROPHYCEAE	Desmodesmus communis	31933	121	0,04	0.2	0.00				
СНLОRОРНУТА		Pseudopediastrum boryanum	42835			83	0,06	4 407	0.70		
표		Sphaerocystis planctonica	5879			402	0.10	1 487	0,78		
O	TREPOLIVIORUVCEAE	Sphaerocystis schroeteri Lemmermannia tetrapedia	5880 46582	4 589	0,62	483	0,18				
	TREBUUXTUPHTCEAE		6269	212		56	0.10	262	0.47	416	0.74
≰		Cryptomonas	6273	151	0,38	56	0,10	263	0,47		0,74
È	CRYPTOPHYCEAE	Cryptomonas marssonii Cryptomonas ovata	6274	151	0,18	93	0,19	108 93	0,13 0,19	360 277	0,43 0,58
<u> </u>	CKIFTOFITICLAL		20115			74	0,19			2//	0,56
СКҮРТОРНУТА		Cryptomonas pyrenoidifera	9634	1 020	0.14		,	139	0,12		
క	GONIOMONADEAE	Plagioselmis nannoplanctica Goniomonas truncata	35416	1 938	0,14	1 188	0,08				
	GUNIUNIUNADEAE	Goniomonas trancata	33410	3/9	0,05						
CTERIA	CYANOPHYCEAE	Aphanizomenon klebahnii	35569					6 971	0,56		
CYANOBACTERIA		Dolichospermum	31962					1 874	0,54		
		Woronichinia naegeliana	6345					52 842	0,79	115 794	1,74
ZOA		Trachelomonas	6527			130	0,21				
ENO	EUGLENOPHYCEAE	Trachelomonas volvocina	6544			111	0,22				
EUGLENOZOA		Trachelomonas volvocinopsis	6545							832	1,62
нарторнута	COCCOLITHOPHYCEAE	Chrysochromulina parva	31903			3 434	0,10				
MIOZOA	DINOPHYCEAE	Ceratium	4949			6	0,18				
OCHROPHYTA	SYNUROPHYCEAE	Mallomonas	6209			111	0,30	108	0,29		

5.2 Macroinvertébrés

Les prélèvements de la faune benthique selon le protocole « Indice Macroinvertébrés lacustres (IML) » (cf. § 2.2.2) ont été effectués le 21/03/2022 sur 15 points (annexe 5). La liste faunistique est présentée *Tableau 10*.

La liste faunistique issue de l'échantillonnage est composée de 40 taxons (principalement déterminés au genre) répartis dans 18 familles différentes pour un total de 3803 individus. La majorité du substrat prélevé est constitué par des sédiments fins (sables et graviers) pour 11 points sur 15. Les sédiments minéraux plus grossiers (blocs/dalles, galets) sont aussi présents, soit seuls (1 points) soit accompagnés (litière, graviers, sables; 4 points). La végétation aquatique est totalement absente. En conséquence, les points d'échantillonnages apparaissent relativement peu attractifs vis-à-vis du macrobenthos.

Parmi les groupes caractéristiques d'invertébrés, les Ephéméroptères, Trichoptères et Coléoptères sont présents contrairement aux Plécoptères. L'ordre des Diptères est le plus riche avec 23 genres répertoriés dans 4 familles dont 20 rien que chez les Chironomidae. Les Ephéméroptères viennent ensuite avec 3 familles pour 3 genres, suivis par les Coléoptères (2 familles et 3 genres) et les Trichoptères (2 familles et 3 genres). Les autres ordres ne dépassent pas 1 famille. D'un point de vue quantitatif, ce sont les Corixidae (surtout *Micronecta*) qui dominent avec 32,5% des effectifs. La sous-famille de trichoptères Limnephilinae est proche (31,2%) tandis que les Diptères Chironomidae ne constituent que 22 % des effectifs du peuplement. En termes d'occurrence, seule la sous-famille de trichoptère Limnephilinae est présente sur l'ensemble des points. Les taxons les plus observés ensuite sont respectivement les Diptères Chironomidae *Ablabesmyia* et l'Hétéroptère Micronecta (14 points) puis les Diptères Chironomidae *Dicrotendipes* et *Polypedilum* (13 points). A contrario, de nombreux genres ne sont rencontrés seulement que sur un ou deux points avec souvent très peu d'individus.

Quelques taxons sensibles à la qualité chimique (sCHIMlac) sont observés : le Coléoptère Elmidae *Esolus* (7), le gastéropode Lymnaeidae *Galba* (7) et le Diptère Chironomidae *Zavrelia* (8). Néanmoins, les effectifs de ces derniers sont très réduits. <u>Ainsi les effectifs les plus importants sont constitués par des taxons dont la sensibilité est la plus faible</u> (sCHIMlac = 4 ; *Limnephilinae*, sCHIMlac = 3 ; *Oulimnius*, *Ablabesmyia*, sCHIMlac = 1 ; *Micronecta, Cladotanytarsus*).

Du point de vue des habitats (sHABtax), 3 taxons sont sensibles à la qualité des habitats littoraux (≥ à 4) : l'Odonate de la famille des Platycnemididae *Platycnemis*, le gastéropode Lymnaeidae *Galba* et les Diptères Chironomidae *Zavrelia*. Les effectifs de ces genres sont par contre anecdotiques.

Concernant les Diptères Chironomidae en particulier, 3 sous-familles sont observées (Orthocladiinae, Chironominae et Tanypodinae). Une nette prédominance des Chironominae est constatée avec 58,9% des individus de Chironomidae, devant les Orthocladiinae (26,5%) et les Tanypodinae (14,6%).

- Chez les Tanypodinae, 3 genres sont contactés (Ablabesmyia, Procladius et Tanypus) qui sont des prédateurs souvent présents dans les sédiments lacustres et ne présentent pas de sensibilité particulière à la chimie de l'eau ou à la qualité de l'habitat^{17&18}.
- Parmi les Orthocladiinae, 6 genres sont identifiés sans dominance particulière d'un taxon. Chaetocladius est un genre ubiquiste ayant une affinité pour les substrats organiques et parfois retrouvé dans des masses d'eau artificielles comme ici présent. Les groupes Cricotopus/Orthocladius, Limnophyes, Parakieferriella, Psectrocladius sont assez courants et se rencontrent dans des habitats divers, souvent algivores ou phytophages. Hydrobaenus est un détritivore psychrosténotherme (préférant évoluer dans les eaux fraîches) plutôt caractéristique de milieux oligotrophes. De nombreuses espèces de ce genre se retrouvent dans des milieux temporaires, ce qui peut être le cas en milieu lacustre en zone littorale avec une marnage important.
- Chez les Chironominae, 2 tribus (Chironominii et Tanytarsinii) sont présentes et apparaissent bien diversifiées (respectivement 6 et 4 genres).
 - La première est la plus abondante (28,6 % des effectifs de Chironomidae). Elle est composée de 5 genres assez courants (*Dicrotendipes*, *Glyptotendipes*, *Endochironomus*, *Parachironomus* et *Polypedilum*) présents dans tous types de masses d'eau lentiques et tempérées, souvent riches en matières organiques¹⁹. Ils représentent à eux-seuls pratiquement 22 % des effectifs de Chironomidae. Le genre *Cryptochironomus*, contacté sur 9 points, est un prédateur plutôt typique des fonds des lacs eutrophes mais peut se retrouver dans la zone littorale dans tous types d'habitats. Enfin, *Paratendipes*, rencontré une seule fois, affectionne les sédiments de la zone littorale des lacs mésotrophes et apparait relativement sensible à la qualité chimique de l'eau.

GREBE eau.sol.environnement

¹⁷ Vallenduuk H.J & Moller Pillot H.K.M. (2007). *Chironomidae Larvae. General ecology and Tanypodinae*. KNNV publishing

¹⁸ Dedieu N. & Verneaux V. (2019). *Guide d'identification des larves de Chironomidae (Diptères, Insecta) des hydrosystèmes lacustres de France*. Université de Franche-Comté. Laboratoire Chrono-environnement

¹⁹ Moller Pillot H.K.M. (2009). *Chironomidae Larvae. Biology and ecology of the Chironomini*. KNNV publishing. 272p.

Chez les Tanytarsinii, 3 genres très courants (*Cladotanytarsus*, *Paratanytarsus* et *Tanytarsus*) sont observés et sont caractéristiques de la zone littorale de lacs chauds méso- à eutrophes, parfois inféodés à la végétation. *Cladotanytarsus* est particulièrement bien représenté avec 21 % de l'abondance totale en Chironomidae répartis sur 11 points sur 15. Quant au quatrième, *Zavrelia*, il se rencontre dans les lacs tempérés eutrophes et apparait peu tolérant aux eaux acides d'où une certaine sensibilité aux conditions chimiques.

Tableau 10 – Liste faunistique des taxons invertébrés retrouvés sur les 15 points de prélèvements effectués sur l'étang de Montaubry le 21/03/22

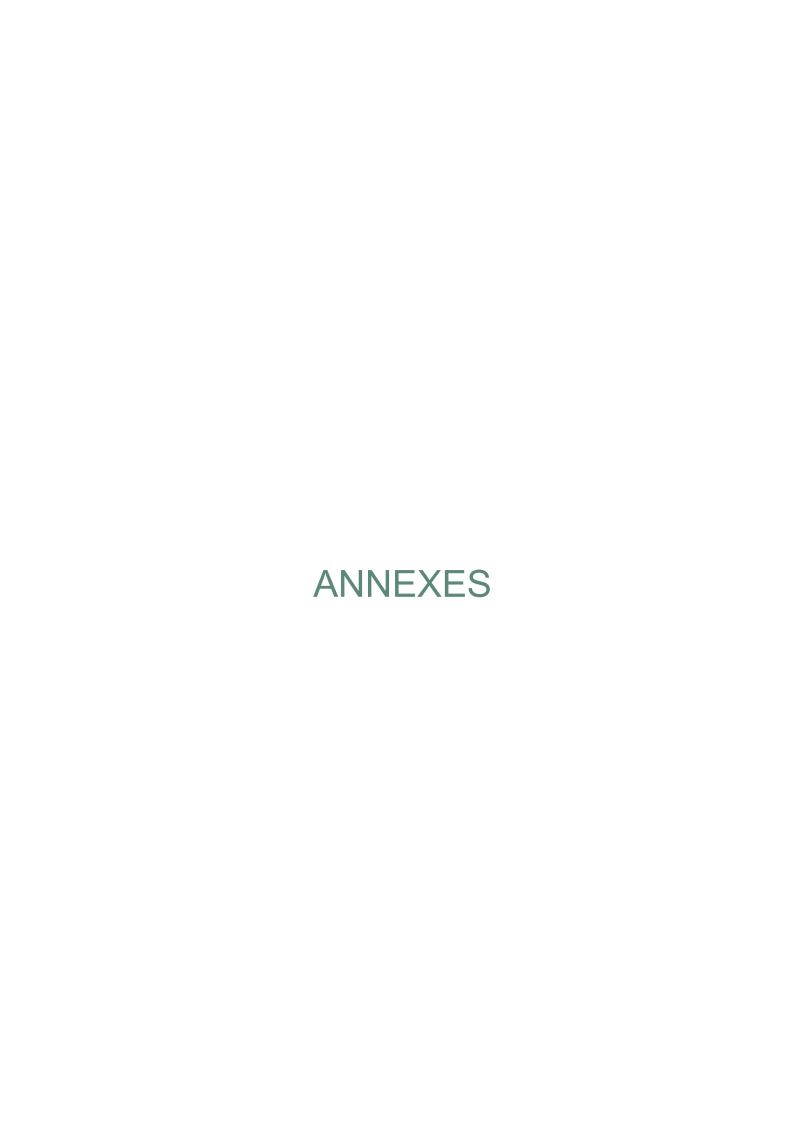
	evenients er	rectues sur r	'étang de Montau																
GROUPE_II	GROUPE_III	FAMILLE	GENRE_TAXON	SANDRE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
INSECTES	Trichoptères	Leptoceridae	Athripsodes	311	3	1	12							3	2		15		
INSECTES	Trichoptères	Leptoceridae	Mystacides	312	1		2	1	3				2		2		1		3
INSECTES	Trichoptères	Limnephilidae	Limnephilinae	3163	15	34	21	36	78	210	212	8	140	67	143	27	46	112	38
INSECTES	Ephéméroptères	Baetidae	Cloeon	387					6	11			1						
INSECTES	Ephéméroptères	Caenidae	Caenis	457	5	4	8	7	4		1	6	12	15	16		15		2
INSECTES	Ephéméroptères	Siphlonuridae	Siphlonurus	350						1									
INSECTES	Hétéroptères	Corixidae	Corixinae	5196					1		1						1		
INSECTES	Hétéroptères	Corixidae	Micronectinae	20396	7	180	116	328	56	5	1	118	44	39	272		58	1	11
INSECTES	Coléoptères	Dryopidae (I,a)	Dryops (I,a)	613										4					
INSECTES	Coléoptères	Elmidae (l,a)	Esolus (l,a)	619		9			1										
INSECTES	Coléoptères	Elmidae (l,a)	Oulimnius (l,a)	622	228		19	22				5	2	16	2		7		6
INSECTES	Diptères	Ceratopogonidae	Ceratopogonidae	819	1	4		1	2	3		1			2		2		4
INSECTES	Diptères	Chironomidae	Ablabesmyia	2781	29	8	9	6	6	2		5	10	4	14	2	6	1	5
INSECTES	Diptères	Chironomidae	Chaetocladius	2804						2							1		
INSECTES	Diptères	Chironomidae	Cladotanytarsus	2862	10	56	20	19	6			4	1	6	10		21		22
INSECTES	Diptères	Chironomidae	Cricotopus/Orthocladius	2805	2			1		58				1					
INSECTES	Diptères	Chironomidae	Cryptochironomus	2835		25	14	6	2			11		1	3		7		2
INSECTES	Diptères	Chironomidae	Dicrotendipes	2839	11	1	9	4	2	2		6	1	4	7		13	3	6
INSECTES	Diptères	Chironomidae	Endochironomus	2842						12		1	1	1	1		3		
INSECTES	Diptères	Chironomidae	Glyptotendipes	2843						2	1								
INSECTES	Diptères	Chironomidae	Hydrobaenus	19195						16		1		22		2	16	12	1
INSECTES	Diptères	Chironomidae	Limnophyes	2813														1	
INSECTES	Diptères	Chironomidae	Parachironomus	2851	2		2					1		2		1		28	1
INSECTES	Diptères	Chironomidae	Parakiefferiella	2820	1	3	36	10					2	2	5		10	3	5
INSECTES	Diptères	Chironomidae	Paratanytarsus	2865				5		2		1	1	14	3	1	1	1	
INSECTES	Diptères	Chironomidae	Paratendipes	2853													1		
INSECTES	Diptères	Chironomidae	Polypedilum	2856		3	4	4	4	11		2	1	3	13	5	3	1	1
INSECTES	Diptères	Chironomidae	Procladius	2788	2		2	3					2		2	1	1		
INSECTES	Diptères	Chironomidae	Psectrocladius	2825		3						1		4	2				
INSECTES	Diptères	Chironomidae	Tanypus	2791			2												
INSECTES	Diptères	Chironomidae	Tanytarsus	2869	1		5	3				1					3		
INSECTES	Diptères	Chironomidae	Zavrelia	19177		3	14	1									3		2
INSECTES	Diptères	Dolichopodidae	Dolichopodidae	836									1						
INSECTES	Diptères	Limoniidae	Limoniidae	757						1								1	
INSECTES	Odonates	Coenagrionidae	Coenagrionidae	658					4	3									
INSECTES	Odonates	Platycnemididae	Platycnemis	657					1										
CRUSTACÉS	Isopodes	Asellidae	Asellidae	880	9														
GASTÉROPODES	GASTÉROPODES	Lymnaeidae	Galba	1001					1										
GASTÉROPODES	GASTÉROPODES	Physidae	Physella	19280			1					1							
GASTÉROPODES	GASTÉROPODES	Planorbidae	Planorbidae	1009	1	1		3	1	1				1					

En conclusion, contrairement à ce qui est attendu en milieu lacustre²⁰, la densité du macrobenthos n'est pas dominée par les Diptères Chironomidae mais par l'hétéroptère Micronecta. Alors que les Chironomidae représentent entre 40 et 60 % de la faune lacustre en général, ils constituent ici seulement 22 % de la densité du peuplement. Ils sont par contre largement en tête en termes de richesse faunistique (50 %). Globalement, le peuplement apparait peu sensible à la qualité chimique et à la qualité de l'habitat. Il est caractéristique d'un milieu à tendance eutrophe soumis à certaines variations du niveau d'eau (marnage dû à l'activité hydraulique du barrage).

La note de l'IML 2022 est de 0,912, soit un « très bon état » au regard de cet indice. Les trois sousmétriques correspondant à la qualité des habitats, à l'intensité du marnage et à la qualité chimique sont toutes supérieurs à 0,8, respectivement 0,945, 0,842 et 0,949. En termes de sensibilité à la chimie, ces notes ne semblent pas refléter ce que traduisent les listes faunistiques, dominées par des taxons tolérants à la chimie.

²⁰ Armitage P. Cranston P.S. et Pinder L.C.V. (1995). The Chironomidae. The biology and ecology of the nonbiting midges. Chapman & Hall

6 Appréciation globale de la qualité du plan d'eau


Le suivi 2022 du plan d'eau de Montaubry est caractérisé par un été particulièrement chaud et sec, intensifiant le développement phytoplanctonique au fil des campagnes. Les eaux, chaudes et stratifiées dès début juin et relativement riches en nutriments, ont permis l'efflorescence de la cyanobactérie potentiellement toxique *Woronichinia naegeliana* (comme en 2019) ainsi que la croissance de grands taxons phytoplanctoniques spécialisés et compétitifs dans l'absorption des nutriments. La prolifération des cyanobactéries a conduit à l'interdiction de baignade et de la consommation de poissons pêchés au lac au cours du mois d'août 2022. Comparativement à ce que révèlent les listes floristiques, l'IPLAC paraît, dans ce cas, surestimé l'évaluation de l'état de la masse d'eau. L'IML semble également refléter un meilleur état (très bon état) que ne révèlent les listes floristiques qui décrivent une macrofaune caractéristique d'un milieu à tendance eutrophe soumis à certaines variations du niveau d'eau.

Au fur et à mesure des campagnes, les eaux se chargent en matières organiques peu biodégradables avec une turbidité importante, qui favorisent les organismes mixotrophes ou hétérotrophes tant que le dioxygène est suffisamment abondant. La faible transparence et les concentrations élevées en pigments chlorophylliens renforcent la tendance eutrophe du milieu. Tout au long du suivi, les concentrations en éléments azotés, phosphorés et carbonés sont élevées aussi bien dans les eaux superficielles que dans les sédiments. En particulier au fond de la colonne d'eau, se concentrent l'azote organique et le phosphore total témoignant à la fois d'un ralentissement de la métabolisation des matières, ainsi que du relargage de sels minéraux depuis les sédiments dû au milieu anoxique.

En termes de micropolluants, l'arsenic est concentré dans les eaux comme dans les sédiments. On retrouve notamment des substances pharmaceutiques, pesticides et produits industriels dans les eaux en faibles concentrations. Les sédiments sont plutôt chargés en micropolluants minéraux et concentrent peu les micropolluants organiques.

Étang de Montaubry le 15/09/22, la photo de droite montre un bryozoaire invasif, a priori Pectinatella magnifica

Annexe 1 : Liste des micropolluants analysés sur eau

Unité	µg/L Insecticides		ug/L					ug/L Pesticides									- Joh	Hg/L		_						ug/L Micropolluants organiques						ug/L Micropolluants organiques	ug/L Micropolluants organiques						Light Desticions	pg/L resultings										
Paramètre	Abamectin		Acenaphtene		· v			Acetochior EsA		Wethy	Ipha-méthyl-2-naphtalène	Acide acetylsalicylique		0	Acide fenofibrique			Acide negleconnegles (INTA)					<u>ري</u>	HxS)		Acide perfluoro-n-heptanolque (PFHpA)		(S)	2	FOS)		rreg)	Acide perluoroundecane surionique		de perfluorobutane (PFBS)	_			Alachior EdA		4		sulfone	de				alpha-Hexabromocyclododecane	ine	
Code	2007	6456	1622	1100	1454	5579	7136	6862	1903	5581	5352	6735	5408	6701	5369	6538	1465	1261	6550	6209	8741	6507	6542	6830	5980	7/60	6508	8739	6510	6560	5347	8738	8740	5355	6025	1970	1688	1310	0000	4404	6740	1102	1807	1806	1103	1697	7501	6651	1812	
Туре	Micropolluants métalliques		Micropolluants métalliques					Micropolluants metalliques							Micropolluants metalliques	Micropolluants métalliques		Micropolluants metalliques				Micropolluants métalliques	Micropolluants métalliques	Micropolluants organiques	Micropolluants organiques	Missocial parts organiques	Micropolluants organiques	Pesticides	Pesticides		Occipient	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropollusate organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	
Unité	hg(Al)/L	hg(Sb)/L	hg(Ag)/L	µg(Ba)/L	µg(Be)∕L	hg(B)/L	hg(Ca)/L	hg(Cr)/L	10(Ci)/L	hg(Sn)/l	ua(Fe)/L	ng(Li)/L	ug(Mn)/L	µg(Hg)/L	µg(Mo)∕L	µg(Ni)∕L	µg(Pb)∕L	hg(se)/L	ua(TI)/I	ug(Ti)/L	µg(U)∕L	µg(V)/L	µg(Zn)∕L	µg∕L	µg/L	Hg/L	Pg/L	ng/L	hg/L	hg/L	µg/L	µg/L ∵a/l	pg/L ug/L	pg/L pg/L	hg/L	μg/L	hg√	hg/L	hg/L	Hg/L	10/L	na/L	rg√ μg∕L	µg/L	µg∕L	hg√	hg√	hg√	hg√	
Paramètre	Aluminium	Antimoine	Arsenic	Baryum	Beryllium	Bore	Cadmium	Chrome	Culture	Etain	Fer	Lithium	Manganèse	Mercure	Molybdène	Nickel	Plomb	Selenium	Thallim	Titane	Uranium	Vanadium	Zinc	1-(3-chloro-4-methylphenyl)uree	1.7-Dimethylxanthine	14-Hydroxyclarithromycin	1 alpha-Estaulo 1-Hydroxy lhiprofen	245T	240	2 4 D isopropyl ester	2 4 D méthyl ester	24 UB	2.4 MCPB	2 6 Dichlorobenzamide	2-(3-trifluoromethylphenoxy)nicotinamide	2,4,7,9-Tetramethyl-5-decyne-4,7-diol	2.6-di-tert-butyl-4-methylphenol	2.4+2.5-dichloroanilines	2 Hydroxy Burrate	2-hydroxy decethyd Atronine	2-liyaroxy-desemiyFranazine 2-laureth sulfate	2-nitrotoluène	3,4,5-Trimethacarb	3-Chloro-4 méthylaniline	4,5-dichloro-2-octyl-1,2-thiazol-3(2H)-one	4-Chlorobenzoic acid	4-méthoxycinnamate de 2-éthylhexyle	4-Methylbenzylidene camphor	4-n-nonylphénol	
Code	1370	1376	1369	1396	1377	1362	1388	1389	1302	1380	1393	1364	1394	1387	1395	1386	1382	2660	2555	1373	1361	1384	1383	2934	6751	7.041	7011	_				1142				6649	7815	6022	2042	2160	8324	2613	5695	2820	8301	5367	7816	6536	5474	

	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	HAP	HAP	D C	HAD HAD	Micropollitable organiques	Micropolluants organiques		Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Biocides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropollipate organization	Desticides	Micropolliants organiques	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques
Unité	hg/L	hg/L	hg/L	ng/L	µg∕L	hg/L	hg/L	hg/L	101	John John John John John John John John	ng/L	hgv	µg/L	µg/L	µg/L	µg∕L	µg/L	hg/L	Lou Lou	na/L	µg/L	µg/L	hg/L	µg/L	µg/L	101	ng/L	hg/L	hg∕L	µg/L	hg/L	no/L	hg/L	пgЛ	hg/L	µg/L	hg/L	Pg/L	101	101	Von	Jon Jon	µg/L	µg/L	µg/L	µg∕L	µg/L	hg/L	hg/L	101	rg/L
Paramètre	Bentazone	Benthiavalicarbe-isopropyl	Benthiocarbe Benzène	Benzisothiazolinone	Benzo (a) Anthracène	Benzo (a) Pyrėne	Benzo (b) Fluoranthene	Benzo (k) Flioranthène	Benzotriazole	Benzyl butvi phtalate	Beta cyfluthrine	beta-Hexabromocyclododecane	Betaxolol	Bezafibrate	Bifenox	Bifenthrine	Bioresmethrine	Bipnenyle Bissardal	Bisphenol S	Bisphénol-A	Bitertanol	Bithionol	Bixafen	Boscalid	Brodifacoum	Bromadiolone	Bromazepam	Bromochlorométhane	Bromoforme	Bromophos éthyl	Bromoprosidate	Bromoxynil	Bromoxynil octanoate	Bromuconazole	Bromure de méthyle	Bufencarbe	Burlomedil	Duplimate	Buprofézine	Butamifos	Butraline	Buturon	Butylate	Butylbenzène n	Butylbenzène sec	Butylbenzene tert	Cadusafos	Cafeine	Captatol	Carbamazenine	Carbamazepine epoxide
Code	1113	7460	1764	8306	1082	1115	1116	1118	7543	1924	3209	6652	6457	5366	1119	1120	1502	1084	7594	2766	1529	7104	7345	5526	5546	1859	5371	1121	1122	1123	1124	1125	1941	1860	1530	7502	26/9	1001	1862	5710	1126	1531	7038	1855	1610	1611	1863	6519	112/	5296	6725
Z	Micropolluants organiques	Pesticides	Pesticides Microcolluants organizues	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolitants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	HAP	HAP	Pesticides	Micropolluants organiques	Pesticides	Desticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	ï	,	r			,	ı	1			e e						Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques
Unite	hg/L	hg/L	hg/L	rg/L	hg/L	рgЛ	hg/L	Hg/L	7 6	ng/L	Hg/L	hg/L	µg/L	hg/L	hg/L	hg/L	hg/L	Hg/L	Lou/	ng/L	нgЛ	hg/L	hg/L	hg/L	hg/L	10/1	Hg/L	hg/L	hg/L	hg/L	Hg/L	ng/L	hg/L	hg/L	hg/L	hg/L	Hg/L	Pg/L	7/61	1/01	100/	ng/L	ng/L	µg/L	hg/L	hg/L	hg/L	hg/L	hg/L	101	Pg/L
Paramètre	_	Amidosulfuron	Aminocarbe Aminochlorophénol-2 4	Aminopyralid	Aminotriazole	Amiprofos-methyl	Amitraze	Amimpoyine	Amoxiciline	AMPA	Androstenedione	Anilofos	Anthracène	Anthraquinone	Asulame	Atendol	Atrazine	Atrazine desconomy	Atrazine desethol	Atrazine déséthyl déisopropyl	Atrazine-desethyl-2-hydroxy	Azaconazole	Azaméthiphos	Azimsulfuron	Azinphos ethyl	Azithromycine	Azoxystrobine	BDE 181	BDE 203	BDE 205	BDE100	BDE153	BDE154	BDE17	BDE183	BDE190	BDEZUS	BDE47	BDE66	BDE71	BDE77	BDE85	BDE99	Beflubutamide	Bénalaxyl	BENALAXYL-M	Bendiocarbe	Benfluraline	Benzing	Bensulfuron-methyl	Bensulide
Code	2695	2012	5523	7580	1105	7516	1308	6781	6719	1907	5385	6594	1458	2013	1965	5361	7011	1907	108	1830	3160	2014	2015	2937	1110	7817	1951	6231	5986	5997	2913	2912	2911	2921	2910	2909	1815	2070	2018	2917	7437	2914	2916	7522	1687	7423	1329	1112	2924	5512	6595

Type	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques		Micropolluants organiques		HAP	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropollusaria organiques	Micropoliuants organiques	Transfer of the second of the	Micropolidants organiques	Lesiones	Micropoliuants organiques	Pesticides	Pesticides	Blocides	Insecticides	Micropolluants organiques	Micropolluants organiques	Micropoliuants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropollipate organiques	Destroides	Micropolliants organizates	Micropolluants organiques	Fondicides	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Fongicides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Regulateurs de croissance	Micropolluants organiques	restrates
Unité	hg/L	hg/L	µg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	µg/L	no/L	lou	Voll	3 6	hg/L	hg/L	Pg/L	hg/L	hg/L	hg/L	hg/L	hg/L	µg∕L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	µg∕L	hg/L	hg/L	7,01	101	100	INCONT.	no/L	ng/L	ng/L	nav	na/L	nav	na/L	hg/L	na/L	µg/L	ng/L	na/L	µg/L	µg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hgvr
Paramètre	Chlorthal dimethyl	Chlorthiamide	Chlorthiophos	Chlortoluron	Chlorure de Benzylidène	CHLORURE DE CHOLINE	Chlorure de didecyl dimethyl ammonium	Chlorure de vinyle	Chrysène	Cinosulfuron	Ciprofloxacine	Clarithromycine	Clenbuterol	Clethodim	Ciculodina	Clindamycine	Clodinatop-propargy	Clorentezine	Comazone	Clopidol	Clopyralide	Cloquintocet mexyl	Clorsulone	Clomianidine	Clotrimazole	Cotinine	Coumarene	Cournaphos	Coumatetralyl	Cresol-ortho	Cresol-para	Crotamiton	Crotoxyphos	Colonida	Cumyation	Cyanofenobos	Cyanines libres	Cyazofamid	Cycloate	Cyclophosphamide	CYCLOXYDIME	Oycluron	cyflufénamide	Cyfluthrine	Cyhalofop-butyl	Cyhalothrine	Cymoxanil	Cyperméthrine	Cyproconazole	Cyprodinil	Cyprosulfamide	Cyromazine	Cythioate	Daimuron	Dalapon	Daminozide	Danofloxacine	DOPINO (Increadonce de Diatori)
Code	2966	1813	5723	1136	2715	2977	6636	1753	1476	5481	6540	6537	8969	2978	6702	7610	2007	1000	7107	8743	1810	2018	6/48	6389	2360	0250	7/67	1997	2019	1640	1638	3285	\$7.75	6304	1137	5726	1084	5567	5568	6733	2729	1696	7748	1681	5569	1138	1139	1140	1680	1359	7801	2897	7503	5930	2094	7820	4020	270
Type	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Desticides	Opposito	Pesticides	Micropolinants organiques	Micropolitains organiques	Pesiciones	Pesticides	Pesticides	Micropolluants organiques	Micropoliuants organiques	Micropolluants organiques	Pesticides	Pesticides	Micropoliuants organiques		Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Missocollisate organismos	Micropollusate organiques	Micropolliants organiques	Micropolliants organiques	Micropolitants organiques	BTEX	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	BTEX	BTEX	BTEX	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides Misson allumate promises	micropolitants organiques				
_ Unité	hg/L	μg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	µg/L	na/L	ng/L	Lio.	500	pg/L	pg/L	Hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	Pg/L	7,00	707	1/01	101	ng/L	na/L	ng/L	na/L	na/L	na/L	ng/L	hgv	na/L	µg/L	ng/L	na/L	µg/L	µg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	Hg/L
Code SANDRE Paramètre	Carbaryl	129 Carbendazime	1333 Carbétamide						2976 Carfentrazone-ethyl	8310 Cétylpyridium	Chinométhionate	7500 Chlorantraniliprole										_		7.09 Chlormadinone-acetate			209/ Chlormequat chlorure						2016 Chicaéthan												Chlorophénol-3	1650 Chlorophénol-4	Chloroprène	2065 Chloropropène-3			Chlorotoluène-3						Chlorsulfuron	or 45 Children acycline
A 17	463					13					1865		336	7010	757		2000							a '					593		591	1467	0102			2824		341				1470		471	1651		2611		1473	1602	1601	9	1683					

- Appe	Micropolluants organiques	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Insecticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques		Micropolluants organiques	Pesticides	Pesticides	Pesticides	Desticides	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides Micropolliparts organizates	Micropollusate organiques	Micropolliants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	r.	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Lessicaes -	BIEX -	Pesticides	Micropolluants organiques									
Unité	hg/L	µg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	Hg/L	Love Love	100	na/L	na/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	7 6	101	na/L	nav	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	Hg/L	hg/L	no/L	Non
Paramètre	Dichlorophénol-2,5	Dichlorophénol-3,4	Dichloropropane-1,2	Dichloropropane-1,3	Dichloropropane-2,2	Dichloropropene-1.1	Dichloropropylene-1,3 CIS	Dichloropropylene-1,3 Irans	Dichloropropylene-2,3	Dichlorprop	Dichlorprop-P	Dichlorvos	Diclofenac	Diclofop méthyl	Dicofol	Dicrotophos	Dicyclanil	Didéméthylisoproturon	Dieldrine	Dienestrol	Diéthofencarbe	Diéthyl phtalate	Diethylamine	Diethylstilbestrol	Difenacoum	Diferencenazole	Dienoxuron	Diffusepairon	Diffuréncanil	Dihexy ohtalate	Dihydrocodeine	Diisobutyl phthalate	Diisodecyl phthalate	Diltiazem	Dimefuron	Dimepiperate	Diméthachlore CGA 360873	Diméthachlore-ESA	Dimethametron	Dimethenamid ESA	Diméthénamide	Diméthénamide OXA	Dimethenamid-P	Diméthoate	Diméthomorphe	Diméthylamine	Diméthylphénol-2,4	Dimethylvinphos	Dimetilan	dimoxystrobine	Difficultazore	Dinitrotoluene-2,4	Dinocap	Di-n-och ohthalate
Code	1649	1647	1655	1654	2081	2082	1034	1835	1653	1169	2544	1170	5349	1171	1172	5525	9699	2847	1173	7507	1402	1527	2826	2628	2982	1905	4700	1488	1814	2539	6647	5325	6658	6729	1870	7142	7227	6381	5737	6865	1678	7735	5617	1175	1403	2773	1641	6972	1698	5748	10/1	1577	5619	3347
Туре	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Festicides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	HAP	Pesticides	Micropolluants organiques	Micropoliuants organiques	Micropolliante organizare	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolinarity organiques	Micropolluants organiques	Pesticides	Micropolliants organizates							
Unité	hg/L	нgЛ	hg/L	hg/L	hg/L	hg/L	Hg/L	hg/L	hg/L	hg/L	hg/L	μg/L	нgЛ	µg/L	Hg/L	μg/L	Hg/L	hg/L	hg/L	hg/L	hg/L	μg/L	нgЛ	hg/L	hg/L	hg/L	Hg/L	Hg/L	10/1	na/L	ng/L	hg/L	нgЛ	μg/L	hg/L	hg/L	Hg/L	7 / 6 -	101	na/L	na/L	нgЛ	hg∕L	hg/L	hgЛ	hg/L	hg/L	hg/L	hg/L	hg/L	Hg/L	Hg/L	ng/L	50 5
Parametre	DCPU (métabolite Diuron)	DDD-o.p'	DDD-p.p.	DDE-o.p.	DDE-p.p.	do-Ind	9.4-100	DEHP	Deltamethrine	Demeton S methyl	Demeton S methyl sulfone	Déméton-O	Déméton-S	Déséthyl-terbuméthon	Desmediphame	Desméthylisoproturon	Desmétryne	Desvenlafaxine	Dexamethasone	Di iso heptyl phtalate	Diallate	Diazepam	Diazinon	Dibenzo (ah) Anthracene	Dibromo-1,2 chloro-3propane	Dibromoacetonitrile	Dipromocnicionemane	Dibromométhane	Dibutyletain cation	Dicamba	Dichlobénil	Dichlofenthion	Dichlofluanide	Dichlorethane-1,1	Dichlorethane-1.2	Dichlorethylene-1,1	Dichlorethylene-1,2 dis	Dichlomide	Dichloraniine-24	Dichloroaniline-2.5	Dichloroaniline-3.4	Dichloroaniline-3,5	Dichlorobenzène-1,2	Dichlorobenzène-1,3	Dichlorobenzène-1,4	Dichlorobromométhane	Dichlorodifluorométhane	Dichloromethane	Dichloronitrobenzene-2,3	Dichlorontrobenzene-2,4	Dichional action of the Co. 2	Dichlorontrobenzene-3,4	Dichlorophène	Dichlorophénol-23
Code	1930	1143	1144	1145	1146	114/	1148	6616	1149	1153	1154	1150	1152	2051	2980	2738	1155	6785	6574	2538	1156	5372	1157	1621	1479	1738	200	1513	7074	1480	1679	1159	1360	1160	1161	1162	1456	2020	1589	1588	1586	1585	1165	1164	1166	1167	1485	1168	1617	1616	1013	1613	2981	1645

Type	Pesticides	Pesticides	Biocides	Pesticides	Micropolluants organiques	Pesticides		Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Misson lines	Micropolluants organiques	Precipital of gampacs	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Dactioides	Pesticides	Fondicides	Fongicides	HAP	HAP	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	resticides
Unité	no/L	na/L	ng/L	hgvL	hg/L	hg/L	hg/L	µg/L	hg/L	hg/L	hg/L	hgv	hg/L	Llg/L	ng/L	ng/L	hg/L	hg/L	hg/L	hg/L	hg/L	hgvL	hg/L	hg/L	hg/L	hg/L	µg/L	hg/L	J/6d	ng/L	101	na/L	ng/L	hgv	hg/L	hg/L	hg/L	ng/L	ng/	no/	Von	ng/L	hgvL	µg/L	hg/L	hg/L	hgvL	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	100	100
Paramètre	Fénarimol	Fénazaquin	Fenbendazole	Fenbuconazole	Fenchlorazole-ethyl	Fenchlorphos	Fenhexamid	Fénitrothion	Fenizon	Fenobucarb	Fenofibrate	Fenoprofen	Fenothiocarbe	Fénoxaprop éthyl	Fénoxycarbe	Fenpropathrine	Fenpropidine	Fenpropimorphe	Fenthion	Fénuron	Fenvalérate	Fipronil	Fipronil sulfone	Flamprop-isopropyl	Flamprop-methyl	Flazasulfuron	Flocoumaten	Flonicamid	Florasulam	Finazifon	Fluazifon-bubd	Fluazifop-P-butyl	Fluazinam	Fluconazole	Fludioxonil	Flufenacet oxalate	Flufenacet sulfonic acid	riumonino	riumequine	Fluométuron	Fluopicolide	Fluopyram	Fluoranthène	Fluorène	Fluoxetine	Flupyrsulfuron methyle	Fluquinconazole	Fluridone	Flurochloridone	Fluroxypyr	Fluroxypyr-meptyl	Flurprimidol	Fluramone		
Code	_			1906			2743	1187	5627	5763	5368	0269	9269	1973	1967	1188	1700	1189		1500										6545			2984	8564	1975			10/0					1191	1623									2008		
Type	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques		Micropolluants organiques		Insecticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Microsoft characteristics	Micropolitants organiques	Pasticidas	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolitants organiques	Destinides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	BTEX	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Mission of the plants	B. M. College				
Unité	na/L	na/L	hg/L	иgЛ	hg/L	нgЛ	hg/L	hg/L	µg/L	hg/L	µg/L	рgЛ	μg/L	µg/L	hg/L	µg/L	µg/L	µg/L	µg/L	µg/L	hg/L	hg/L	hgЛ	hg/L	hg/L	рgЛ	μg/L	µg/L	µg∕L ∷g∕l	hg/L	197	pg/L pg/L	рgЛ	рgЛ	hgЛ	рgЛ	µg/L	hg/L	Hg/L	Lou/	nav	Lg/L	hg/L	hg/L	hgЛ	hgЛ	hg/L	рgЛ	hg/L	hg/L	hg/L	hg/L	hg/L	Hg/L	
Paramètre	-	Dioctyletain cation	Dioxacarb	Dipentyl phtalate	Diphenyletain cation	Dipropyl phtalate	Diquat	Disulfoton	Ditalimfos	Dithianon	Diuron	DNOC	Dodécyl diméthyl benzyl ammorium	Dodine	Doxepine	Doxycycline	DPU (Diphenylurée)	Dydrogesterone	Edifenphos	EDTA	Emamectine	Endosulfan alpha	Endosulfan beta	Endosulfan sulfate	Endrine	Endrine aldehyde	Enoxacine	Enrofloxacine	Epichioronydrine	FPN	EPONICA INZOIS	Equilin	Erythromycine	Esfenvalèrate	Estradiol	Estriol	Estrone	Chantetsuluion-metriyi	Ethidimuran	Ethiofencarbe sulfone	Ethiofencarbe sulfoxyde	Ethion	Ethiophencarbe	Ethofumesate	Ethoprophos	Ethoxysulfuron	Ethyl tert-butyl ether	Ethylbenzène	EthyleneThioUree	EthyleneUree	Ethylparaben	Ethynyl estradio	Eamovedone	railovadore	
SANDRE	1176	7494	5743	2540	7495	2541	1699	1492	5745	1966	1177	1490	8297	2933	6969	6791	7515	6714	5751	1493	8102	1178	1179	1742	1181	2941	6768	6784	464	18/3	1182	7504	6522	1809	5397	6446	5396	5000	1763	5528	6534	1183	1874	1184	1495	5527	2673	1497	5648	6601	6644	2629	2020	2020	1000

Type	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	resticions	Pesticides	Micropoliuants organiques	Pesticides	Posticidos	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques		Pesticides	Micropolluants organiques	Insecticides	Micropolluants organiques	Micropolluants organiques	Pesticides	HAP	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluarits organiques	Micropolluante Organiques	Posticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Fongicides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Blocides	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides
Unité	hg/L	µg/L	hg/L	hg/L	hg/L	pg/L	Hg/L	הפיו	Hg/L	µg∕L	µg/L	hg/L	hg√L	µg∕L	µg∕L	hg/L	hg/L	µg/L	µg/L	hg/L	µg/L	hg/L	hg/L	µg∕L	hg/L	hg∕L	hg/L	hg/L	µg/L	hg/L	µg/L	hg/L	pg/L	pg/L	Hg/L	101	no/L	ng/L	hg/L	µg/L	µg/L	µg/L	hg/L	µg∕L	µg/L	µg/L	µg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	no/L	hg/L
Paramètre	Mexacarbate	Miconazole	Midazolam	Milex	Month of details and the	Monoputyletain cation	Monoting Managing	Monocott detain cotion	Monockyletain callon	Monophenyletain cation	Monuron	Morphine	Morpholine	MTBE	Musc xylène	Myclobutanil	N-(2,6-dimethylphenyl)-N-(2-methoxyethyl	N.N-Diethyl-m-toluamide	N.N-Dimethylsulfamide	Nadolol	Naled	Naphtalène	Napropamide	Naproxene	Naptalame	n-Butyl Phtalate	N-Butylbenzenesulfonamide	Néburon	Nicosulfuron	Nicotine	Nitrobenzene	Nitrotene	Nitrophenol-2	Note in indicate	Northe	Northeaton	Norfurazon desméthyl	Nuarimol	Octylisothiazolinone	O-Demethyltramadol	Offoxacine	Ofurace	Ométhoate	Orthophénylphénol	Oryzalin	Oxadiargyi	Oxadiazon	Oxadixy	Oxamy	Oxasulfuron	Oxazepam	Oxyglozanide	Oxygodone Oxygenetor methyd	Oxydeneton metnyi Oxyduorfene	Oxytetracycline	Paclobutrazole
Code	7143	7130	7140	0000	1/0/	7507	1227	7406	7450	1887	1228	6671	7475	1512	6342	1881	6380	5797	6384	6443	1516	1517	1519	5351	1937	1462	5299	1520	1882	2657	2614	1229	1007	0400	6773	1669	2737	1883	8302	6767	6533	2027	1230	2781	1668	2068	1991	1666	1850	5510	53/5	1017	1234	1952	6532	2545
Type	1		ſ	:	Pesticides	Mississipple	Doctional Its organiques	Microsofficate organical	Micropolluarits organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides		Insecticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Mississipple	Micropolitains organiques	Descriptions	HAP	HAP	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides
Unité	hg/L	μg/L	hg/L	Hg/L	µg/L ∷≃/l	Hg/L	Hg/L	Hg/L	Hg/L	µg/L	hg/L	hg/L	μg/L	hg∕L	hg∕L	иg/L	иgЛ	иgЛ	µg∕L	µg/L	µg/L	hg/L	μg/L	hg∕L	μg/L	hg∕L	иg/L	hg∕L	иg/L	µg/L	hg/L	hg/L	hg/L	pg/L	Hg/L	107	ng/L	ng/L	µg/L	ng/L	µg/L	µgЛ	иgЛ	hg∕L	hg/L	µg/L	hg/L	μg/L	рgЛ	µg/L	µg/L	µg/L	hg/L	hg/L	ng/L	rg√. μg∕L
	Mecoprop-2-butoxyethyl ester	Mecoprop-2-ethylhexyl ester	Mecoprop-2-octyl ester	Mecoprop-metrryl ester	Wecoprop-P	Melenacet	Mederipyi diedilyi	Materialia	Meroniogin	Iviepanipyrim	Nan		Mépiquat chlorure	Mepivacaine	Mépronil	Meptyldinocap	Mercaptodiméthur	Mercaptodiméthur sulfoxyde	Mesosulfuron methyle	Mésotrione	zone	Métalaxyl	Métaldéhyde	Métamitrone	Metazachlor oxalic acid	sulfonic acid	40	•	Metformine	Methabenzthiazuron	Methacrifos	Methamidophos	Methidathion	Methorny	Methowork	Methoxyfenoside	Methyl-2-Fluoranthène	Methyl-2-Naphtalène	Méthylchloroisothiazolinone		Methylparaben	Metiram	_	Métofluthrine	Metolachlor ESA	Metolachlor OXA		ore NOA 413173		Metoprolol	Metosulame	Ivietoxuron	Metratenone	Metronidazole	Metsulfuron méthyl	
Code	2752	2753	2754	27.00	2084	1900	2569	2000	1067	5533	5791	1969	2089	6521	1878	1677	1510	1804	2578	2076	7747	1706	1796	1215	6894	6895	1670	1879	6755	1216	5792	16/1	121/	1210	1511	5511	1619	1618	8252	8253	6695	2067	1515	8311	6854	6853	1221	7729	5796	5362	1912	1222	1225	6731	1797	1226

	Pesticides	Micropolluants organiques	Micropolluants organiques Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides Micropolluants organiques
Unité	hg/L	hg/L	ng/L	rg/L	µg/L	rg/L	µg/L	ng/L	hg/L	hg/L	hg/L	Hg/L	µg/L	hg/L	µg/L	rg/L	иgЛ	pg/L	hg/L	rg/L	µg/L	hg/L	ng/L	hg/L	hg/L	ng/L	hgv	hg/L	ng/L	hg/L	µg∕L	hg/L	rg/L	µg/L	hg/L	µg/L	101	Lou Lou	ng/L	µg/L	µg/L	hg/L	µg∕L	hg/L	hg/L
Paramètre	Phoxime	Phtalate de diméthyle	Picolinafen	Picoxystrobine	Pinoxaden Dinoxadi Enterido	Piperophos	Pirimicarbe	Pinmicarbe Desmeinyl Pinimicarbe Formamido Desmethyl	Piroxicam	p-Nitrotoluene	Pravastatine Dradnisologe	Pretiachlore	Prilocaine	Primidone	Pristinamycine IIA	Procymidone	Profénofos	Progesterone	Prometance	Prometryne	Propachlor ethane sulfonic acid	Propachione	Propagocarb	Propanil	Propagnos Propagnizaços	Propargite	Propazine	Propazine 2-hydroxy	Properampnos	Propiconazole	Propoxur	Proposycarbazone-sodium Propranolol	Propylbenzene	Propylene thiouree	Propylparaben	Propyphenazone	Proquinazid	Prosufocarbe	Prosulfuron	Prothioconazole	Proximpham	Pymétrozine	Pyraclofos	Pyraciostropine Pyraflufen-ethyl	Pyrazophos Pyrazosulfuron-ethyl
Code	1665	1489	5665	2669	7057	5819	1528	5532	7668	5821	6771	1949	6531	7961	1253	1664	1889	5402	1710	1254	6887	1712	6398	1532	1972	1255	1256	5968	1534	1257	1535	5363	1837	6214	6693	5421	7422	1092	2534	5603	7442	5416	6611	5509	1258 6386
	Micropolluants organiques	Micropolluants organiques																										S		s	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques		Micropolliants organiques	200		Micropolluants organiques		Micropolluants organiques	Micropolluants organiques	es	des des
Z	Microp	Micropolluar	Pesticides	Fongicides	2 2	2 2	S S	2 2	88	PCB	8 8	2 2	PCB	PCB	80 80	2 2	PCB	8 8	2 0	8 8	PCB	8 8	2 2	PCB	8 8	2 2	PCB	Pesticides	Pesticides	Pesticides	Micropoll	Micropolli	Micropollu	Micropollu	Micropollu	Pesticides	Micropolluar	Pesticides	HAP	Micropolluant	Pesticides	Micropollu	Micropoll	Pesticides	Pesticides Pesticides
Unité	Ī		ug/L Pesticides		hg/L FCB			Hg/L Hg/L			hg/L PCB				hg/L PCB				hg/L				ua/L PCB		hg/L PCB				lug/L Pesticides			hg/L Micropolit				hg/L Pesticides								hg/L Pesticid	
	Paracetamol µg/L	LIGAL.		zole µg/L		rg/L	Hg/L		126 µg/L) hg/L		153 µg/L	156 µg/L	hg/L		170 µg/L	180 µg/L	Hg/L		rg/L	√gH		5/ 19/L 19/L	Ngr		עמיר ו	μgΛ	Light.		hgv	hg/L		19√L	μg/L	anesulfonamide (PFOSA) µg/L		ESA LIGA	Land.	J.pd.	hg/L	name µg/L	e hg/L	in µg/L		hg/L hg/L

Code			_	Code			
SANDRE	$\overline{}$	Unité	Type	SANDRE		Unité	Type
6530	Pyrazoxyfen	hg/L	Pesticides	1193	ilinate	µg/L	Pesticides
1537	Pyrene	hg/L	НАР	5834		µg/L	Micropolluants organiques
1890	Pyridahène	Hg/L	Micropolluants organiques Pesticides	1895	Tebuconazore Tebufénozide	10/L	Pesticides
5606	Pyridaphenthion	Hg/L	Micropolluants organiques	1896		ug/L	Pesticides
1259	Pyridate	µg/L	Pesticides	7511		µg/L	Micropolluants organiques
1663	Pyrifenox	hg/L	Pesticides	1661		µ9/L	Pesticides
1432	Pyrimethanil	hg/L	Pesticides	1542	_	µg/L	Micropolluants organiques
1260	Pyrimiphos ethyl	µg/L	Pesticides	5413		µg/L	Micropolluants organiques
1.971	Pyrimipnos metnyi	hg/L	Pesticides	1097		pg/L	resticiones
2240	Pyriproxyrene	hg/L	Miscopoliuants organiques	1905	Temporaries	pg/L	Micropolluants organiques
1891	Oninglohos	Hg/L	Pesticides	1898		701	Pesticides
2087	Olipmerac	1/01	Pesticides	1659		1/01	Desticides
2028	Ouinoxyfen	1/01	Pesticides	1266	5		Pesticides
1538	Ouintozene	la/l	Pesticides	1267		nov!	Pesticides
2069	Quizalofop	ua/L	Pesticides	6963		navL	Micropolluants organiques
2070	Quizalofop éthyl	hg/L	Pesticides	1268	Terbuthylazine	µg/L	Pesticides
6259	Ranitidine	hg/L	Micropolluants organiques	2045		µ9/L	Pesticides
1892	Rimsulfuron	hg/L	Pesticides	7150	Terbuthylazine desethyl-2-hydroxy	µg/L	Micropolluants organiques
2029	Roténone	hg/L	Pesticides	1954	zine hydroxy	µ9/L	Pesticides
5423	Roxythromycine	hg/L	Micropolluants organiques	1269		µg/L	Pesticides
7049	RS-lopamidol	hg/L	Micropolluants organiques	5384		µg/L	Micropolluants organiques
2974	S Metolachlore	hg/L	Pesticides	1936		µg/L	Micropolluants organiques
6527	Salbutamol	hg/L	Micropolluants organiques	1270	Tetrachlorethane-1,1,1,2	µg/L	Micropolluants organiques
1923	Sebuthylazine	hg/L	Pesticides	1277		µg/L	Micropoliuants organiques
5003	Sebutnylazine z-nydroxy	Hg/L	Micropoliuants organiques	7775		pg/L	Micropoliuants organiques
1361	Seburylazine desernyi	hg/L	Micropoliuants organiques	2010	Tetrachlorobenzene	pg/L	Microsoft contraction
7724	Sedaxape	1/01	Fondicides	2536			Micropolluants organiques
6769	Settaline	וומ/ו	Micropolluants organiques	1631	Tétrachlorohenzène-1.2.5.5	10/L	Micropolluants organiques
1808	Sethoxydime	na/l	Micropolluants organiques	1276		nov!	Micropolluants organiques
1893	Siduron	Hg/L	Pesticides	1277		rg/L	Pesticides
5609	Silthiopham	hg/L	Micropolluants organiques	1660	Tétraconazole	µg/L	Pesticides
1539	Silvex	Hg/L	Micropolluants organiques	6750		µg/L	Micropolluants organiques
1263	Simazine	hg/L	Pesticides	8298	diméthyl benzyl ammonium	µ9/L	Micropolluants organiques
1831	Simazine hydroxy	hg/L	Pesticides	1900		µg/L	Pesticides
24//	Somme de Méthychénal 3 et de Méthychén	Hg/L	Missonall parts organization	2549	l etraphenyletain	pg/L	Merce all parts organizates
5424	Sofalol	197	Micropolluants organiques	1713	4 CV CV		Pesticides
5610	Spinosad	ng/L	Micropolluants organiques	5671		no/L	Micropolluants organiques
7438	Spinosyne A	hg/L	Micropolluants organiques	1940	9	ng/L	Micropolluants organiques
7439	Spinosyne D	µg/L	Micropolluants organiques	6390	Thiamethoxam	µ9/L	Pesticides
7506	Spirotetramat	hg/L	Micropolluants organiques	1714	Б	µg/L	Pesticides
2664	Spiroxamine	hg/L		5934		µg/L	Micropolluants organiques
1541	Styrene	hg/L	Micropolluants organiques	7517	Į,	µg/L	Pesticides
1662	Sulcotrione	Hg/L	Micronolli ante organizare	7512	Intrensulturon methyl Thiogyclam hydronen ovalate	hg/L	Micropollipate proprietos
6525	Sulfamethazine	Hg/L	Riccides	1093		ויסין	Micropolidants organiques Pesticides
6795	Sulfamethizole	Hg/L	Micropolluants organiques	1715		ng/L	Pesticides
5356	Sulfamethoxazole	Hg/L	Micropolluants organiques	5476	sulfone	ng/L	Pesticides
6575	Sulfaquinoxaline	hg/L	Micropolluants organiques	5475	de	µg/L	
6572	Sulfathiazole	hg/L	Micropolluants organiques	2071	_	µg/L	Pesticides
5507	Sulfomethuron-methyl	hg/L	Micropolluants organiques	5838		hg/L	Micropolluants organiques
2085	Sulfosufuron	hg/L ug/L	Micropoliuants organiques Pesticides	1717	Iniopnanate-etnyl Thiophanate-methyl	no/L	Micropolluants organiques Micropolluants organiques
1894	Sulfotep	Hg/L	Pesticides	1718		rg/L	Pesticides
5831	Sulprofos	hg/L	Micropolluants organiques	6524	Ticlopidine	hg/L	Micropolluants organiques

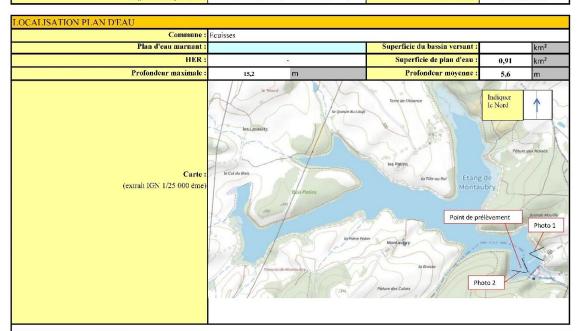
Туре	Pesticides																																																						
Unité	hg/L																																																				_	_	_
Paramètre	Zoxamide																																																						
Code	2858																																																						
Туре	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	BTEX	Pesticides	Micropolluants organiques	Micropoliuants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Leslicions	Missionallinests organization	Micropolium o galliques	Micropollusate organiques	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Biocides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	0000000	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides		Micropolluants organiques		Micropolluants organiques	רפאוכותפא	BTEX	втех	Mission allerente average de la constante de l												
Unité	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	ng/L	hg/L	J/Gr	hg/L	hg/L	hg/L	pg/L	Hg/L	pg/L	761	1/01	l/or	na/L	na/L	ng/L	Hg/L	Hg/L	hg/L	hg/L	иg/L	hg/L	Jø/L	hg/L	hg/L	hg/L	hg/L	Hg/L	Hg/L	10/1	10/1	ng/L	ng/L	Hg/L	hg/L	hg/L	иg/L	J/Gr	hg/L	J/Gr	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	Hg/L	rg/L	hg/L	
Paramètre		Tiocarbazil	s-methyl			ole .			lous						Tributy prosping continues			nane-111			e-1,2,3		Trichlorobenzène-1,3,5	Trichlorofluorométhane				loroéthane-1,1,2	ian			xyletain cation	Triotogine 2 hydrony					Triflusulfuron-methyl						e-1,3,5			n cation					XVIène-meta		ıra	
Code		5922	5675	1278	1719	0999	6720	1044	1280	1281	1914	1901	/001	2064	2040	1847	1288	1284	1285	1286	1630	1283	1629	1195	1548	1549	1854	1196	6889	5430	2898	2885	2842	5074	2678	1902	1289	2991	1802	6732	5357	1857	1609	1509	2096	2886	6372	2992	7482	1290	1201	1293	1292		

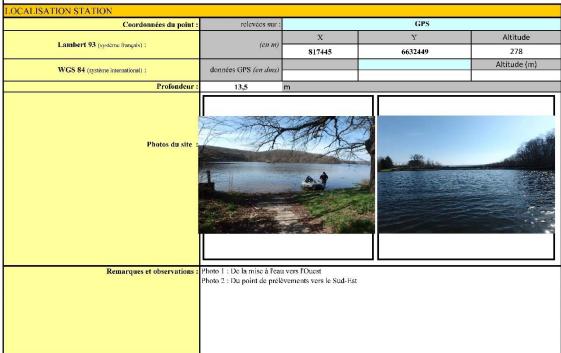
<u>Annexe 2</u>: Liste des micropolluants analysés sur sédiments

Type	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	HAP	НАР	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Micropollusate organiques	Micropolitains organiques Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	HAP	HAP	HAP	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides														
Unité			MG/(kg MS)						_			_		_							DOWN MON					_			_	_			ug/(kg MS) P						hg/(kg MS)	hg/(kg MS)	hg/(kg MS)	ng//kg Mc)	LIG/(kg MS)	- (SM GA)/bri	ug/(kg MS)	ua/(ka MS)	ua/(kg MS)	ug/(kg MS) -	ng/(kg MS)	hg/(kg MS) -	hg/(kg MS) -	- (SW pa//pi
Paramètre	4-tert-butylphénol	4-tert-octylphénol	5-Meurylemyserie 5-Nonanone	Acénaphtène	Acénaphtylène	Acetate de butyle	Acetate de vinyle	Acétate d'éthyl	Acétate d'Isopropyl	Acétochlore	Acétone	Acetonitrile	Acibenzolar-S-Methyl	Acide perfluoro-decanoïque (PFDA)	Acide perfluorohexanesulfonique (PFHxS)	Acide perfluoro-n-hexanoïque (PFHxA)	Acide perfluorooctanesulfonique (PFOS)	Acide perfluoro-octanoïque (PFOA)	Aclonifen	Acrinathrine	Acrylate de memye	Alachlore	Aldrine	alpha-Hexabromocyclododecane	Alphamethrine	Amétryne	Amitraze	Amylene hydrate	Anthanthrene	Anthracene	Anthraquinone	Atrazine	Atrazine delsopropyi	Azaconazole	Azaméthiphos	Azinphos éthyl	Azinphos méthyl	Azoxystrobine	BDE 196	BDE 197	BDE 198	BDE 203	BDE 204	BDE 203	BDE138	BDE153	BDE154	BDE183	BDE209	BDE28	BDE47	DDC27
Code		1959			1622	2711	6241	1496	2710	1903	1455	5316	5581	6099	6830	2978	6560	5347	1688	1310	2708	1101	1103		107.500	1104	1308	2582	7102	1458	2013	110/	1108	2014	2015	1110	1111				2991							53.9	1815			7427
Туре	polluants		Micropolitants metalliques			Micropolluants métalliques	Micropolluants métalliques	Micropolluants métalliques		Micropolluants métalliques	Micropolluants métalliques	Micropolluants métalliques	Micropolluants métalliques								Micropolitants metalliques					HAP	Micropolluants organiques			Pesticides	PCB	Micropolluants organiques	Micropolitants organiques	Micropolluants organiques	Micropollusate organiques	Micropoliuants organiques	Micropolitants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Microsoft conference											
Unité	mg/(kg MS)	mg/(kg MS)	mg/(kg MS)	mg/(kg MS)	mg/(kg MS)	mg/(kg MS)	mg/(kg MS)	mg/(kg MS)	mg/(kg MS)	mg/(kg MS)	mg/(kg MS)	mg/(kg MS)	mg/(kg MS)	mg/(kg MS)	mg/(kg MS)	mg/(kg MS)	mg/(kg MS)	mg/(kg MS)	mg/(kg MS)	mg/(kg MS)	mg/(kg MS)	mg/(kg MS)	ma/(kg MS)	ma/(kg MS)	ug/(kg MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	pg/(kg MS)	pg/(kg MS)	ug/(kg MS)	ua/(ka MS)	ug/(kg MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	pg/(kg MS)	pg/(kg MS)	hg/(kg MS)	pg/(kg MS)	hg/(kg MS)	HOW (NO MC)	ug/(kg MS)	ua/(ka MS)	ua/(ka MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	(OF # 27// 201
Paramètre	Aluminium	Antimoine	Arsenic	Baryum	Beryllium	Bore	Cadmium	Chrome	Cobalt	Cuivre	Etain	Fer	Lithium	Manganèse	Mercure	Molybdene	Nickel	Plomb	Selenium	TE III III	Those	Uraniim	Vanadium	Zinc	1-Butanol	1-Methylnaphthalene	1-Propanol	2 4 D isopropyl ester	2 4 D methyl ester	2 6 Dichlorobenzamide	2.2.5-Trichlorobiphenyl	2.2-Umetnylputane	2.3.4 Inclinional isole	2.3-Dimethylpentane	2-Butanol	2-Ethylhexanol	2-Heptanone	2-Hexanone	2-Methyl-1-Butanol	2-Methylcyclohexanone	2-Methylpentane	2-Nortandre	2-Pentanone	2 Chloro 4 méthydanijna	3-methyl-cyclohexanone	3-Octanone	3-Pentanol	4-Heptanone	4-Methylbenzylidene camphor	4-n-nonylphénol	4-nonylphenol diethoxylate (mělange d'is	A mondah on ole remittoe
Code	1370	1376	1369	1396	1377	1362	1388	1389	1379	1392	1380	1393	1364	1394	1387	1395	1386	1382	1385	5228	1272	1361	1384	1383	2595	2725	2617	2872	2873	2011	3164	2564	2667	2668	2570	5263	2619	2627	2577	2630	2683	2504	2633	2820	2620	2634	2587	2638	6536	5474	6369	1058

Type		Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	BTEX	втех	втех	Pesticides	Pesticides	Pesticides	Posticidos	Pesticides	Micropolluants organiques		HAP	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Fongicides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides
Unité	µg/(kg MS)	pg/(kg MS)	ua/(ka MS)	pg/(kg MS)	hg/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	hg/(kg MS)	µg/(kg MS)	Lig/(kg MS)	uo/(kg MS)	ug/(kg MS)	ug/(kg MS)	pg/(kg MS)	µg/(kg MS)	ug/(kg MS)	Lig/(kg MS)	LIG/(Kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	hg/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	hg/(kg MS)	ug/(kg MS)	ua/(ka MS)	ug/(kg MS)	µg/(kg MS)	µg/(kg MS)	Lig/(kg MS)	ua/(ka MS)	ug/(kg MS)	µg/(kg MS)	pg/(kg MS)	hg/(kg MS)	ug/(kg MS)	hg/(kg MS)	ug/(kg MS)	LIG/(KG MS)	Ind/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	µg/(kg MS)	ua/(kg MS)
Paramètre	Chloroalcanes C10-C13	Chloroaniline-2	Chloroaniine-4	Chlorobenzène	Chlorobromuron	Chloroforme (Trichlorométhane)	Chloronitroaniline-4.2	Chloronitrobenzène-1,2	Chloronitrobenzène-1,3	Chloronitrobenzene-1.4	Chloropron and 2	Chloropropies-3	Chlorotoluène-2	Chlorotoluène-3	Chlorotoluene-4	Chloroxuron	Chlorprophame	Chlorographos ethyl	Chlorbal dimethyl	Chlortoluron	Chlorure de Benzyle	Chlorure de vinyle	Chrysene	cinidon-éthyl	Clodinalop-propargyi	Clomazone	Clotrimazole	Coumaphos Crésol-méta	Crésol-ortho	Crésol-para	Cyanazine	Cyazofamid	Cyclonexane	Cyfluthrine	Cyperméthrine	Cyproconazole	Cyprodinil	DCPMU (métabolite du Diuron)	DCPU (métabolite Diuron)	DUD-6.p.	DDD-p.p.	005-0,5	7.7.7.0 7.0.7.0.0.	'q TOO	Décane (C10)	DEHP	Deltamethrine	Déméton S méthyl
Code	1955	1593	1591	1467	2016	1135	1594	1469	1468	1470	2611	2065	1602	1601	1600	1683	1474	1540	2966	1136	1579	1753	1476	2938	1868	2017	5360	1639	1640	1638	1137	5567	1505	1681	1140	1680	1359	1929	1930	1143	1144	1146	1147	1148	2665	6616	1149	1153
Туре	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	HAP	HAP	HAP	НАР	HAP	HAP	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Misropollipate organization	Micropolitains organiques Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Desticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Micropollisate organiques	Pesticides	Insecticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides
Unité	µg/(kg MS)	µg/(kg MS)	ua/(ka MS)	µg/(kg MS)	µg/(kg MS)	ug/(kg MS)	ua/(ka MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	uo/(ka MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	pg/(kg MS)	pg/(kg MS)	Hg/(kg MS)	ug/(kg MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	ug/(kg MS)	pg/(kg MS)	µg/(kg MS)	pg/(kg MS)	ua/(ka MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	pg/(kg MS)	ua/(ka MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	pg/(kg MS)	µg/(kg MS)	Hg/(kg MS)	Ind/(kg MS)	ug/(kg MS)	ug/(kg MS)	µg/(kg MS)	µg/(kg MS)	ua/(kg MS)
					Benthiavalicarbe-isopropyl	Ф	Benzene, 1-ethyl-2-methyl	nthracène	rène	noranthène	Perylene	rene	ène	phtalate	beta-Hexabromocyclododecane			illie				zène	Bromochlorométhane	ne 6 64hul	s ettiyi s méthyi	ylate	e méthyle		L e C	ne sec	ne tert		4	,	nothion	-		one-ethyl	ionate	9	alpha	ספום	a	e-5b-hydro	LO LO	phos	ron	e
Code SANDRE Paramètre	Beflubutamide	Bénalaxyl	Benfluraline	Benoxacor	Benthiavalic	Benzane	Benzene, 1-	Benzo (a) Anthracène	Benzo (a) Pyrène	Benzo (b) Fluoranthène	Benzo (ghi) Perylene Benzo (k) Elijoranthène	Benzo/cyfluorène	Benzo(e)pyrène	Benzyl butyl phtalate	beta-Hexab	Bifénox	Bifenthrine	Bioresmetnine Diphénde	Bitertanol	Boscalid	Bromacil	Bromobenzène	Bromochic	Bromoforme	Bromonhos méthyl	Bromopropylate	Bromure de methyle	Bupirimate	Butylbenzène n	Butylbenzène sec	Butylbenzène tert	Cadusafos	Carbaryl	Carbofuran	Carbophénothion	Carbosulfan	Carboxine	Carfentrazone-ethyl	Chinométhionate	Chlorbutame	Chlordane alpha	Chlordéro	Chlordécone	Chlordecone-5b-hydro	Chlorefenizon	Chlorfenvinphos	Chlorfluazuron	Chloridazone

Type	_	0220) Pesticides	01 320	02	S) Pesticides Micropolluants organizates	1000) BTEX		70.0			Pesticides	-	1 220	000	S) Pesticides	2 100			100 1	Micropoliuants organiques Desticides			000	Micropoliuants organiques	. 1020		S) Pesticides		_	(Fa21) (F	Footicides		-	220 1) Pesticides		li Carr	100		S) Pesticides			
	ng/(kg MS)	µg/(kg MS)	Jug/(kg MS)	ng/(kg MS)		ug(kg MS)	ng/(kg MS)				ug/(kg MS)		Light May May Light May (Ka MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)		ug/(kg MS)	ug/(kg MS)	ng/(kg MS)	Jay(kg MS)	ug/(kg MS)	ug/(kg MS)		Jay(kg Ms)		ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	JOY (KID IMIS)	ug/(kg MS)	hg/(kg MS)	ug/(kg MS)	Ugy(kg MS)	(SW BA)/pri	ug/(kg MS)	ng/(kg MS)		ug/(kg MS)	na/(ka MS)	ug/(kg MS)	OW pallon
Code SANDRE Paramètre	_		1678 Dimethenamide			1698 Dimetilan 5748 dimexystrobine						2476 Diphenylamine 7405 Diphenylatoin cetiv	495 Diprengretain caucin				1179 Endosulfan beta					1763 Ethidimuron				2673 Ethyl terr-butyl ether 1497 Ethylbenzène			2020 Famoxadone				100 Fencinorphos				1967 Fenoxycarbe					1840 Flamprop-Isopropyl			G76 Chiffshownron
Type	cides	-	Micropolluants organiques	Pesticides	Pesticides	Pesticides HAP		Micropolluants organiques	ants organiques		ants organiques	Pesticides		ants organiques	2.5			Pesticides	ants organiques			Pesticides	ants organiques			Micropolluants organiques	2.5		Micropolluants organiques	_	.,,		Micropolluants organiques	-			Micropolluants organiques	4,				Micropolluants organiques			Missonalinosto organización
Unité	µg/(kg MS)	µg/(kg MS)	LIG/(KG MS)	µg/(kg MS)	hg/(kg MS)	µg/(kg MS)			hg/(kg MS)	hg/(kg MS)	µg/(kg MS)	LIGA(RG IMS)	pg/(kg MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)		µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	LIG/(KG MS)	LG/(Kg MS)	µg/(kg MS)	µg/(kg MS)	LIGA(KG MS)			hg/(kg MS)		µg/(kg MS)	µg/(kg MS)	pg/(kg MS)	Lg/(kg MS)			pg/(kg MS)	Lay(ka MS)	hg/(kg MS)	µg/(kg MS)	hg/(kg MS)	µg/(kg MS)	La/ka MS)	µg/(kg MS)	ON SWEET
Code SANDRE Paramètre	_	Déméton-S	Desméthylisoprofuron	Desmétryne	Diallate	Diazinon Dibenzo (ah) Anthracène	Dibenzo(a,c)anthracene	Dibenzofuran	Dibromochloromethane	Dibromoéthane-1,2	Dibromomethane	Dichlobánil	Dichlofenthion	Dichloréthane-1,1	Dichloréthane-1,2	Dichloréthylène-1,1	Dichloréthylène-1,2 cis	Dichloroaniline-23	589 Dichloroaniline-2,4	Dichloroaniline-2,5		Dichloroaniline-3,4	1165 Dichlorobenzène-1,2	Dichlorobenzène-1,3	Dichlorobenzene-1,4	Dichlorométhane	Dichloronitrobenzène-2,3	Dichloronitrobenzène-2,4	Dichloronitrobenzene-2,5	Dichloronitrobenzene-3.	Dichlorophénol-2,4	Dichloropropane-1,2	Dichloropropane-7.2	Dichloropropene-1,1	Dichloropropylène-1,3 Cis	Dichloropropylene-1,3 Trans	Dichorpropylene-2,3	Dicofol	Dieldrine	Diéthofencarbe	Diéthyl phtalate	Diffencemazole	Diflubenzuron	Diflufénicanil	Disabirt dahthalata


Type	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Biocides	HAP	Micropoliticate proprieto	Desticides	Desticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropoliuants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Micropoliuants organiques	, 1	Pesticides	HAP	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Micronolluants organiques
Unité	ug/(kg MS)	ug/(kg MS)	DG/(Kg MS)	ua/(ka MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	Lig/(kg MS)	(kg MS)	of (kg MS)	ua/(ka MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ugy(kg Mis)	Jg/(kg MS)	Jg/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ng/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	Id//kg MS)
Paramètre	Isoxadifen-éthyle	Isoxaflutol	Kresoxim metnyi	Lénacie	Linuron	Lufénuron	Malathion	Mecarbam	Méfenacet	Méfenpyr diethyl	Mepanipyrim	Mépronil	Mercaptodiméthur	Métalaxyl	Métamitrone	Métazachlore	Metconazole	Méthabenzthiazuron	Methacrifos	Methacrylate de methyle	Méthanol	Méthidathion	Méthoxychlore	Méthyl cyclohexane	Methyl ethyl cetone	Methyl isobutyl cetone	Methyl triclosan	Methyl-2-Fluoranthene	Methyl 4 molobosopos 4	Métobromiron	Métolachlore	Métoxuron	Metrafenone	Métribuzine	Mévinphos	Mirex	Molinate	Monobutyletain cation	Monolinuron	Monooctyletain cation	Monophenyletain cation	Monuron	MIBE	Musc xylene	Myclobutanil	Naphtalene	Napropamide	n-Butyl acrylate	n-Butyl Phtalate	Néburon	n-Hexane	Nitrile acrylique	Nitrofène	Nonane (C9)
Code	2807	1945	1920	1406	1209	2026	1210	5789	1968	2930	5533	1878	1510	1706	1215	1670	1879	1216	5792	2723	2052	1217	1511	9299	1514	1508	6664	1619	2630	1515	1221	1222	5654	1225	1226	5438	1707	2542	7770	1490	1497	1228	1512	6342	1881	1517	1519	2712	1462	1520	2675	2709	1229	7684
Type	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Destirides	Micropolluants organiones	Micropolluants organiques	HAP	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropoliuants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropoliuants organiques	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	BTEX	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Destinides
Unité	hg/(kg MS)	µg/(kg MS)	hg/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	pg/(kg MS)	µg/(kg MS)	µg/(kg MS)	pg/(kg MS)	µg/(kg MS)	hg/(kg MS)	hg/(kg MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	pg/(kg MS)	hg/(kg MS)	hg/(kg MS)	hg/(kg MS)	LIG/(Kg MS)	ua/(ka MS)	µg/(kg MS)	µg/(kg MS)	pg/(kg MS)	pg/(kg MS)	µg/(kg MS)	hg/(kg MS)	hg/(kg MS)	hg/(kg MS)	hg/(kg MS)	hg/(kg MS)	hg/(kg MS)	hg/(kg MS)	hg/(kg MS)	hg/(kg MS)	µg/(kg MS)	hg/(kg MS)	pg/(kg MS)	ng/(kg MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS)	
		oridone	Fluroxypyr-meptyl	5 4	ole .	-		ate	_	carbe	de	gamma-Hexabromocyclododecane	ha	EZ	Ita	silon	mma	nlore	Heptachlore époxyde cis	Heptachlore époxyde trans	e (C7)	obhos	Hexachlorobenzène	Hexachlorobutadiène	Hexachloroethane	Hexachloropentadiene	Hexaconazole	muron	lone	nexymazox mazamáthahenz máthví	leulabeliz illeulyi		Indéno(1,2,3-cd)pyrène	carbe	phos	16	carbe	10/6	rgarol (Cybutryne)		sobutyl alcool	sobutylbenzene		e.	SOL	ē	ine	1 alcool	sopropyl alcool [USAN]	sopropylbenzène	sopropyltoluène m	sopropyltoluène o	sopropyltoluène p	a contraction
Paramètre	Fluridone	Flurochloridone	Fluroxypyr-	Flurtamone	Flusilazole	Flutriafol	Fonofos	Fosthiazate	Furalaxyl	Furathiocarbe	Galaxolide	gamma-	HCH alpha	HCH beta	HCH delta	HCH epsilon	HCH gamma	Heptachlore	Heptac	Heptac	Heptane (C7)	Heptenophos	Hexact	Hexact	Hexach	Hexach	Нехасс	Hexaflumuron	Hexazinone Hexathiazox	Imazan	Indane	Indène	Indéno	Indoxacarbe	Iodofenphos	Iprodione	Iprovalicarbe	Irganox 1076	Irgarol	ISazoros	Isopury	Sopury	Isodrine	Isodurene	Isotenphos	Isooctane	Isopentane	Isopentyl alcool	Isopropy	Isopropy	Isopropy	Isopropy	Isoprop	


Type	Pesticides	НАР	Pesticides	Micropolluants organiques Pesticides	Insecticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	HAP	Pesticides	Pesticides	Pesticides	Pesticides	Misropollusate organizates	micropoliuants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques
Unité	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ua/(ka MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	DOV(Kg MS)	ua/(ka MS)	ua/(ka MS)	ua/(kg MS)	ua/(ka MS)	ua/(ka MS)	ug/(kg MS)	ua/(ka MS)	ug/(kg MS)	ug/(kg MS)
Paramètre	Phénamiphos	Phénanthrène	Phenmediphame	Phenmoate	Phorate sulfone	Phosalone	Phoxime	Phtalate de diméthyle	Phtalimide	Picoxystrobine	Piperonii butoxide Pirimicarbe	Pretilachlore	Prochloraze	Procymidone	Promécarbe	Prométon	Prométryne	Propachlore	Propaguizafop	Propargite	Propazine	Prophame	Propiconazole	Propoxur	Proquinazid	Prosulfocarbe	Prothiofos	Pyraflufen-ethyl	Pyrazophos	Pyrène Pyridabène	Pyridate	Pyrifénox	Pyrimethanil	Pyrimiphos ethyl	Pyrimiphos methyl	Pyriproxyrene	Ouinoxyfen	Ouintozène	Quizalofop éthyl	Resmethrine	Roténone	Sébuthylazine	Secbumeton	Siduron	Silthiopham
Code SANDRE	1499	1524	1236	1525	7149	1237	1665	1489	7587	2669	1528	1949	1253	1664	1710	1711	1254	1712	1972	1255	1256	1534	1257	1535	7422	1092	5824	5509	1258	1537	1259	1663	1432	1260	1261	1804	2028	1538	2070	2859	2029	1923	1262	1893	5609
Туре	es		organiques		organiques	organiques						Micropolluants organiques																												organiques	organiques	sorganiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques
_ <u>_</u>	Pesticides	Pesticides	Micropolluants organiques	Pesticides -	Micropolluants organiques	Micropolluants organiques	Fongicides	Pesticides	Pesticides	Pesticides	Pesticides	Micropollus	Pesticides	Pesticides	Pesticides	PCB	PCB	BCB DCB	80 80	PCB	PCB	28 82	PCB	828	8 8	PCB	BCB BCB	88	PCB	B 28	P. 8	PCB	PCB	B 6	800		PCB BCB	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropollua	Micropoll	Micropoll
_	ug/(kg MS) Pesticid	_	_	pg/(kg MS) Pesticides	_	pg/(kg MS) Micropolluants		_	_		ug/(kg MS) Pesticides	_	_	hg/(kg MS) Pesticides		_	_	hg/(kg MS) PCB		_		ug/(kg MS) PCB	_	hg/(kg MS) PCB		_	hg/(kg MS) PCB		_	pg/(kg MS) PCB		_	_	_	pg/(kg MS) PCB						_	_	_	_	_
	<u> </u>	_	ol hg/(kg MS)		Lg/(kg MS)		énylphénol Lgy(kg MS)	µg/(kg MS)	no pg/(kg MS)	hg/(kg MS)		nenyle µg/(kg MS)	µg/(kg MS)		Lag(kg MS)	hg/(kg MS)	hg/(kg MS)		LIGI(KG MIS)	µg/(kg MS)	_	Laying MS)	µg/(kg MS)		Lay(ka MS)	µg/(kg MS)		LIGINION (NO MOS)	hg/(kg MS)		Lagrical magnitude magnitu	µg/(kg MS)	hg/(kg MS)	µg/(kg MS)		hg/kg Ms)	(SW BW)(FI	azole ua/ka MS)	ne na/kg MS)	nényl éther (congénère 119) na/(ka MS)	ua/(ka MS)	ne ng/(kg MS)	ua/(ka MS)	ng/(kg MS)	_

Type	Micropolluants organiques	Fongicides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	HAP	Pesticides	Micropolluants organiques	Pesticides		BTEX	BTEX		Pesticides																																																	
Unité	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ua/(ka MS)	(SW DAND)	(CIM BA)	DOV(Kg INIS)																																																	
Paramètre	ain cation	Trifumizole					1,3,5	ation		ation	Undecane (C11)	Vinclozoline	Xylène-meta			2	7 Coxamide																																																	_
Code	2885	5843	1902	1289	1857	1609	1509	2886	7124	6372	2690	1291	1293	1292	1294	1000	2630																																																	
o	_																			_																							_		_					_																
	Micropolluants organiques	Micropoliuants organiques Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Destinides	Contract of the second of the	Micropolinants organiques	Micropolluants organiques	Micropolluants organiques		Micropoliuants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropollipate organiae	Micropolinants organiques	Micropolluants organiques	Micropolluants organiques	Misson of configurations	micropolinants organiques	Pesticides	Pesticides	600000	Pesticides	Micropolluants organiques	Insecticides		Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	BTEX	Desticides		Micropoliuants organiques	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolliants organiques	Cophing of the little of the l	Micropolluants organiques	Micropoliuants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Destinides	Misropollipate organismos	Micropoliuants organiques	Biocides	Pesticides	
Type		ug/(kg MS) Micropoliuants organiques ug/(kg MS) Pesticides			_						ng/(kg MS) Pesticides						_	ug/(kg MS) Micropolluants organiques					ug/(kg MS) Micropolluants organiques				ng/(kg MS) Micropolluants organiques				ug/(kg MS) Pesticides			_	ua/(kg MS) Micropolluants organiques					_	ug/(kg MS) Pesticides	ua//ka MS) Pesticides		_		_				ug/(kg MS) Micropolluants organiques					_		_		µg/(kg MS) Micropolluants organiques				_			_
Type	hg/(kg MS)		linate µg/(kg MS)		hg/(kg MS)	rad µg/(kg MS)	hg/(kg MS)	hg/(kg MS)	ron µg/(kg MS)	s hg/(kg MS)				zine La/(ka MS)	(W CAMCI	(OM DY) COL	Lg/(kg MS)	_	ua//kg MS)	OW COM	(SM) pg/(kg MS)	hg/(kg MS)	_	ua//kg MS)	OW CAN CO	(CIMI BY)/BH	hg/(kg MS)	ua//kg MS)	(OM CANCE)	(SM BA)/Bri	_		(OM BN)/Bri	hg/(kg MS)		(SW payor)	(OM GW) GH	enyletain µg/(kg MS)	hg/(kg MS)	_			(SW pal/pil	drine (%)	(OE DE	(Kg MS)	efon pg/(kg MS)	hg/(kg MS)		_	Jua/(ka MS)	na/ka MS)	(SW DW)	(OM ON) ON	hg/(kg MS)	hg/(kg MS)	_		_	na/(ka MS)	(SW DW)	(OM 04//01	(SMS)/gd		(SW DW)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Annexe 3 : Comptes-rendus des campagnes de prélèvements physico-chimiques et phytoplanctoniques

Relevé phytoplanctonique en plan d'eau v.3.3.1 DONNEES GENERALES PLAN D'EAU - STATION Septembre 2009 Plan d'eau: MONTAUBRY Date: 21/03/2022 Nom station: Montaubry Code station: U3005023_C1 Organisme / opérateur: D. MARTIN (GREBE)/E. MICHAUT (GREBE) Réf. dossier: AERMC_PE

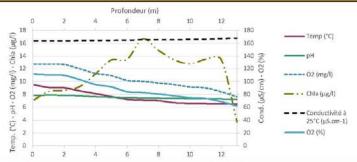
© Formulaire de saise - Irstea

Montaubry_C1.xlsx

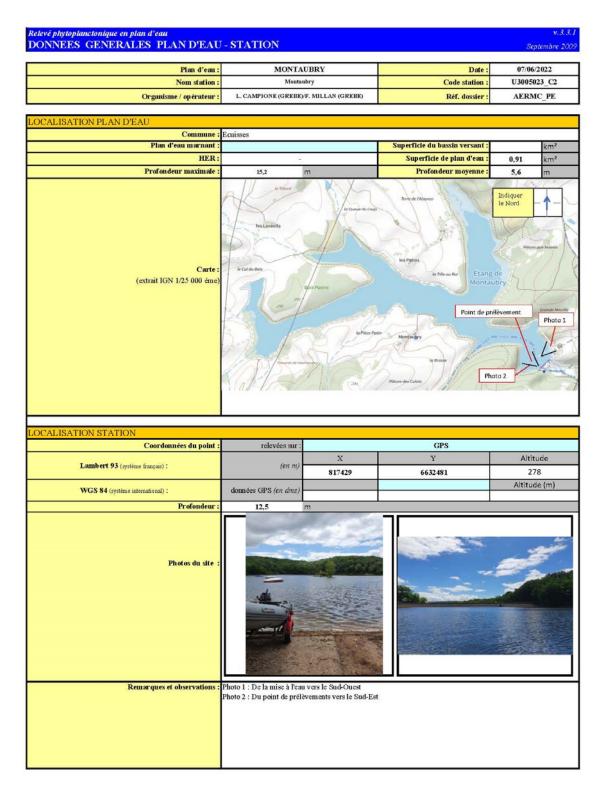
Relevé phytoplanctonique en pla	n d'eau		v.3.3.2
DONNEES GENERALI			juin 2012
Plan d'eau :	MONTAUBRY	Date:	21/03/2022
Station ou nº d'échantillon :	Montaubry	Code lac:	U3005023_C1
	n tringerican name a tracerium con name		

TION					
Coordonnées de la station	relevées sur :		GPS		
Lambert 93 (système français)	(en m)	X	Y	Altitude (m)	278
Danibei (93 (systeme trançais)	(en m)	817445	6632449		2/0
Wice of	1 / cma / 1 /	N		Altitude (m)	
WGS 84 (système international)	données GPS (en dms)	7			
Profondeur (m):			13,5		
	Instensité du vent :		2-Faible		
	météo :		1-temps sec ensoleillé		
Conditions d'observation :	Surface de l'eau :		2-Faiblement agitée		
	Hauteur des vagues:		0,05	m	
	Bloom algal :		Non		
			niveau des eaux par rapport à l	a	
Marnage :	Non		végétation de ceinture (pour le	s 0 m	
			plans d'eau marnant)		

PRELEVEMENTS			
Heure début de relevé :	11:00	Heure de fin de relevé :	13:15
	✓ phytoplancton chlorophylle ✓ eau	Matériel employé :	 ✓ bouteille Niskin téflonisée ✓ bouteille Kemmerer téflon ☐ Tuyau
Prélèvements réalisés :	sédiment macrophytes oligochètes	Volume filtré pour la chlorophylle (ml) :	0
	autres, préciser :	Volume de Lugol ajouté pour le phytoplancton (ml) :	1
Remarques, observations :	Dépôt des échantillons d'eau le 21/03/22 au TNT Besa Prélèvement de fond réalisé à 12,5m à la bouteille Nis Echantillon intégré pour phytoplancton, chlorophylle type Kemmerer (tous les 0,5m sur 3,5m soit 25,5L: 7: Température de l'air : 16°C Pression atmosphérique : 1030hPa Les données du profil de chlorophylle sont surprenan	kín téfionnée, 3 bouteilles soit 24L e et macropolluants, micropolluant x2 bouteilles pour les micropolluan	s réalisé à la bouteille téflonnée


© Formulaire de saisie - Irstea

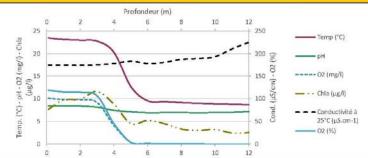
Montaubry_C1.xlsx


Plan d'eau :	MONTAUBRY	Date:	21/03/2022
Station ou no d'échantillon :	Montaubry	Code lac:	U3005023_C1
Organisme / opérateur :	D. MARTIN (GREBE)Æ. MICHAUT (GREBE)	Réf. dossier :	AERMC

TRANSPARENCE			
Secchi en m :	1,4	Zone euphotique (2,5 x Secchi) en m :	3,5
PROFIL VERTICAL			

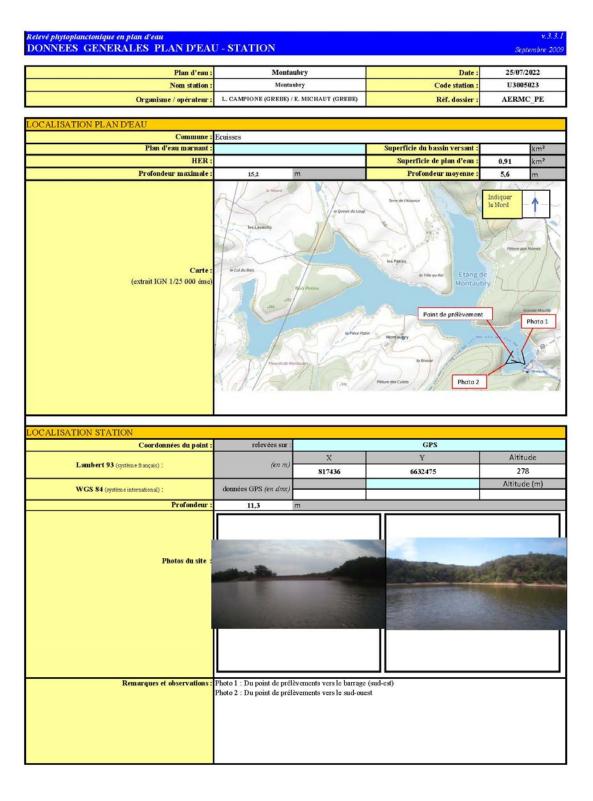
Moyen utilisé :				mesures in-situ à c	haque prof.			
Echantillon phytoplancton ?	Prof (m)	Temp (°C)	pН	Conductivité à 25°C (μS.cm ⁻¹)	O _{2 (%u)}	O _{2 (mg/l)}	MODF ppb ESQ	Chla (µg/l)
	Intégré de 0 à 3,5							
	0,1	9,5	7,8	164	111	12,7		7,1
, <u> </u>	1	9,1	7,9	164	110	12,7		8,4
	2	9,0	7,9	164	109	12,6		8,6
	3	8,5	7,8	164	103	12,0		9,2
	4	8,1	7,6	164	95	11,2		11,2
	5	7,7	7,6	164	92	10,9		13,4
	6	7,2	7,5	165	84	10,2		13,5
	7	7,1	7,4	165	83	10,0		16,7
	8	7,0	7,4	165	81	9,8		14,9
	9	6,7	7,4	165	78	9,5		13,4
	10	6,6	7,3	166	75	9,2		12,8
	11	6,6	7,3	166	73	9,0		13,5
	12	6,5	7,3	167	69	8,4		13,4
	13	6,5	7,2	168	62	7,6		3,7
	14							
	15							
	16							
	17							
	18							
	19							
	20							
	21							
	22							
	23							
	24							
	25							
	26							
	27							
	28							
	29							
	30							
	31							
	32							
	33							
	34							
	35							
	36							
	37							
	38							
	39							
	40							

Montaubry_C1.xlsx


Montaubry_C2.xlsx

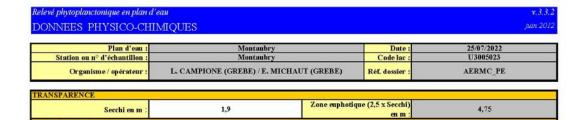
Relevé phytoplanctonique en plai DONNEES GENERALE					v.3.3.2 juin 2012
Plan d'eau : Station ou n° d'échantillon : Organisme / opérateur :	Mon	TAUBRY taubry EE/F. MILLAN (GREBE)	Date : Code Iac : Réf. dossier :	U3	7/06/2022 005023 C2 ERMC PE
STATION					
Coordonnées de la station	relevées sur :		GPS		
Lambert 93 (système français)	(en m)	X 817429	Y 6632481	Altitude (m):	278
WGS 84 (système international)	données GPS (en dms)	N		Altitude (m):	
Profondeur (m):			12,5		
	Instensité du vent :		2-Faible		
	météo :		1-temps sec ensoleillé		
Conditions d'observation :	Surface de l'eau :		2-Faiblement agitée		
	Hauteur des vagues:		0,1	I	n
	Bloom algal:		Non		
Marnage :		Oui	niveau des eaux par rapport à la végétation de ceinture (pour les plans d'eau marnant) :	1 r	n
Cote à l'échelle :		14,	42 m (Ech. Limni.)		

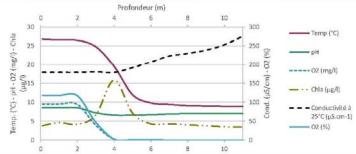
PRELEVEMENTS			
Heure début de relevé :	10:35	Heure de fin de relevé :	14:00
	✓ phytoplancton	Matériel employé :	☐ bouteille Niskin téflonisée ☑ bouteille Kemmerer téflon ☐ Tuyau
Prélèvements réalisés :	□ sédiment □ macrophytes □ oligochètes	Volume filtré pour la chlorophylle (ml) :	0
	autres, préciser :	Volume de Lugol ajouté pour le phytoplancton (ml) :	1
Remarques, observations :	Dépôt des échantillons le 07/06/22 à 17h au TNT Châ Echantillon intégré phytoplancton, macropolluants e téflonnée type Kemmerer, de 0 à 5m tous les 0,5m (16 Prélèvement de fond réalisé à 11m à la bouteille Nisk Température de l'air : 20°C Pression atmosphérique : 995hPa	t micropolluants et pour filtration) x 2 intégrés = 20 bouteilles, soit 2	24L).


Montaubry_C2.xlsx

Prof (m) Temp (°C) PH Conductivitée 25°C (µS,cm²) D ₂₀₀₀ D ₂₀₀₀₀ D ₂₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀	Moyen utilisé :		7 9		mesures in-situ à c	haquanraf			
	100000000000000000000000000000000000000		Temp (°C)	рН			Oranan	MODE	Chla (µg/l)
Integré de 0 à	Echantillon phytoplaneton?	()	- mp (0)	Kets.		-2(40)	~2 (mg/i)		
0,1 23,5 8,4 175 119 10,1 7,6 1 23,2 8,4 175 115 9,8 9,7 2 23,0 8,4 175 114 9,8 9,9 3 22,8 8,1 176 106 9,1 11,4 4 20,3 7,4 179 45 4,1 8,8 5 12,7 7,1 183 4 0,4 4,5 6 9,5 6,9 178 1 0,1 5,2 7 9,3 6,9 181 1 0,1 4,5 8 9,2 6,9 188 0 0,0 5,3 9 9,0 6,9 190 0 0,0 5,0 10 8,9 6,9 194 0 0,0 3,2 11 8,8 7,0 211 0 0,0 2,4 12 8,7 7,2 225 0 0,0 2,5 14 14 15 16 16 17 17 18 19 20 19 20 19 19 10 21 22 22 19 22 23 24 24 23 33 34 34 35 36 36 36 36 36 36 36 36 36	П								
□ 1 23.2 8.4 175 115 9.8 9.7 □ 3 22.8 8.1 176 106 9.1 114 □ 4 20.3 7.4 179 45 4.1 8.8 □ 5 12.7 7,1 183 4 0,4 4.5 □ 6 9.5 6.9 178 1 0.1 5.2 □ 7 9.3 6.9 181 1 0,1 4.5 □ 8 9.2 6.9 188 0 0,0 3.3 □ 9 9.0 6.9 190 0 0.0 3.0 □ 10 8.9 6.9 194 0 0.0 3.2 □ 11 8.7 7.2 225 0 0.0 2.5 □ 13 1 1 1 1 1 1 1 1 1									
□ 2 23.0 8.4 175 114 9.8 9.9 □ 3 22.8 8,1 176 106 9.1 114 □ 4 20,3 7,4 179 45 4.1 8,8 □ 5 12,7 7,1 183 4 0.4 4.5 □ 6 9.5 6.9 178 1 0.1 5.2 □ 7 9,3 6.9 181 1 0.1 4.5 □ 8 9.2 6.9 188 0 0.0 3.3 □ 9 9.0 6.9 190 0 0.0 3.3 □ 10 8.9 6.9 194 0 0.0 3.2 □ 11 8.8 7.0 221 0 0.0 2.4 □ 13 0 0 0 0 0 0 0 2.5 □ 16 0 0 0 0 0 0 0 2.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
□ 3 22.8 8.1 176 106 9.1 11.6 □ 4 20.3 7.4 179 45 4.1 5.8 □ 5 12.7 7.1 183 4 0.4 4.5 □ 6 9.5 6.9 178 1 0.1 5.2 □ 7 9.3 6.9 181 1 0.1 4.5 □ 8 9.2 6.9 188 0 0.0 5.3 □ 9 9.0 6.9 190 0 0.0 5.2 □ 10 8.9 6.9 194 0 0.0 5.2 □ 11 8.8 7.0 211 0 0.0 2.4 □ 12 8.7 7.2 225 0 0.0 2.5 □ 13 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7									
□ 4 20,3 7,4 179 45 4,1 8,8 □ 5 12,7 7,1 183 4 0,4 4,5 □ 6 9,5 6,9 178 1 0,1 5,2 □ 7 9,3 6,9 181 1 0,1 4,5 □ 8 9,2 6,9 188 0 0,0 3,3 □ 9 9,0 6,9 190 0 0,0 3,3 □ 10 8,9 6,9 194 0 0,0 3,2 □ 11 8,8 7,0 211 0 0,0 2,4 □ 13 1 1 0 0,0 2,5 □ 14 1 1 0 0,0 2,5 □ 16 1									
□ 5 12,7 7.1 183 4 0,4 4.5 □ 6 9.5 6.9 178 1 0.1 5.2 □ 7 9.3 6.9 188 0 0,0 3.3 □ 8 9,2 6.9 188 0 0,0 3.3 □ 9 9,0 6.9 190 0 0,0 3.0 □ 10 8,9 6.9 194 0 0,0 3.2 □ 11 8,8 7,0 211 0 0,0 2,4 □ 12 8,7 7,2 225 0 0,0 0,0 2,5 □ 13 □ 14 □ 15 □ 16 □ 17 □ 188 □ 19 □ 20 □ 21 □ 22 □ 22 □ 23 □ 24 □ 25 □ 27 □ 28 □ 29 □ 30 □ 31 □ 32 □ 33 □ 34 □ 34 □ 34 □ 34 □ 34 □ 35 □ 36 □ 35 □ 36 □ 36 □ 36 □ 36 □ 36									
□ 6 9.5 6.9 178 1 0.1 5.2 □ 7 9.3 6.9 188 0 0.0 3.3 □ 8 9.2 6.9 188 0 0.0 3.3 □ 9 9.0 6.9 190 0 0.0 3.0 □ 10 8.9 6.9 194 0 0.0 3.2 □ 11 8.8 7.0 211 0 0.0 0.0 2.4 □ 12 8.7 7.2 225 0 0.0 0.0 2.5 □ 15 □ 16 □ 17 □ 18 □ 18 □ 19 □ 19 □ 19 □ 19 □ 19 □ 19									
□ 7 9,3 6,9 181 1 0,1 4,5 □ 8 9,2 6,9 188 0 0,0 3,3 □ 9 9,0 6,9 190 0 0,0 3,0 □ 110 8,9 6,9 194 0 0,0 3,2 □ 11 8,8 7,0 211 0 0,0 2,4 □ 12 8,7 7,2 225 0 0,0 2,5 □ 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17									
8									
9 9,0 6,9 190 0 0,0 3,0 10 8,9 6,9 194 0 0,0 3,2 11 8,8 7,0 211 0 0,0 2,4 12 8,7 7,2 225 0 0,0 2,5 13 14 15 16 17 18 20 21 22									
10									
□ 11 8,8 7,0 211 0 0,0 2,4 □ 12 8,7 7,2 225 0 0,0 2,5 □ 13									
□ 12 8,7 7,2 225 0 0,0 2,5 □ 13			_						
□ 13 □ 14 □ 15 □ 16 □ 17 □ 18 □ 19 □ 20 □ 21 □ 22 □ 23 □ 24 □ 25 □ 26 □ 29 □ 30 □ 33 □ 33 □ 33 □ 33 □ 34 □ 35 □ 36							_		
□ 14 □ 15 □ 16 □ 17 □ 18 □ 19 □ 20 □ 21 □ 22 □ 23 □ 24 □ 25 □ 26 □ 28 □ 29 □ 30 □ 31 □ 32 □ 33 □ 34 □ 35 □ 36			39.	,,2	220		0,0		2,5
□ 15 □ 16 □ 17 □ 18 □ 19 □ 20 □ 21 □ 21 □ 22 □ 23 □ 24 □ 25 □ 26 □ 27 □ 28 □ 29 □ 30 □ 31 □ 32 □ 33 □ 34 □ 35 □ 35									
☐ 16 ☐ 17 ☐ 18 ☐ 19 ☐ 20 ☐ 21 ☐ 22 ☐ 23 ☐ 24 ☐ 25 ☐ 26 ☐ 27 ☐ 28 ☐ 29 ☐ 30 ☐ 31 ☐ 32 ☐ 33 ☐ 34 ☐ 35 ☐ 36 ☐ 36 ☐ 36 ☐ 36 ☐ 36 ☐ 36 ☐ 36									
☐ 17 ☐ 18 ☐ 19 ☐ 20 ☐ 21 ☐ 22 ☐ 23 ☐ 24 ☐ 25 ☐ 26 ☐ 27 ☐ 28 ☐ 29 ☐ 30 ☐ 31 ☐ 32 ☐ 33 ☐ 34 ☐ 35 ☐ 36									
18									
☐ 19 ☐ 20 ☐ 21 ☐ 22 ☐ ☐ 23 ☐ ☐ 24 ☐ ☐ 25 ☐ ☐ 26 ☐ ☐ 27 ☐ ☐ 28 ☐ ☐ 29 ☐ ☐ 30 ☐ ☐ 31 ☐ ☐ 32 ☐ ☐ 33 ☐ ☐ 34 ☐ ☐ 35 ☐ ☐ 36 ☐ ☐ ☐ 36 ☐ ☐ ☐ 36 ☐ ☐ ☐ 36 ☐ ☐ ☐ 36 ☐ ☐ ☐ 36 ☐ ☐ ☐ ☐									
☐ 21 ☐ 22 ☐ 23 ☐ 24 ☐ 25 ☐ 26 ☐ 27 ☐ 28 ☐ 29 ☐ 30 ☐ 31 ☐ 32 ☐ 33 ☐ 34 ☐ 35 ☐ 36									
☐ 22 ☐ 23 ☐ 24 ☐ 25 ☐ 26 ☐ 27 ☐ 28 ☐ 30 ☐ 31 ☐ 31 ☐ 32 ☐ 33 ☐ 34 ☐ 35 ☐ 36		20							
□ 23 □ 24 □ 25 □ 26 □ 27 □ 28 □ 29 □ 30 □ 31 □ 32 □ 32 □ 33 □ 34 □ 35 □ 36		21							
☐ 24 ☐ 25 ☐ 26 ☐ 27 ☐ 28 ☐ 29 ☐ 30 ☐ 31 ☐ 32 ☐ 32 ☐ 33 ☐ 34 ☐ 35 ☐ 36									
☐ 25 ☐ 26 ☐ 27 ☐ 28 ☐ 29 ☐ 30 ☐ 31 ☐ 32 ☐ 32 ☐ 33 ☐ 33 ☐ 34 ☐ 35 ☐ 36									
☐ 26 ☐ 27 ☐ 28 ☐ 29 ☐ 30 ☐ 31 ☐ 32 ☐ 32 ☐ 33 ☐ 34 ☐ 35 ☐ 36									
☐ 27 ☐ 28 ☐ 29 ☐ 30 ☐ 31 ☐ 32 ☐ 33 ☐ 34 ☐ 35 ☐ 36									
☐ 28 ☐ 29 ☐ 30 ☐ 31 ☐ 32 ☐ 33 ☐ ☐ 34 ☐ 35 ☐ 36 ☐ 36 ☐ 36 ☐ 36 ☐ 36 ☐ 36 ☐ 36									
☐ 29 ☐ 30 ☐ 31 ☐ 32 ☐ 33 ☐ 34 ☐ 35 ☐ 36									
30 31 32 33 33 34 35 36									
31 32 33 33 34 34 35 35 36 36 36 36 36 36 36 36 36 36 36 36 36									-
32 33 34 35 36									_
33 34 35 36									_
34 35 36									_
35 36									_
□ 36 l									-
									_
		37							_
38									1
39									
<u> </u>									-
41									

Montaubry_C2.xlsx

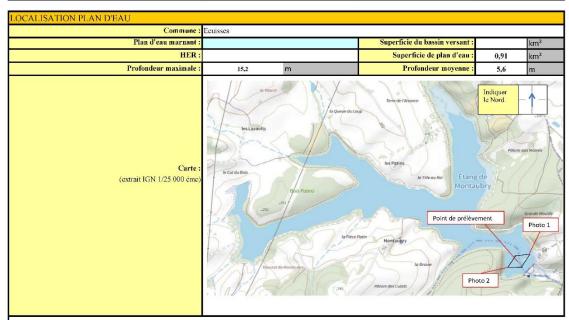



 $Montaubry_C3.xlsx$

Relevé phytoplanctonique en plan DONNEES GENERALES					v.3.3. juin 201	
Plan d'eau : Station ou n° d'échantillon : Organisme / opérateur :	Monta Monta L. CAMPIONE (GRE	ubry	Date : Code lac : Réf. dossier :		25/07/2022 U3005023 ERMC PE	=
STATION						-
Coordonnées de la station	relevées sur :		GPS			_
Lambert 93 (système français)	(en m)	X 817436	Y 6632475	Altitude (m):	278	
WGS 84 (système international)	données GPS (en dms)	N		Altitude (m):		
Profondeur (m):			11			_
	Instensité du vent :		2-Faible			_
	météo :		1-temps sec ensoleillé			_
Conditions d'observation :	Surface de l'eau :		2-Faiblement agitée			Т
	Hauteur des vagues:		0,05		m	Ī
	Bloom algal:		Non			
Marnage :	Ou	i	niveau des eaux par rapport a la végétation de ceinture (pour les plans d'eau marnant) :	3	m	
Cote à l'échelle :			13m (ech. limni.)			
						_

PRELEVEMENTS			
Heure début de relevé :	10:52	Heure de fin de relevé :	13:29
	✓ phytoplancton	Matériel employé :	✓ bouteille Niskin téflonisée✓ bouteille Kemmerer téflon☐ Tuyau
Prélèvements réalisés :	□ sédiment □ macrophytes □ oligochètes	Volume filtré pour la chlorophylle (ml) :	0
	autres, préciser :	Volume de Lugol ajouté pour le phytoplancton (ml) :	1
Remarques, observations :	Dépôt des échantillons le 25/07/22 à 15h au TNT Cha Echantillon intégré phytoplancton, macropolluants e type Kemmerer, de 0 à 5m tous les 0,5m (10 x 2 intég Prélèvement de fond réalisé à 10m à la bouteille Nisk Température de l'air : 26°C Pression atmosphérique : 980hPa	t micropolluants et pour filtration rés = 20 bouteilles, soit 24L).	ADNe réalisé à la bouteille téflon

Montaubry_C3.xlsx



Moyen utilisé :	0 2	4	6	mesures in-situ à c	haque prof.			
Echantillon phytoplancton ?	Prof (m)	Temp (°C)	pН	Conductivité à	O _{2 (%)}	O _{2 (mg/l)}	MODF	Chla (µg/l)
**************************************	Intégré de 0 à			25°C (μS.cm ⁻¹)			ppb ESQ	
	4,75							
	0,1	26,8	8,5	179	118	9,5		3,8
	1	26,6	8,5	179	118	9,5		4,6
	2	26,5	8,5	179	117	9,4		4,2
	3	24,8	7,2	181	47	3,9		6,6
	4	19,5	6,6	179	2	0,2		15,8
	5	12	6,6	192	1	0,1		7,1
	6	9,8	6,7	207	0	0		4,3
	7	9,4	6,9	223	0	0		4,3
	8	9,1	7	230	0	0		4
	9	9	7	239	0	0		3,8
	10	8,9	7	253	0	0		3,5
	11	8,8	7	276	0	0		3,4
	12							
	13							
	14							
	15							
	16							
	17							
	18							
	19							-
	20							-
	21 22							_
	23							-
	24							
	25							_
	26							_
	27							
	28							
	29							
	30							1
	31							
	32							
	33							
	34							
	35							
	36							
	37							
	38							
	39							
	40							
	41							

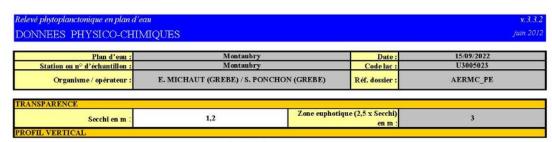
PROFIL VERTICAL

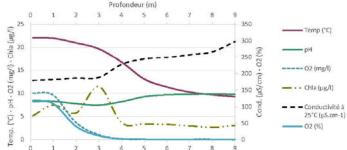
Montaubry_C3.xlsx

Relevé phytoplanctonique en plan d'eau v.3.3.1 DONNEES GENERALES PLAN D'EAU - STATION Septembre 2009 Plan d'eau : Montaubry Date : 15/09/2022 Nom station : Montaubry Code station : U3005023 Organisme / opérateur : E. MICHAUT (GREBE) / S. PONCHON (GREBE) Réf. dossier : AERMC_PE

Coordonnées du point :	relevées sur :		GPS	
I k t 02	čš	X	Y	Altitude
Lambert 93 (système français):	(en m)	817442	6632448	278
WGS 84 (système international) :	données GPS (en dms)			Altitude (m)
Profondeur :	9,0 r	n '		
Photos du site :				
Remarques et observations ; Pi				

© Formulaire de saise - Irstea


Montaubry_C4.xlsx


Relevé phytoplanctonique en pla	m d'ecau		v.3.3.2
DONNEES GENERALE			juin 2012
Plan d'eau ;	Montaubry	Date:	15/09/2022
Station ou nº d'échantillon :	Montaubry	Code lac:	U3005023
Organisme / opérateur :	E. MICHAUT (GREBE) / S. PONCHON (GREBE)	Réf. dossier :	AERMC PE
STATION			
		orne	

STATION								
Coordonnées de la station	relevées sur :		GPS					
Lombort 93	(en m)	X	Y	Altitude (m)	278			
Lambert 93 (système français)	(en m)	817442	6632448	:	2/8			
WGS 84 (système international)	données GPS (en dms)	N		Altitude (m)				
Profondeur (m):			9					
	Instensité du vent :		1-Nul					
	météo :	3-temps humide						
Conditions d'observation :	Surface de l'eau :	1-Lisse						
	Hauteur des vagues:		0	1	n			
	Bloom algal :		Non					
Marnage :	Out		niveau des eaux par rapport végétation de ceinture (pou plans d'eau marna	r les 3,4 r	n			
Cote à l'échelle :	11,5m (ech. limni.)							

PRELEVEMENTS			
Heure début de relevé :	10:07	Heure de fin de relevé :	11:59
	✓ phytoplancton ☐ chlorophylle ✓ eau	Matériel employé :	 ✓ bouteille Niskin téflonisée ✓ bouteille Kemmerer téflon ☐ Tuyau
Prélèvements réalisés :	✓ sédiment ☐ macrophytes ☐ oligochètes	Volume filtré pour la chlorophylle (ml) :	0
	autres, préciser :	Volume de Lugol ajouté pour le phytoplancton (ml) :	1
Remarques, observations :	Dépôt des échantillons le 15/09/22 à 15h au TNT Cha Echantillon intégré phytoplancton, macropolluants et type Kemmerer, de 0 à 3m tous les 0,5m (6 bouteille Prélèvement de fond réalisé à 8m à la bouteille Niskir Le profil de pH semble douteux malgré l'étalonnage o valeur de référence < 0,03). Sédiments : argilo-limoneux, bicolore gris/noir avec l Température de l'air : 20,9° C Pression atmosphérique : 985hPa	micropolluants et pour filtration x 3 intégrés = 18 bouteilles, soit 21 téflonnée, 3 bouteilles soit 24L. le la sonde (point de contrôle : diff	,6L).

Montaubry_C4.xlsx

Moyen ut	ilisé :				mesures in-situ à c	haque prof.			
Echantillon phytoplaneton	?	Prof (m)	Temp (°C)	pН	Conductivité à	O _{2 (%6)}	O _{2 (mg/l)}	MODF	Chla (µg/l)
		Totánuá do A à			25°C (μS.cm ⁻¹)			ppb ESQ	
		Intégré de 0 à							
		0,1	22,1	8,5	180	116	10,1		5,2
	+	1	22,0	8,3	182	109	9,6		7,5
	_	2	21,0	7,8	186	41	3,7		5,8
		3	19,7	7,5	188	12	1,1		11,5
	1	4	16,8	8,2	228	2	0,2		3,7
	_	5	13,1	9,3	244	1	0,1		3,4
		6	11,4	9,7	249	1	0,1		3,3
		7	10,3	9,8	258	1	0,1		3,0
		8	9,7	9,9	267	0	0,1		2,7
		9	9,3	9,8	298	0	0,0		3,1
		10							
		11							
		12							
		13							
		14							
		15							
		16							
		17							
		18							
		19							
		20							
		21							
		22							
	\Box	23							
		24							
		25							
		26							
_		27							
	\perp	28							
	\perp	29							—
	\perp	30							
	\vdash	31							
	-	32							
	-	33							
	-	34							—
	\vdash	35							—
_	-	36							
	-	37							—
	-	38							-
	+	39							
		40							

Montaubry_C4.xlsx

PE RMC lot 1- PRELEVEMENTS DE SEDIMENTS 2022

PLAN D'EAU : Nom :	Lac de l'Abaye	Lac de Chaillexon	Lac de Chalain	Retenue du Châtelot		
Date:	V2415023 19/09/2022	U2115003 14/09/2022	V2205003 13/09/2022	U2115023 14/09/2022		
Appareil de prélèvement :	Carottier ☐ Benne Ekman √	Carottier Benne Ekman 🤯	Carottier Benne Ekman √	Carottier Benne Ekman √		
Point de prélèvement :	Point profond	Point profond	Point profond	Point profond		
Coordonnées GPS (Lambert 93 en m) :	x= 923089	x= 981175	x= 913578	x= 984022		
Profondeur (m) :	y= 6607196 17	y= 6671350 20	y= 6622699 24	y= 6673333 36		
Aspect et nature des sédiments (couleur, odeur, texture (sableuse, fine), charge en débris organiques))	argilo-limoneux fins noirs	argilo-limoneux bruns/noirs avec débris organiques (litière)	argilo-limoneux, bicolores gris/noirs	argilo-limoneux, bicolores bruns clairs/noirs avec débris organiques (litière)		
		X	X			
PLAN D'EAU : Nom :	Retenue de Coiselet	Retenue de Montaubry	Lac du Val	Retenue de Cize-Bolozon		
Date:	V23003 21/09/2022	U3005023 15/09/2022	V2205083 13/09/2022	V2-3023 20/09/2022		
Appareil de prélèvement :	Carottier ☐ √	Carottier Benne Ekman v	Carottier Benne Ekman v	Carottier ☐ Benne Ekman √		
Point de prélèvement :	Point profond	Point profond	Point profond	Point profond		
Coordonnées GPS (Lambert 93 en m) :	x= 899709	x= 817442	x= 915300	x= 890270		
PLCCVVG #MINDORD DISCROSSING A FOREST MINDORD A STREET WAS A STREET MINDORD MI	y= 6580572	y= 6632448	y= 6617704	y= 6570988		
Profondeur (m) :	20	9	24			
Aspect et nature des sédiments (couleur, odeur, texture (sableuse, fine), charge en débris organiques))	limono-argileux, homogènes bruns avec débris organiques (végétaux, coquilles)	argilo-limoneux, bicolores gris/noirs avec débris organiques (litière)	argilo-limoneux, bicolores gris/noirs	argilo-limoneux, homogènes bruns, compacts avec débris organiques (lîtière)		
PLAN D'EAU : Nom : Code :	Retenue de Charmines-Moux V2525003	Retenue d'Allement V2705003				
Date:	20/09/2022	21/09/2022				
Appareil de prélévement :	Carottier ☐ Benne Ekman √	Carottier Benne Ekman y				
Point de prélèvement :	Point profond	Point profond				
Coordonnées GPS (Lambert 93 en m) :	x= 897690	x= 887101				
Profondeur (m) :	y= 6576990	y= 6560059				
Aspect et nature des sédiments (couleur, odeur, texture (sableuse, fine), charge en débris organiques))	limoneux, homogénes bruns avec quelques débris de végétaux	limono-sableux, bicolores bruns/gris				
		The state of the s				

<u>Annexe 4</u>: Rapport d'analyses phytoplancton

RAPPORT D'ANALYSE PHYTOPLANCTON

- Définitif -

Edité le: 03/03/2023

Page 1/6

Agence de l'Eau Rhône-Méditerranée Corse M. Loic IMBERT 2-4 allée de Lodz 69363 LYON Cedex 07

RAPPORT nº: PHYTO.01/03-2022

Dossier: AERMC-PE 2022

Point de prélèvement : U3005023 - Montaubry

Prélèvements: Effectué(s) par GREBE [D. MARTIN, E. MICHAUT, F. MILLAN, L. CAMPIONE,

S. PONCHON]

21/03/2022, 07/06/2022, 25/07/2022, 15/09/2022 Dates des prélèvements :

Déterminations réalisées par : Mathilde Dutaut

Dates des analyses : 21/04/2022, 04/07/2022, 20/01/2023, 30/01/2023

Analyses Chlorophylle A et phéopigments : Laboratoire CARSO

Objet soumis à l'analyse : Phytoplancton

Prelevement(s) Phytoplancton	-	Protocole standardisé grand cours d'eau, Irstea, V2, déc 2010 ou Protocole standardisé plan d'eau, Irstea, V3.3.1, sept.2009 XPT90-719	₹
Analyses Phytoplancton (listes floristiques)	14	Utermöhl NF EN 15204*	✓
Commentaire	-		

Seuls les paramètres cochés dans la dernière colonne sont couverts par l'accréditation

*Les résultats concernant les taxons de cyanobactéries potentiellement flottants ne sont pas rendus sous accréditation

(liste fournie en deuxième page du rapport le cas échéant). Les données physico-chimiques figurent à titre informatif dans un souci de cohésion des résultats. Elles font par ailleurs l'objet d'un rapport spécifique.

Les données concernant les incertitudes sur le phytoplancton peuvent être communiquées sur demande.

Résultats: Inventaires réalisés sous Phytobs dans la version en vigueur

- Le rapport établi ne concerne que les échantillons soumis à l'essai.
 L'utilisation de la marque COFRAC est interdite en-dehors de la reproduction du présent rapport d'analyse L'unisation de la marque control est mieraire en denois de la reproduction du présent rapport d'analysis sous sa forme intégrale.
 Le présent rapport d'essai peut être diffusé sous forme papier ou par transfert électronique de données.
 Le présent rapport est conforme aux exigences de la norme NF EN ISO/IEC 17025.
 Les analyses phytoplancton sont réalisées 21 rue Sébastien Gryphe 69007 Lyon.

Groupe de Recherch et d'Etudes logie et Environnen

23 rue Saint-Michel 69007 LYON FRANCE

al: 04 72 71 03 79 x: 04 72 72 06 12

Cofrac Accréditation Cofrac N° 1-1313

ESSAIS Portée disponible sur www.cofrac.fr

Signataire des rapports d'analyse phytoplancton :

Mathilde Dutaut

Datail

ENR.78 - version 14 - Date d'application : 26/10/2021

AERMC 2022 - U3005023 - Montaubry

Les taxons apparaissant sans abondance ni biovolume dans les listes floristiques sont des individus observés hors champs de comptage lors du balayage de la lame. Ils ne sont pas pris en compte pour le calcul des indices, le cas échéant, mais participent à la richesse taxonomique du milieu.

Liste des taxons de cyanobactéries pouvant potentiellement former des amas flottants non rendus sous accréditation :

- C1 (21/03/2022): Woronochinia naegeliana, Limnothrix redekei, Aphanizomenon
- C2 (07/06/2022): Woronichinia naegeliana, Microcystis flos-aquae, Microcystis
- C3 (25/07/2022): Woronichinia naegeliana, Dolichospermum, Aphanizomenon klebahnii
- C4 (15/09/2022) : Woronichinia naegeliana, Cuspidothrix issatchenkoi

AERMC 2022 - U3005023 - Montaubry

RAPPORT n°PHYTO.01/03-2022

Liste floristique quantifiée

U3005023_C1 - Montaubry - 2022

Préleveur(s): David MARTIN (GREBE) / Emmanuel MICHAUT (GREBE)
Date de prélevement: 21/03/2022

Déterminateur(s) : Date d'analyse :

Mathilde DUTAUT (GREBE) 21/04/2022

Remarque:

Taxon Limnothrix redekei validė par Dr. K.KISS (Danube Research Institute).

NOM TAXON	CODE SANDRE	CODE TAXON	CLASSE	Nb cell/ml	Nb ind/ml	Biovolume (mm3/L)	Nb cpt	Type	Cf.
Lemmermannia tetrapedia	46582	LMMTET	TREBOUXIOPHYCEAE	4588,58		0,61946	303	Cel.	
Plagioselmis nannoplanetica	9634	PLGNAN	CRYPTOPHYCEAE	1938,41		0,13569	128	Cel.	
Aphanocapsa incerta	6313	APAINC	CYANOPHYCEAE	757.19		0,00530	50	Cel.	
Chrysochromulina parva	31903	CCHPAR	COCCOLITHOPHYCEAE	484,60		0,01405	32	Cel.	
Goniomonas truncata	35416	GOITRU	GONIOMONADEAE	378,60		0,04732	25	Cel.	Cf.
Chrysococcus	9570	CHSSPX	CHRYSOPHYCEAE	363,45		0.03089	24	Cel.	
Planktolyngbya limnetica	6467	PLLLIM	CYANOPHYCEAE	348,31		0.00104	23	Cel.	
Aphanizomenon	1103	APHSPX	CYANOPHYCEAE	242,30		0.01745	16	Cel.	
Monoraphidium contortum	5731	MONCON	CHLOROPHYCEAE	242,30		0,02738	16	Cel.	
Chlorophycées indéterminées 2 - 5 µm	3332	INDCH2	CHLOROPHYCEAE	212,01		0,01060	14	Cel.	
Cryptomonas	6269	CRYSPX	CRYPTOPHYCEAE	212,01		0,37569	14	Cel.	
Limnothrix redekei	6448	LIMRED	CYANOPHYCEAE	196,87		0,00532	13	Cel.	
Diatomées centriques indéterminées > 10 µm	6598	INDCEN	MEDIOPHYCEAE	181,73		0,09759	12	Cel.	
Diatomées centriques indéterminées < 10 µm	6598	INDCE5	MEDIOPHYCEAE	181.73		0.01999	12	Cel.	
Dictyosphaerium (2µm environ)	5645	NEW062	TREBOUXIOPHYCEAE	181,73		0,00073	12	Cel.	
Cryptomonas marssonii	6273	CRYMAR	CRYPTOPHYCEAE	151,44		0,18173	10	Cel.	
Chlamydomonas < 10 µm	6016	CHLSP5	CHLOROPHYCEAE	121,15		0,00291	8	Cel.	
Desmodesmus armatus	31930	DEDARM	CHLOROPHYCEAE	121.15		0.04277	8	Cel.	
Desmodesmus communis	31933	DEDCOM	CHLOROPHYCEAE	121,15		0,04410	8	Cel.	
Mallomonas akrokomos	6211	MALAKR	SYNUROPHYCEAE	75,72		0.02378	5	Cel.	
Monoraphidium komarkovae	5735	MONKOM	CHLOROPHYCEAE	60,58		0.00969	4	Cel.	
Ankyra judayi	5596	ANYJUD	CHLOROPHYCEAE	60,58		0,00636	4	Cel.	
Woronichinia naegeliana	6345	WORNAE	CYANOPHYCEAE	30,29		0.00045	2	Cel.	
Plagioselmis lacustris	9633	PLGLAC	CRYPTOPHYCEAE	30,29		0,00606	2	Cel.	Cf.
Chlorophycées indéterminées 5 - 10 µm	3332	INDCH5	CHLOROPHYCEAE	30,29		0,00669	2	Cel.	
Monoraphidium circinale	5730	MONCIR	CHLOROPHYCEAE	30,29		0,00076	2	Cel.	
Pseudodidymocystis planctonica	5787	PSDPLA	CHLOROPHYCEAE	30,29		0,00282	2	Cel.	
Desmodesmus serratus	31948	DEDSER	CHLOROPHYCEAE	30,29		0,00082	2	Cel.	
Stichococcus bacillaris	6004	STCBAC	TREBOUXIOPHYCEAE	30,29		0,00179	2	Cel.	
Diatomées centriques (5 µm)	6598	NEW011	MEDIOPHYCEAE	15,14		0,00101	1	Cel.	
Cryptomonas pyrenoidifera	20115	CRYPYR	CRYPTOPHYCEAE	15,14		0.01265	1	Cel.	Cf.
Lanceola spatulifera	5720	LANSPA	CHLOROPHYCEAE	15,14		0,00439	1	Cel.	
Gymnodinium	4925	GYMSPX	DINOPHYCEAE	15,14		0,01969	1	Cel.	
Monoraphidium tortile	5741	MONTOR	CHLOROPHYCEAE	15,14		0,00035	1	Cel.	
Trachelomonas volvocina	6544	TRAVOL	EUGLENOPHYCEAE	15,14		0,02953	1	Cel.	Cf.
Diatomées pennées indéterminées 10 - 30 µm	6598	INDPE2	BACILLARIOPHYCEAE	15,14		0.00476	1	Cel.	
Cryptomonas ovata	6274	CRYOVA	CRYPTOPHYCEAE	15,14		0,03171	1	Cel.	
Asterionella formosa	4860	ASTFOR	FRAGILARIOPHYCEAE	2.17		0,00056	54	Cel.	

AERMC 2022 - U3005023 - Montaubry

4 sur 6

Liste floristique quantifiée

U3005023_C2 - Montaubry - 2022

Préleveur(s): Louise CAMPIONE (GREBE) / Fanny MILLAN (GREBE)
Date de prélevernent: 07/06/2022

Déterminateur(s) : Date d'analyse : Mathilde DUTAUT (GREBE) 04/07/2022

d'analyse : 04/07/202

Remarque :

NOM TAXON	CODE SANDRE	CODE TAXON	CLASSE	Nb cell/ml	Nb ind/ml	Biovolume (mm3/L)	Nb cpt	Type	Cf.
Chrysochromulina parva	31903	CCHPAR	COCCOLITHOPHYCEAE	3434,34		0,09960	185	Cel.	
Woronichinia naegeliana	6345	WORNAE	CYANOPHYCEAE	2654,65		0,03982	143	Cel.	
Plagioselmis nannoplanctica	9634	PLGNAN	CRYPTOPHYCEAE	1188,10		0.08317	64	Cel.	
Woronichinia naegeliana	6345	WORNAE	CYANOPHYCEAE	1123,98		0,01686	2810	Cel.	
Cyanogranis irregularis	39253	CYGIRR	CYANOPHYCEAE	928,20		0,00093	50	Cel.	
Coenochloris fottii	5618	COOFOT	CHLOROPHYCEAE	631,18		0.11298	34	Cel.	
Sphaerocystis schroeteri	5880	SPESCH	CHLOROPHYCEAE	482,66		0.18438	26	Cel.	
Lemmermannia tetrapedia	46582	LMMTET	TREBOUXIOPHYCEAE	371,28		0.05012	20	Cel.	
Diatomées centriques indéterminées < 10 µm	6598	INDCE5	MEDIOPHYCEAE	297,02		0,03267	16	Cel.	
Pseudanabaena limnetica	6459	PSELIM	CYANOPHYCEAE	222,77		0,00223	12	Cel.	
Oocystis parva	5758	OOCPAR	TREBOUXIOPHYCEAE	204,20		0,01286	11	Cel.	
Ankyra judayi	5596	ANYJUD	CHLOROPHYCEAE	148,51		0,01559	8	Cel.	
Mucidosphaerium pulchellum	34196	MUCPUL	TREBOUXIOPHYCEAE	148,51		0,02139	8	Cel.	
Trachelomonas	6527	TRASPX	EUGLENOPHYCEAE	129,95		0.20844	7	Cel.	
Microcystis flos-aquae	6381	MIOFLO	CYANOPHYCEAE	120,00		0,00420	300	Cel.	
Mallomonas	6209	MALSPX	SYNUROPHYCEAE	111,38		0,29762	6	Cel.	
Trachelomonas volvocina	6544	TRAVOL	EUGLENOPHYCEAE	111,38		0,21720	6	Cél.	
Stichococcus bacillaris	6004	STCBAC	TREBOUXIOPHYCEAE	92.82		0.00548	5	Cel.	
Cryptomonas ovata	6274	CRYOVA	CRYPTOPHYCEAE	92,82		0,19437	5	Cel.	
Pseudopediastrum boryanum	42835	PPEBOR	CHLOROPHYCEAE	83,20		0.06390	208	Cel.	
Goniomonas truncata	35416	GOITRU	GONIOMONADEAE	74,26		0.00928	4	Cel.	Cf.
Cryptomonas pyrenoidifera	20115	CRYPYR	CRYPTOPHYCEAE	74,26		0,06200	4	Cel.	Cf.
Desmodesmus communis	31933	DEDCOM	CHLOROPHYCEAE	74,26		0.02703	4	Cel.	
Desmodesmus armatus	31930	DEDARM	CHLOROPHYCEAE	74,26		0.02621	4	Cel.	
Scenedesmus obtusus	5844	SCEOBT	CHLOROPHYCEAE	74,26		0,01463	4	Cel.	
Oocystis lacustris	5757	OOCLAC	TREBOUXIOPHYCEAE	74,26		0,00787	4	Cel.	
Diatomées centriques indéterminées > 10 µm	6598	INDCEN	MEDIOPHYCEAE	55,69		0,02991	3	Cel.	
Tetraedron minimum	5888	TEAMIN	CHLOROPHYCEAE	55,69		0.01949	3	Cel.	
Cryptomonas	6269	CRYSPX	CRYPTOPHYCEAE	55,69		0,09869	3	Cel.	
Microcystis	4740	MIOSPX	CYANOPHYCEAE	37,13		0,00186	2	Cel.	
Staurastrum	1128	STASPX	ZYGNEMATOPHYCEAE	37.13		0.27653	2	Cel.	
Desmodesmus denticulatus	31934	DEDDEN	CHLOROPHYCEAE	37,13		0,01526	2	Cel.	
Chlamydomonas < 10 µm	6016	CHLSP5	CHLOROPHYCEAE	37,13		0,00089	2	Cel.	
Siderocelis omata	5873	SIDORN	TREBOUXIOPHYCEAE	37.13		0,00761	2	Cel.	
Chlorophycées indéterminées 5 - 10 µm	3332	INDCH5	CHLOROPHYCEAE	18,56		0,00410	1	Cel.	
Ankyra inerme	5595	ANYINE	CHLOROPHYCEAE	18,56		0.00056	1	Cel.	
Neglectella solitaria	64395	NEGSOL	TREBOUXIOPHYCEAE	18,56		0,01949	1	Cel.	
Nephrodiella semilunaris	38109	NEHSEM	XANTHOPHYCEAE	18,56		0.00158	1	Cel.	
Chrysococcus rufescens	9571	CHSRUF	CHRYSOPHYCEAE	18,56		0.00278	1	Cel.	
Treubaria schmidlei	5910	TRESCH	CHLOROPHYCEAE	18,56		0,02391	1	Cel.	
Chrysococcus	9570	CHSSPX	CHRYSOPHYCEAE	18,56		0,00158	1	Cel.	
Nephrodiella lunaris	9616	NEHLUN	XANTHOPHYCEAE	18,56		0.00353	1	Cel.	
Monoraphidium contortum	5731	MONCON	CHLOROPHYCEAE	18,56		0,00210	1	Cel.	
Closterium aciculare	5528	CLOACI	ZYGNEMATOPHYCEAE	18,56		0,10381	1	Cel.	
Pediastrum duplex	5772	PEDDUP	CHLOROPHYCEAE	12,80		0,01037	32	Cel.	
Aulacoseira ambigua f. japonica	34796	AULAMJ	COSCINODISCOPHYCEAE	11,20		0,00569	28	Cel.	
Asterionella formosa	4860	ASTFOR	FRAGILARIOPHYCEAE	8,00		0,00208	20	Cel.	
Ceratium	4949	CERSPX	DINOPHYCEAE	5,60		0.18245	14	Cel.	
Ceratium hirundinella	6553	CERHIR	DINOPHYCEAE	0.80		0,03200	2	Cel.	
							-		

AERMC 2022 - U3005023 - Montaubry

Liste floristique quantifiée

U3005023_C3 - Montaubry - 2022

Préleveur(s): Louise CAMPIONE (GREBE) / Emmanuel MICHAUT (GREBE)
Date de prélevement: 25/07/2022

Déterminateur(s) : Date d'analyse : Mathilde DUTAUT (GREBE) 30/01/2023

Pate d'analyse : 30/01/2023

Remarque:

Botryococcus braunii: cellules indiscernables.

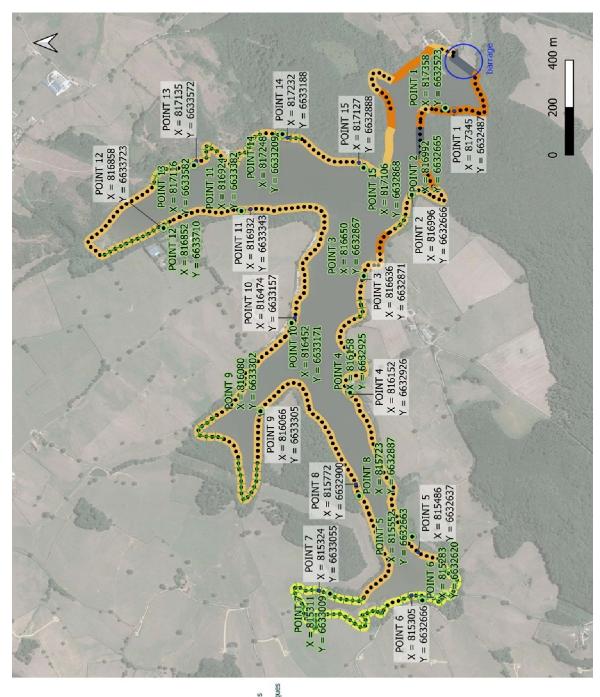
NOM TAXON	CODE SANDRE	CODE TAXON	CLASSE	Nb cell/ml	Nb ind/ml	Biovolume (mm3/L)	Nb cpt	Type	Cf.
Woronichinia naegeliana	6345	WORNAE	CYANOPHYCEAE	52842,03		0,79263	3411	Cel.	
Merismopedia tenuissima	6330	MERTEN	CYANOPHYCEAE	9233,03		0,00923	596	Cel.	
Aphanizomenon klebahnii	35569	APHKLE	CYANOPHYCEAE	6971,24		0,55770	450	Cel.	
Cyanogranis irregularis	39253	CYGIRR	CYANOPHYCEAE	3284,23		0,00328	212	Cel.	
Anathece	36240	ANTSPX	CYANOPHYCEAE	2168,83		0,00217	140	Cel.	
Dolichospermum	31962	DOLSPX	CYANOPHYCEAE	1874.49		0.54360	121	Cel.	
Sphaerocystis planctonica	5879	SPEPLA	CHLOROPHYCEAE	1487,20		0.77929	96	Cel.	
Aphanocapsa incerta	6313	APAINC	CYANOPHYCEAE	929,50		0.00651	60	Cel.	
Aphanocapsa elachista	6310	APAELA	CYANOPHYCEAE	929,50		0,00186	60	Cel.	
Anathece endophytica	36241	ANTEND	CYANOPHYCEAE	929,50		0,00279	60	Cel.	
Cyanogranis libera	10184	CYGLIB	CYANOPHYCEAE	898,52		0,00090	58	Cel.	
Plagioselmis nannoplanctica	9634	PLGNAN	CRYPTOPHYCEAE	573,19		0,04012	37	Cel.	
Hariotina reticulata	31974	HARRET	CHLOROPHYCEAE	495,73		0,07139	32	Cel.	
Oocystis parva	5758	OOCPAR	TREBOUXIOPHYCEAE	278.85		0.01757	18	Cel.	
Cryptomonas	6269	CRYSPX	CRYPTOPHYCEAE	263,36		0.46667	17	Cel.	
Lemmermannia tetrapedia	46582	LMMTET	TREBOUXIOPHYCEAE	247,87		0,03346	16	Cel.	
Diatomées centriques indéterminées < 10 µm	6598	INDCE5	MEDIOPHYCEAE	201,39		0,02215	13	Cel.	
Chlorophycées indéterminées 5 - 10 µm	3332	INDCH5	CHLOROPHYCEAE	185,90		0.04108	12	Cel.	
Chlorophycées coloniales indéterminées	3332	INDCCO	CHLOROPHYCEAE	185,90		0,04127	12	Cel.	
Ankyra judayi	5596	ANYJUD	CHLOROPHYCEAE	154,92		0.01627	10	Cel.	
Pseudodidymocystis fina	32028	PSDFIN	CHLOROPHYCEAE	154,92		0.00217	10	Cel.	
Cryptomonas pyrenoidifera	20115	CRYPYR	CRYPTOPHYCEAE	139,42		0,11642	9	Cel.	Cf.
Elakatothrix gelatinosa	5664	ELAGEL	KLEBSORMIDIOPHYCEAE	139,42		0.02663	9	Cel.	
Chrysochromulina parva	31903	CCHPAR	COCCOLITHOPHYCEAE	123,93		0.00359	8	Cel.	
Mallomonas	6209	MALSPX	SYNUROPHYCEAE	108,44		0,28976	7	Cel.	
Cryptomonas marssonii	6273	CRYMAR	CRYPTOPHYCEAE	108,44		0,13013	7	Cel.	
Cryptomonas ovata	6274	CRYOVA	CRYPTOPHYCEAE	92,95		0,19464	6	Cel.	
Ankyra inerme	5595	ANYINE	CHLOROPHYCEAE	77.46		0.00232	5	Cel.	
Oocystis	5752	OOCSPX	TREBOUXIOPHYCEAE	77,46		0,01859	5	Cel.	
Fragilaria crotonensis	6666	FRACRO	FRAGILARIOPHYCEAE	66,28		0,01989	696	Cel.	
Pseudodidymocystis planctonica	5787	PSDPLA	CHLOROPHYCEAE	61,97		0.00576	4	Cel.	
Desmodesmus aculeolatus	37353	DEDACU	CHLOROPHYCEAE	61,97		0,00465	4	Cel.	
Goniomonas truncata	35416	NEW149	GONIOMONADEAE	46,47		0,00962	3	Cel.	Cf.
Chlorella	5929	CLLSPX	TREBOUXIOPHYCEAE	15.49		0,00108	1	Cel.	Cf.
Monoraphidium circinale	5730	MONCIR	CHLOROPHYCEAE	15,49		0,00039	1	Cel.	
Staurastrum	1128	STASPX	ZYGNEMATOPHYCEAE	15.49		0.11538	1	Cel.	
Nephrodiella semilunaris	38109	NEHSEM	XANTHOPHYCEAE	15,49		0,00132	1	Cel.	
Gymnodiniales indéterminées < 20 µm	5011	INDG10	DINOPHYCEAE	15.49		0,00666	1	Cel.	
Ochromonas	6158	OCHSPX	CHRYSOPHYCEAE	15,49		0.00155	1	Cel.	
Chlamydomonas 10 - 20 µm	6016	CHLS15	CHLOROPHYCEAE	15,49		0,00682	1	Cel.	
Trachelomonas	6527	TRASPX	EUGLENOPHYCEAE	15,49		0.02485	1	Cel.	
Tetraedron minimum	5888	TEAMIN	CHLOROPHYCEAE	15,49		0.00542	.1	Cel.	
Treubaria	5906	TRESPX	CHLOROPHYCEAE	15,49		0,00274	1	Cél.	
Ankistrodesmus arcuatus	46026	ANKARC	CHLOROPHYCEAE	15,49		0,00053	1	Cel.	
Monactinus simplex	32004	MOTSIM	CHLOROPHYCEAE	2,29		0,00143	24	Cel.	
Aulacoseira ambigua f. japonica	34796	AULAMJ	COSCINODISCOPHYCEAE	2,10		0,00106	22	Cel.	
Asterionella formosa	4860	ASTFOR	FRAGILARIOPHYCEAE	0,76		0,00020	8	Cel.	
Ceratium hirundinella	6553	CERHIR	DINOPHYCEAE	0,19		0.00762	2	Cel.	
Botryococcus braunii	5599	BOTBRA	TREBOUXIOPHYCEAE		0.29	0,00050	3	Col.	

AERMC 2022 - U3005023 - Montaubry

Liste floristique quantifiée

U3005023_C4 - Montaubry - 2022

Préleveur(s) : Emmanuel MICHAUT (GREBE) / Simon PONCHON (GREBE)
Date de préleverment : 15.09/2022


Déterminateur(s) : Date d'analyse : Mathilde DUTAUT (GREBE) 20/01/2023

d'analyse : 20/01/2023

Remarque:

NOM TAXON	CODE SANDRE	CODE TAXON	CLASSE	Nb cell/ml	Nb ind/ml	Biovolume (mm3/L)	Nb cpt	Type	Cf.
Woronichinia naegeliana	6345	WORNAE	CYANOPHYCEAE	115794,41		1,73692	4177	Cel.	
Anathece endophytica	36241	ANTEND	CYANOPHYCEAE	14526,28		0,04358	524	Cel.	Cf.
Merismopedia tenuissima	6330	MERTEN	CYANOPHYCEAE	3659,29		0,00366	132	Cel.	
Aphanocapsa delicatissima	5308	APADEL	CYANOPHYCEAE	1108,88		0,00111	40	Cel.	
Cyanogranis irregularis	39253	CYGIRR	CYANOPHYCEAE	942,54		0,00094	34	Cel.	
Trachelomonas volvocinopsis	6545	TRAVOC	EUGLENOPHYCEAE	831,66		1,62173	30	Cel.	
Cuspidothrix issatschenkoi	33634	CUSISS	CYANOPHYCEAE	509,32		0.02037	1337	Cel.	
Cryptomonas	6269	CRYSPX	CRYPTOPHYCEAE	415,83		0.73685	15	Cel.	
Cryptomonas marssonii	6273	CRYMAR	CRYPTOPHYCEAE	360,38		0,43246	13	Cel.	
Goniochloris mutica	6237	GOCMUT	EUSTIGMATOPHYCEAE	332,66		0,07984	12	Cel.	
Cyanogranis libera	10184	CYGLIB	CYANOPHYCEAE	332,66		0,00033	12	Cel.	
Cryptomonas ovata	6274	CRYOVA	CRYPTOPHYCEAE	277,22		0,58050	10	Cel.	
Chrysochromulina parva	31903	CCHPAR	COCCOLITHOPHYCEAE	277,22		0,00804	10	Cel.	
Chlorophycées indéterminées 2 - 5 µm	3332	INDCH2	CHLOROPHYCEAE	221.78		0.01109	8	Cel.	
Oocystis parva	5758	OOCPAR	TREBOUXIOPHYCEAE	221,78		0.01397	8	Cel.	
Desmodesmus armatus	31930	DEDARM	CHLOROPHYCEAE	221,78		0,07829	8	Cel.	
Sphaerocystis planctonica	5879	SPEPLA	CHLOROPHYCEAE	221,78		0,11621	8	Cel.	
Goniomonas truncata	35416	NEW149	GONIOMONADEAE	166,33		0.03443	6	Cel.	Cf.
Plagioselmis nannoplanctica	9634	PLGNAN	CRYPTOPHYCEAE	138,61		0,00970	5	Cel.	
Fragilaria crotonensis	6666	FRACRO	FRAGILARIOPHYCEAE	116,19		0.03486	305	Cel.	
Diatomées centriques indéterminées < 10 µm	6598	INDCE5	MEDIOPHYCEAE	110,89		0.01220	4	Cel.	
Chromulina	6114	CHUSPX	CHRYSOPHYCEAE	110,89		0,01564	4	Cel.	
Staurastrum	1128	STASPX	ZYGNEMATOPHYCEAE	83,17		0.61942	3	Cel.	
Cryptomonas pyrenoidifera	20115	CRYPYR	CRYPTOPHYCEAE	83,17		0.06944	3	Cel.	Cf.
Trachelomonas	6527	TRASPX	EUGLENOPHYCEAE	83,17		0,13340	3	Cel.	
Elakatothrix gelatinosa	5664	ELAGEL	KLEBSORMIDIOPHYCEAE	83,17		0,01588	3	Cel.	
Nephrodiella semilunaris	38109	NEHSEM	XANTHOPHYCEAE	55,44		0,00471	2	Cel.	
Diatomées centriques (5 µm)	6598	NEW011	MEDIOPHYCEAE	55,44		0.00371	2	Cel.	
Chlorophycées flagellées indéterminées diam 2 - 5 µm	3332	INDFL2	CHLOROPHYCEAE	55,44		0,00233	2	Cel.	
Ochromonas	6158	OCHSPX	CHRYSOPHYCEAE	55,44		0,00554	2	Cel.	
Mallomonas	6209	MALSPX	SYNUROPHYCEAE	27.72		0.07407	1	Cel.	
Tetraedron minimum	5888	TEAMIN	CHLOROPHYCEAE	27,72		0,00970	1	Cel.	
Gymnodiniales indéterminées < 20 µm	5011	INDG10	DINOPHYCEAE	27,72		0,01192	1	Cel.	
Euastrum	5401	EUASPX	ZYGNEMATOPHYCEAE	27,72		0.04510	1	Cel.	
Bicosoeca planctonica	40170	BIOPLA	BIKOSEA	27,72		0.00183	1	Cel.	
Chrysococcus	9570	CHSSPX	CHRYSOPHYCEAE	27.72		0.00236	1	Cel.	
Cryptomonas curvata	6270	CRYCUR	CRYPTOPHYCEAE	27.72		0.07429	1	Cel.	
Treubaria	5906	TRESPX	CHLOROPHYCEAE	27.72		0.00491	1	Cel.	
Chrysophycées indéterminées	1160	INDCHR	CHRYSOPHYCEAE	27.72		0.00291	1	Cel	
Aulacoseira ambigua f. japonica	34796	AULAMJ	COSCINODISCOPHYCEAE	14,09		0,00716	37	Cel.	
Aulacoseira	9476	AULSPX	COSCINODISCOPHYCEAE	9,14		0,00091	24	Cel.	
Asterionella formosa	4860	ASTFOR	FRAGILARIOPHYCEAE	6,10		0,00158	16	Cel.	
Monactinus simplex	32004	MOTSIM	CHLOROPHYCEAE	3,05		0,00191	8	Cel.	
Fragilaria sp. >100µm	9533	NEW001	FRAGILARIOPHYCEAE					Cel.	

<u>Annexe 5</u>: Plan d'échantillonnage et fiche terrain macro-invertébrés (IML)

Légende

Plan d'échantillonnage

ÉTANG DE MONTAUBRY

Points de prélèvements retenus
 Doints de prélèvements théorieu

Points de prélèvements théoriques

Substrats végétaux

Hépophytes (HE)

• • • • Hydrophytes immergées (HI)

Substrats minéraux

Blocs-Dalles (BD) (>20cm)

Galets (GA) (2-20cm)

Graviers (GR) (2mm-2cm)

Sable (SL) (<2mm)

IML AERMC 2022 - Données terrain étang de Montaubry

CODE LAC: U3005023

NOM DE SITE : Montaubry

DATE: 21/03/2022	COMMENTAIRE		substrat attendu absent (GR HI)		substrat attendu absent (SL HE HI)				substrat attendu absent (GR HI)	substrat attendu absent (GR HE HI)	substrat attendu absent (GR HI)	substrat attendu absent (GR HE HI)				
	YLAMB93_PT_ELEM	6632523	6632665	6632867	6632925	6632663	6632620	6008899	6632887	6633302	6633171	6633382	6633710	6633582	6633209	6632868
	XLAMB93_PT_ELEM	817358	816992	816650	816158	815552	815283	815311	815723	816080	816452	816924	816852	817116	817248	817106
OPÉRATEURS(S) : D. MARTIN & E. MICHAUT (GREBE)	PROFONDEUR(m)	9.0	0.5	0.7	9.0	9.0	9.0	9.0	0.5	0.7	0.5	0.7	9.0	0.8	9.0	0.5
	SUBSTRAT	GA SL	SL	SL	SL GA	SL II	HE SL LI	SL	GR SL	II GR	GR SL	BD []		BD GR	표표	BD
	HEURE	14:29	14:44	14:48	14:52	14:57	15:12	15:19	15:25	15:34	15:39	15:45	15:55	16:02	16:07	16:12
	DATE	21/03/2022	21/03/2022	21/03/2022	21/03/2022	21/03/2022	21/03/2022	21/03/2022	21/03/2022	21/03/2022	21/03/2022	21/03/2022	21/03/2022	21/03/2022	21/03/2022	21/03/2022
	CODE_PT_ELEM	Н	2	e	4	2	9	7	00	6	10	11	12	13	14	15
OPÉRATEURS(S) :	CODE_STATION_PE CODE_PT	U3005023	U3005023	U3005023	U3005023	U3005023	U3005023	U3005023	U3005023	U3005023	U3005023	U3005023	U3005023	U3005023	U3005023	U3005023