

Agence de l'Eau Rhône-Méditerranée et Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône- Méditerranée et Corse - Lac d'Ilay (39) -Rapport de données brutes – Suivi annuel 2009

photo 1 : vue sur le Lac d'Ilay (S.T.E., 20 avril 2009)

Rapport n° 08-283/2010-PE2009-12 – Mai 2010

SOMMAIRE

1. PREAMBULE	1
1.1. CADRE DU PROGRAMME DE SUIVI	1
1.2. PRESENTATION DU PLAN D'EAU ET LOCALISATION	
1.3. CONTENU DU SUIVI 2009	
2. RESULTATS DES INVESTIGATIONS	5
2. RESULTATS DES INVESTIGATIONS	
2.1. INVESTIGATIONS PHYSICOCHIMIQUES	
2.1.1. ANALYSES DES EAUX DU LAC	
2.1.1.1. Profils verticaux et évolutions saisonnières	
2.1.1.2. Paramètres de constitution et typologie du lac	
2.1.1.3. Résultats des analyses physicochimiques des eaux (hors micropolluants)	
2.1.1.4. Micropolluants minéraux	
2.1.1.5. Micropolluants organiques	
2.1.2. ANALYSES DES SEDIMENTS	
2.1.2.1. Physicochimie des sédiments	
2.1.2.2. Micropolluants minéraux	
2.1.2.3. Micropolluants organiques	
2.2. PHYTOPLANCTON	
2.2.1. PRELEVEMENTS INTEGRES	
2.2.2. LISTE FLORISTIQUE (NOMBRE DE CELLULES/ML)	
2.2.3. ÉVOLUTIONS SAISONNIERES DES GROUPEMENTS PHYTOPLANCTONIQUES	
2.3. OLIGOCHETES	
2.3.1. CONDITIONS DE PRELEVEMENTS	
2.3.2. LISTE FAUNISTIQUE DES OLIGOCHETES	
2.4. INDICE MOLLUSQUES	
2.4.1. Informations generales	
2.4.2. LOCALISATION DES POINTS DE PRELEVEMENTS	
2.4.3. LISTE FAUNISTIQUE ET RESULTATS DE L'INDICE IMOL	
2.5. Hydromorphologie	
2.5.1. DEROULEMENT DES INVESTIGATIONS	
2.5.2. RESULTATS: INDICES DE QUALITE DES HABITATS ET DE L'ALTERATION MORPHOLOGIQUE	
2.6. MACROPHYTES	
2.6.1. CHOIX DES UNITES D'OBSERVATIONS	
2.6.2. CARTE DE LOCALISATION DES UNITES D'OBSERVATIONS	
2.6.3. VEGETATION AQUATIQUE IDENTIFIEE	
2.6.4. LISTE DES ESPECES PROTEGEES ET DES ESPECES INVASIVES	
2.6.5. APPROCHE DU NIVEAU TROPHIQUE DU PLAN D'EAU	
2.6.6. RELEVES DES UNITES D'OBSERVATIONS	33
3. INTERPRETATION GLOBALE DES RESULTATS	34
4. ANNEXES	35

1. PREAMBULE

1.1. CADRE DU PROGRAMME DE SUIVI

Dans le cadre de la mise en œuvre de la Directive Cadre Européenne sur l'Eau (DCE), un programme de surveillance doit être établi pour suivre l'état écologique (ou le potentiel écologique) et l'état chimique des eaux douces de surface.

Différents réseaux constituent le programme de surveillance. Parmi ceux-ci, deux réseaux sont actuellement mis en œuvre sur les plans d'eau :

- Le réseau de contrôle de surveillance (RCS) vise à donner une image globale de la qualité des eaux. Tous les plans d'eau naturels supérieurs à 50ha ont été pris en compte sur les bassins Rhône-Méditerranée et Corse. Pour les plans d'eau d'origine anthropique, une sélection a été opérée parmi les plans d'eau supérieurs à 50 ha, afin de couvrir au mieux les différents types présents (grandes retenues, plans d'eau de digue, plans d'eau de creusement).
- <u>Le contrôle opérationnel (CO)</u> vise à suivre spécifiquement les masses d'eau (naturelles ou anthropiques) supérieures à 50ha, à risque de non atteinte du bon état (ou du bon potentiel) des eaux en 2015.

Au total, 80 plans d'eau sont suivis sur les bassins Rhône-Méditerranée et Corse dans le cadre de ces deux réseaux.

Le contenu du programme de suivi sur les plans d'eau est identique pour le RCS et le CO. Un plan d'eau concerné par le CO sera cependant suivi à une fréquence plus soutenue (tous les 3 ans) comparativement à un plan d'eau strictement visé par le RCS (tous les 6 ans).

Le tableau 1 résume les différents éléments suivis par an et les fréquences d'intervention associées. Il s'agit du suivi qualitatif type mis en place sur les plans d'eau du programme de surveillance.

Tableau 1 : synoptique des investigations menées sur une année de suivi du plan d'eau

			Paramètres	Type de prélèvements/ Mesures	HIVER	PRINTEMPS	ЕТЕ	AUTOMNE
Mesures in situ		Mesures in situ	O2 dis. (mg/l, %sat.), pH, COND (25 °C), T °C, transparence secchi	Profils verticaux	Х	х	Х	Х
	D.	Physico-chimie classique	DBO5, PO4, Ptot, NH4, NKJ, NO3, NO2, COT, COD, MEST, Turbidité, Si dissoute	Intégré Ponctuel de fond	X	X	X	X
	Sur EAU	Substances prioritaires, autres substances et pesticides	Micropolluants sur eau*	Intégré Ponctuel de fond	X	X	X	X
	Pigments chlorophylliens		Chlorophylle a + phéopigments	Intégré Ponctuel de fond	Х	Х	Х	Х
	Minéralisation		Ca ²⁺ , Na ⁺ , Mg ²⁺ , K ⁺ , dureté, TA, TAC, SO ₄ ²⁻ , Cl, HCO ₃	Intégré Ponctuel de fond	Х			
S	Eau	interstitielle : Physico-chimie	PO4, Ptot, NH4					
Sur SEDIMENTS	Phase solide (<2mm)	Physico-chimie	Corg., Ptot, NKJ, Granulomètrie, perte au feu	Prélèvement au point de plus grande profondeur				х
Su	ча	Substances prioritaires, autres substances et pesticides	Micropolluants sur sédiments*					
			Phytoplancton	Prélèvement Intégré (Cemagref/Utermöhl)	Х	Х	Х	Χ
			Oligochètes	IOBL				Х
HYDROBIOLOGIE et		HYDROBIOLOGIE et	Mollusques	IMOL				Х
		/DROMORPHOLOGIE	Macrophytes	Protocole Cemagref			Х	
			Hydromorphologie	A partir du Lake Habitat Survey (LHS)			Х	
			Suivi piscicole	Protocole CEN (en charge de l'ONEMA)			Х	

^{* :} se référer à l'annexe 5 de la circulaire DCE 2006/16, analyses à réaliser sur les paramètres pertinents à suivre sur le support concerné RCS : un passage par plan de gestion (soit une fois tous les six ans)

Poissons en charge de l'ONEMA (un passage tous les 6 ans)

♦ *Investigations physico-chimiques*:

Les différents paramètres physico-chimiques analysés sur l'eau sont suivis lors de quatre campagnes calées aux différentes phases du cycle annuel de fonctionnement du plan d'eau, soit entre le mois de février et le mois d'octobre. Les dates d'intervention sont mentionnées dans le tableau 2, au paragraphe 1.3.

A chaque campagne, sont réalisés au point de plus grande profondeur :

- ✓ un profil vertical des paramètres physico-chimiques de terrain : température, conductivité, oxygène dissous (en mg/l et % saturation) et pH ;
- ✓ des échantillons d'eau pour analyses (physico-chimie, micropolluants, pigments chlorophylliens), il s'agit :
 - o d'un prélèvement intégré sur la colonne d'eau (constitué à partir du mélange de prélèvements ponctuels réalisés tous les mètres entre la surface et 2,5 fois la transparence mesurée avec le disque de Secchi);
 - o d'un prélèvement de fond (réalisé généralement à un mètre du fond).

Les sédiments sont prélevés une fois par an lors de la 4^{ème} et dernière campagne au point de plus grande profondeur.

CO: un passage tous les trois ans

Les échantillons d'eau et de sédiments ont été transmis au Laboratoire Départemental d'Analyses de la Drôme (LDA 26) en charge des analyses.

♦ *Investigations hydromorphologiques et hydrobiologiques :*

Les investigations hydromorphologiques et hydrobiologiques ont été réalisées à des périodes adaptées aux objectifs des méthodes utilisées.

L'évaluation morphologique du lac est menée en suivant le protocole du Lake Habitat Survey (LHS) dans sa version 3.1 (mai 2006).

Les investigations hydrobiologiques comprennent plusieurs volets :

- ➤ l'étude des peuplements phytoplanctoniques à partir du protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en œuvre de la DCE (CEMAGREF INRA; version 3.3 de mars 2009);
- ➤ l'étude des peuplements d'oligochètes à travers la détermination de l'Indice Oligochètes de Bio-indication Lacustre : IOBL (Norme AFNOR NF T90-391, mars 2005) ;
- ➤ l'étude des peuplements de mollusques avec la détermination de l'Indice Mollusques : IMOL (Mouthon, J. (1993) Un indice biologique lacustre basé sur l'examen des peuplements de mollusques. Bull. Franç. Pêche Pisc., 331 : 397-406) ;
- ➤ l'étude des peuplements de macrophytes sur le lac s'appuie sur la méthode mise au point par le CEMAGREF : Méthodologie d'étude des communautés de macrophytes en plan d'eau, version mai 2009.

1.2. Presentation du Plan d'Eau et localisation

Le lac d'Ilay ou de La Motte est situé dans la région des lacs du Jura à une altitude de 774 mètres. Le plan d'eau est naturel : il a été créé à la suite d'une dépression d'origine tectonique et d'un surcreusement d'origine glaciaire. Le lac présente un fonctionnement dimictique avec une stratification hivernale (gel en surface) et une autre stratification thermique en période estivale.

carte 1 : localisation du Lac d'Ilay (Jura) – (source : IGN Scan 250 - éch . 1/100 000^e)

Le plan d'eau est de petite taille avec 71 ha pour un volume de 7,7 millions de m³. La profondeur maximale qui a été mesurée en 2009 est de 31 m et le niveau d'eau varie très peu, de l'ordre de 0,5 m maximum sur l'année. La cuvette est orientée Nord-Ouest / Sud-Est sur 1,9 km de long. Il reçoit les eaux d'un ruisseau constituant le trop plein du lac de Grand-Maclu. Le plan d'eau dispose d'un exutoire de surface (bief se perdant en gouffres) et également de pertes sous lacustres (karst). Son temps de séjour est estimé à 330 jours.

Le lac d'Ilay appartient aux communes du Frasnois et de la Chaux du Dombief (et au Syndicat des Eaux du Lac d'Ilay). Le droit de pêche est réservé à la Fédération de Pêche du Jura. Les usages sont limités à une activité de pêche à la ligne embarquée ou depuis la berge. La navigation est non motorisée. Il existe également une activité de baignade en été. Les eaux du lac sont utilisées pour l'alimentation en eau potable des communes du secteur. Une station de pompage est installée dans la partie centrale en rive Ouest.

1.3. CONTENU DU SUIVI 2009

Le lac d'Ilay est suivi au titre du Réseau de Contrôle de Surveillance (RCS) et du Contrôle Opérationnel (CO). Tous les compartiments précités sont étudiés. Le tableau ci-dessous indique la répartition des missions au sein du groupement aussi bien en phase terrain qu'en phase laboratoire/détermination. S.T.E. a en outre eu en charge de coordonner la mission et de collecter l'ensemble des données pour établir les rapports et mener l'exploitation des données.

Lac Ilay (39)	terrain					laboratoire - détermination
Campagne	C1	C2	C3	C4	campagne IMOL-IOBL	
date	20/04/09	10/06/09	28/07/09	08/09/09	02/09/09	automne/hiver 2009-2010
physicochimie des eaux	S.T.E.	S.T.E.	S.T.E.	S.T.E.		LDA26
physicochimie des sédiments				S.T.E.		LDA26
phytoplancton	S.T.E.	S.T.E.	S.T.E.	S.T.E.		BECQ'Eau
hydromorphologie			S.T.E.			S.T.E.
macrophytes			S.T.E. et Mosaïque env			Mosaïque environnement
oligochètes					IRIS	IRIS consultants
mollusques					consultants	ARALEP

Tableau 2 : synoptique des interventions de terrain et de laboratoire sur le plan d'eau, par campagne

En 2009, l'hiver a été froid en Franche Comté, le lac d'Ilay est resté gelé jusqu'à début avril. Le printemps a été doux et ensoleillé entraînant un réchauffement rapide des eaux en surface accompagné d'un développement de phytoplancton. L'été a été sec et ensoleillé.

La 1^{ère} campagne de prélèvement a été légèrement tardive : le plan d'eau avait réchauffé en surface mais l'activité biologique commençait à peine. Les autres campagnes correspondent aux objectifs de la méthodologie.

2. RESULTATS DES INVESTIGATIONS

2.1. INVESTIGATIONS PHYSICOCHIMIQUES

Les comptes rendus des campagnes de prélèvements physicochimiques et phytoplanctoniques sont présentés en annexe 3.

2.1.1. Analyses des eaux du lac

2.1.1.1. Profils verticaux et évolutions saisonnières

Le suivi prévoit la réalisation de profils verticaux sur la colonne d'eau à chaque campagne. Quatre paramètres sont mesurés : la température, la conductivité, l'oxygène (en concentration et en % saturation) et le pH. Les graphiques regroupant ces résultats pour chaque paramètre lors des 4 campagnes sont affichés dans ce chapitre.

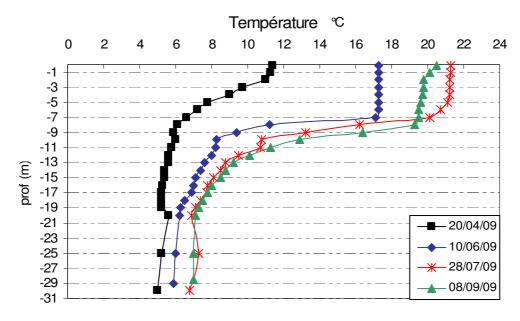


Figure 1: profils verticaux de température au point de plus grande profondeur

La stratification thermique est bien marquée sur le lac d'Ilay. Dès la 1^{ère} campagne, on constate un réchauffement de la couche de surface. La stratification est nette en campagne 2, la couche de surface est à 17°C, elle monte à 21°C en été. Les eaux de l'hypolimnion sont entre 6 et 8°C lors des 4 campagnes. La thermocline est établie entre 7 et 11 m sur toute la période de stratification (mai – septembre).

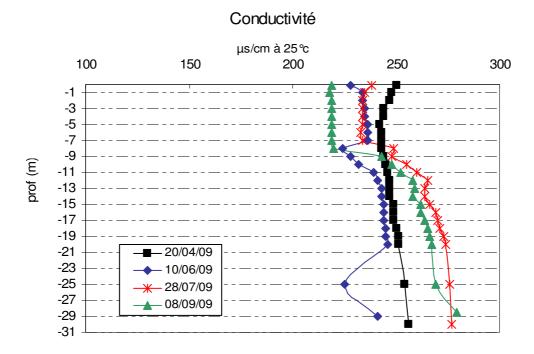


Figure 2 : profils verticaux de conductivité au point de plus grande profondeur

La conductivité est moyenne dans les eaux du lac d'Ilay : elle est comprise entre 220 et 270 μ S/cm à 25°C. Elle est quasi homogène en fin d'hiver (250 μ s/cm). A partir de juillet, on note une diminution de la minéralisation dans l'épilimnion, liée à l'utilisation photo-synthétique. Au contraire, on observe une augmentation de la conductivité dans les couches profondes lié aux processus de minéralisation de la matière organique sédimentée.

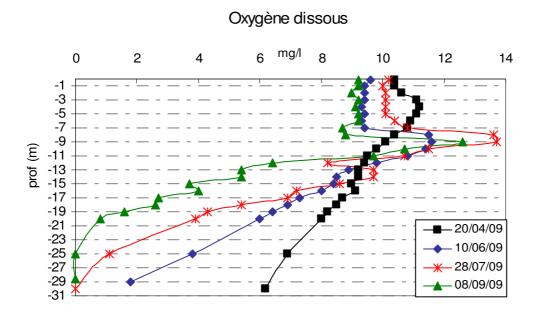


Figure 3 : profils verticaux d'oxygène (mg/l) au point de plus grande profondeur



Figure 4 : profils verticaux d'oxygène (%sat.) au point de plus grande profondeur

Les couches profondes présentent une désoxygénation dès la campagne d'avril, ce qui semble indiquer un brassage hivernal non total dans la fosse. Les 3 campagnes suivantes sont caractérisées par des pics d'oxygène entre 7 et 11 m avec une production marquée d'oxygène par photosynthèse. Dans le même temps, l'oxygène est consommé dans l'hypolimnion, avec atteinte de conditions anoxiques dans le fond du lac lors des campagnes 3 et 4. La demande en oxygène pour la dégradation de la matière organique des sédiments est très importante.

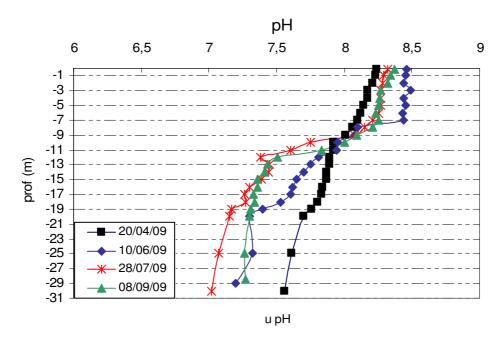


Figure 5 : profils verticaux de pH au point de plus grande profondeur

Le pH est compris entre 7 et 8,5 dans les eaux du lac d'Ilay. A toutes les campagnes, deux couches se distinguent nettement : l'épilimnion présente un pH bien alcalin (>8,2) tandis que le pH dans l'hypolimnion est plus faible, compris entre 7 et 8.

2.1.1.2. Paramètres de constitution et typologie du lac

N.B. pour tous les tableaux suivants :

LD = limite de détection, généralement =SQ/3, sauf pour DBO5 et turbidité pour lesquels LD=SQ, avec SQ = seuil de quantification ;

Présence = valeur comprise entre LD et SQ, composé présent mais non précisément quantifiable.

Les paramètres de minéralisation sont étudiés lors de la 1^{ère} campagne uniquement. Les résultats sont présentés dans le tableau 3.

Physico-chimie sur eau						
Lac d'	seuil quantification	20/04/2009				
code plan d'eau :	V2035003	seun quantification	Intégré	Fond		
Dureté calculée	°F	0,1 pour C1 seule	14,2			
T.A.C.	°F	0,5 pour C1 seule	13,5			
T.A.	°F	0,5 pour C1 seule	<ld< td=""><td></td></ld<>			
CO3	mg(CO3)/l	6 pour C1 seule	<ld< td=""><td></td></ld<>			
HCO3-	mg(HCO3)/l	6,1 pour C1 seule	164,7			
Calcium total	mg(Ca)/l	1 pour C1 seule	54			
Magnésium	mg(Mg)/l	1 pour C1 seule	1,8			
Sodium	mg(Na)/l	1 pour C1 seule	1,8			
Potassium	mg(K)/l	1 pour C1 seule	<ld< td=""><td></td></ld<>			
Cl-	mg(Cl)/l	1 pour C1 seule	2,9			
SO4	mg(SO4)/l	1 pour C1 seule	1,9			

Tableau 3 : résultats des paramètres de minéralisation lors de la 1° campagne

Les résultats indiquent une eau moyennement carbonatée, de dureté moyenne. Le lac d'Ilay et son bassin versant se trouvent sur des terrains marno-calcaires du Crétacé sur lesquels reposent des alluvions, ce qui explique la bonne minéralisation des eaux avec cependant de faibles concentrations pour tous les ions mesurés en dehors du calcium.

2.1.1.3. Résultats des analyses physicochimiques des eaux (hors micropolluants)

Tableau 4 : résultats des paramètres de physico-chimie classique sur eau.

Physico-chimie sur eau										
Lac d'	Ilay	seuil quantification	20/04/2009		10/06/2009		28/07/2009		08/09/2009	
code plan d'eau :	V2035003		Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
Turbidité	NTU	0,1 pour C1 à C4	0,6	1	0,7	1,8	4,3	5,4	2,5	13
M.E.S.T.	mg/l	1 pour C1 à C4	1	1	2	2	3	<ld< td=""><td><ld< td=""><td>1</td></ld<></td></ld<>	<ld< td=""><td>1</td></ld<>	1
C.O.D.	mg(C)/l	0,1 pour C1 à C4	2,4	2,3	2,9	2,5	3,3	2,8	2,9	2,5
C.O.T.	mg(C)/l	0.1 pour C1	2,4	2,3						
Oxyd. KMnO4 ac.	mg(O2)/l	0.1 pour C2-C3-C4			<ld< td=""><td>0,2</td><td>0,1</td><td><ld< td=""><td>2</td><td>2,4</td></ld<></td></ld<>	0,2	0,1	<ld< td=""><td>2</td><td>2,4</td></ld<>	2	2,4
D.B.O.5	mg(O2)/l	0,5 pour C1 à C4	1,2	0,7	1,3	<ld< td=""><td>0,9</td><td><ld< td=""><td>0,6</td><td>3</td></ld<></td></ld<>	0,9	<ld< td=""><td>0,6</td><td>3</td></ld<>	0,6	3
Azote Kjeldahl	mg(N)/l	1 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
NH4+	mg(NH4)/l	0,05 pour C1 à C4	0,07	0,25	<ld< td=""><td>0,46</td><td><ld< td=""><td>0,47</td><td><ld< td=""><td>0,99</td></ld<></td></ld<></td></ld<>	0,46	<ld< td=""><td>0,47</td><td><ld< td=""><td>0,99</td></ld<></td></ld<>	0,47	<ld< td=""><td>0,99</td></ld<>	0,99
NO3-	mg(NO3)/l	1 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
NO2-	mg(NO2)/l	0,02 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,02	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
PO4	mg(PO4)/l	0,015 pour C1 à C4	<ld< td=""><td><ld< td=""><td>0,021</td><td>0,025</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,021</td><td>0,025</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,021	0,025	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Phosphore Total	mg(P)/l	0,005 pour C1 à C4	0,026	0,026	0,008	0,019	0,008	0,017	<ld< td=""><td>0,014</td></ld<>	0,014
Silice dissoute	mg(SiO2)/l	0,2 pour C1 à C4	0,6	1,9	<ld< td=""><td>2,4</td><td><ld< td=""><td>2,6</td><td>0,2</td><td>4,1</td></ld<></td></ld<>	2,4	<ld< td=""><td>2,6</td><td>0,2</td><td>4,1</td></ld<>	2,6	0,2	4,1
Chl. A	μg/l	1 pour C1 à C4	4		<ld< td=""><td></td><td>4</td><td></td><td>4</td><td></td></ld<>		4		4	
Chl. B	μg/l	1 pour C1 à C4	<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<>		<ld< td=""><td></td></ld<>	
Chl. C	μg/l	1 pour C1 à C4	<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<>		<ld< td=""><td></td></ld<>	
Phéophytine	μg/l	1 pour C1 à C4	<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td><td>2</td><td></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td><td>2</td><td></td></ld<></td></ld<>		<ld< td=""><td></td><td>2</td><td></td></ld<>		2	

Les analyses des fractions dissoutes ont été réalisées sur eau filtrée (COD, NH4, NO3, NO2, PO4, Si).

- ✓ Nitrates non quantifiés sur tous les échantillons ;
- ✓ Présence d'ammonium dans le fond lors des quatre campagnes ;

Le rapport N/P¹ est faible. Les nitrates comme les orthosphosphates ne sont pas quantifiés en fin d'hiver : sur l'année, l'azote apparaît limitant par rapport au phosphore et suggère le risque de développement de Cyanophycées. La teneur en silice dissoute est faible à moyenne en lien avec l'utilisation de la silice par les diatomées, nombreuses dans le plan d'eau.

L'azote ammoniacal (NH₄⁺) est en concentration élevée dans le fond du lac. Cette présence est probablement liée aux processus de dégradation de la matière organique azotée, qui libère de l'azote ammoniacal qui s'accumule, sans que celui-ci puisse continuer son oxydation vers nitrites puis nitrates, faute de teneurs en oxygène suffisantes.

La production chlorophyllienne est moyenne avec 4 μ g/l lors des campagnes 1, 3 et 4. Les teneurs en pigments sont faibles lors de la $2^{\grave{e}me}$ campagne, malgré un bloom phytoplanctonique ; ce qui peut s'expliquer par le fait que ce bloom est quasi exclusivement à Cyanophycées, aux cellules de très petite taille (faibles bio-volumes).

¹le rapport N/P est calculé à partir de [Nminéral]/ [P-PO₄³⁻] avec N minéral = [N-NO₃⁻]+[N-NO₂⁻]+[N-NH₄⁺] lors de la campagne de fin d'hiver.

2.1.1.4. Micropolluants minéraux

Tableau 5 : résultats d'analyses de métaux sur eau

Micropolluants minéraux sur eau										
Lac d'	Ilay	seuil quantification	20/04	1/2009	10/00	5/2009	28/07	7/2009	08/09	0/2009
code plan d'eau :	V2035003	scun quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
Aluminium	μg (Al)/l	5 pour C1 à C4	<ld< td=""><td><ld< td=""><td>7</td><td>7</td><td>5</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>7</td><td>7</td><td>5</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	7	7	5	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Antimoine	μg(Sb)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Argent	μg(Ag)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Arsenic	μg(As)/l	0,2 pour C1 à C4	0,3	0,5	<ld< td=""><td>0,3</td><td>0,2</td><td>0,4</td><td>0,3</td><td>1,1</td></ld<>	0,3	0,2	0,4	0,3	1,1
Baryum	μg(Ba)/l	5 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>5,5</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>5,5</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>5,5</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>5,5</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>5,5</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	5,5	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Beryllium	μg(Be)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Bore	μg(B)/l	5 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Cadmium	μg(Cd)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Chrome Total	μg(Cr)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Cobalt	μg(Co)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td>0,2</td><td>0,2</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,2</td><td>0,2</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,2	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Cuivre	μg(Cu)/l	0,2 pour C1 à C4	9	0,8	1,5	1,4	0,7	0,7	0,4	0,4
Etain	μg(Sn)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td>0,4</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,4</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Fer total	μg(Fe)/l	5 pour C1 à C4	16	142	6	561	8	534	11	3390
Manganèse	μg(Mn)/l	5 pour C1 à C4	<ld< td=""><td>28,9</td><td><ld< td=""><td>54</td><td><ld< td=""><td>48</td><td><ld< td=""><td>61,4</td></ld<></td></ld<></td></ld<></td></ld<>	28,9	<ld< td=""><td>54</td><td><ld< td=""><td>48</td><td><ld< td=""><td>61,4</td></ld<></td></ld<></td></ld<>	54	<ld< td=""><td>48</td><td><ld< td=""><td>61,4</td></ld<></td></ld<>	48	<ld< td=""><td>61,4</td></ld<>	61,4
Mercure	μg(Hg)/l	0,1 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Molybdène	μg(Mo)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Nickel	μg(Ni)/l	0,2 pour C1 à C4	0,2	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,2</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,2</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,2</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,2</td><td><ld< td=""></ld<></td></ld<>	0,2	<ld< td=""></ld<>
Plomb	μg(Pb)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Sélénium	μg(Se)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Thallium	μg(Tl)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Titane	μg(Ti)/l	0,2 pour C1 à C4	<ld< td=""><td>0,4</td><td><ld< td=""><td>0,6</td><td><ld< td=""><td>0,3</td><td><ld< td=""><td>0,6</td></ld<></td></ld<></td></ld<></td></ld<>	0,4	<ld< td=""><td>0,6</td><td><ld< td=""><td>0,3</td><td><ld< td=""><td>0,6</td></ld<></td></ld<></td></ld<>	0,6	<ld< td=""><td>0,3</td><td><ld< td=""><td>0,6</td></ld<></td></ld<>	0,3	<ld< td=""><td>0,6</td></ld<>	0,6
Uranium	μg(U)/l	0,2 pour C1 à C4	0,3	0,4	0,3	0,3	0,3	0,3	0,3	0,3
Vanadium	μg(V)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,4</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,4</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,4</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,4</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,4</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,4</td></ld<></td></ld<>	<ld< td=""><td>0,4</td></ld<>	0,4
Zinc	μg(Zn)/l	2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>2</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>2</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>2</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	2	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

Les analyses sur les métaux ont été effectuées sur eau brute.

Plusieurs micropolluants minéraux sont présents dans l'eau en quantité plus ou moins importante :

- ✓ l'Arsenic est quantifié à toutes les campagnes entre 0,2 et 1,1 µg/l;
- ✓ le Cuivre est quantifié à toutes les campagnes entre 0,4 et 9,0 µg/l;
- ✓ le Fer et le Manganèse sont à très fortes concentrations dans le fond du lac en particulier en fin d'été : respectivement 3390 et 61 μ g/l.
- ✓ l'Uranium est présent dans les eaux à 0,3 µg/l.

La présence de fer et de manganèse dans les eaux du fond en campagnes estivales (surtout C3) atteste des conditions de désoxygénation (relargage de ces éléments depuis les sédiments en condition anoxique).

2.1.1.5. Micropolluants organiques

Le tableau 6 indique les micropolluants organiques qui ont été quantifiés lors des campagnes de prélèvements en 2009. La liste de l'ensemble des substances analysées est fournie en annexe 1.

Tableau 6: résultats d'analyses de micropolluants organiques présents sur eau

Toutes les valeurs quantifiées sont présentées dans le tableau 6. Cependant certaines valeurs pourront être qualifiées d'incertaines suite à la validation finale des résultats (cas des valeurs mesurées en DEHP, BTEX, Formaldéhyde, dont une contamination via la chaîne de prélèvement et/ou d'analyse de laboratoire est privilégiée).

Micropolluants organiques mis en évidence sur eau										
Lac d'	Lac d' Ilay		20/04	20/04/2009		10/06/2009		28/07/2009		9/2009
code plan d'eau :	V2035003	seuil quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
AMPA	μg/l	0,1 pour C1 à C4	<ld< td=""><td>0,16</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,16	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Aminotriazole	μg/l	0,05 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,16</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,16</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,16</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,16</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,16</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,16</td><td><ld< td=""></ld<></td></ld<>	0,16	<ld< td=""></ld<>
Atrazine	μg/l	0,02 pour C1 à C4	<ld< td=""><td><ld< td=""><td>présence</td><td>présence</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>présence</td><td>présence</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	présence	présence	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Benzène	μg/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,9</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,9</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,9</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,9</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,9</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,9</td><td><ld< td=""></ld<></td></ld<>	0,9	<ld< td=""></ld<>
Di(2-éthylhexyl)phtalate (DEHP)	μg/l	1 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>1</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>1</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>1</td><td><ld< td=""></ld<></td></ld<>	1	<ld< td=""></ld<>
Formaldéhyde	μg/l	1 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>3</td><td>5</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>3</td><td>5</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>3</td><td>5</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>3</td><td>5</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>3</td><td>5</td></ld<></td></ld<>	<ld< td=""><td>3</td><td>5</td></ld<>	3	5
Naphtalène	μg/l	0,02 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,02	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Toluène	μg/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td>0,3</td><td>0,3</td><td>0,2</td><td>0,2</td><td>0,7</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,3</td><td>0,3</td><td>0,2</td><td>0,2</td><td>0,7</td><td><ld< td=""></ld<></td></ld<>	0,3	0,3	0,2	0,2	0,7	<ld< td=""></ld<>
Tributylphosphate	μg/l	0,05 pour C1 à C4	0,16	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Xylène méta + para	μg/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,3</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,3</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,3	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Xylène ortho	μg/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td>0,2</td><td>0,3</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,2</td><td>0,3</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,2	0,3	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Xylènes (ortho, méta, para)	μg/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td>0,2</td><td>0,6</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,2</td><td>0,6</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,2	0,6	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

Des composés appartenant au groupe des pesticides : AMPA, Aminotriazole, Atrazine, Tributylphosphate sont présents ponctuellement dans les échantillons, en faible concentration.

Des composés de type BTEX : Benzène, Xylène, et Toluène ont été quantifiés à de faibles teneurs sur toutes les campagnes. Un HAP (le naphtalène) est quantifié sur l'échantillon du fond de la 2^{ème} campagne.

Le formaldéhyde est présent lors de la dernière campagne à des concentrations comprises entre 3 et $5 \mu g/l$. Cette molécule est très sensible aux conditions environnementales d'analyses et il est difficile d'assurer une précision de mesure lors des analyses. Il n'est pas exclu qu'il soit issu de la dégradation de la matière organique en conditions anoxiques (le formaldéhyde pouvant être produit naturellement lors de ce processus).

Enfin, le DEHP (Di(2-ethylhexyl)phtalate) est dosé lors de la 4^{ème} campagne à 1 μg/l.

2.1.2. Analyses des sédiments

2.1.2.1. Physicochimie des sédiments

Le tableau 7 fournit la synthèse de l'analyse granulométrique menée sur les sédiments prélevés.

Tableau 7 : synthèse granulométrique sur le sédiment du point de plus grande profondeur

Sédiment : composition granulométrique (%)						
Lac d' Ilay	08/09/2009					
code plan d'eau : V2035003	00/09/2009					
classe granulométrique (µm)	%					
0 à 2	0,9					
2 à 20	11,8					
20 à 50	18,1					
50 à 63	7,3					
63 à 200	47,5					
200 à 1000	11,3					
1000 à 2000	0,0					
> 2000	3,1					

Il s'agit de sédiments fins, de nature limono- sableuse de 2 à 1000 μ m à 97 % (présentant quelques débris grossiers).

Les analyses de physico-chimie classique menées sur la fraction solide (MS de particules < 2mm) et sur l'eau interstitielle du sédiment sont rapportées au tableau 8.

Eau interstitielle du sédiment : Physico-chimie							
Lac d'	Ilay	seuil quantification					
code plan d'eau :	V2035003		08/09/2009				
NH4+	mg(NH4)/l	0,5	5,25				
PO4	mg(PO4)/l	1,5	<ld< td=""></ld<>				
Phosphore Total	mg(P)/l	0,005	0,59				

Sédiment : Physico-chimie								
Lac d' Ilay seuil quantification								
code plan d'eau	: V2035003		08/09/2009					
Matières sèches minérales	% MS	0,3	78,1					
Perte au feu	% MS	0,3	21,9					
Matières sèches totales	%	0,3	23,3					
C.O.T.	mg(C)/kg MS	1	125400					
Azote Kjeldahl	mg(N)/kg MS	1	11350					
Phosphore Total	mg(P)/kg MS	0,5	1957,5					

Tableau 8 : Physicochimie classique des sédiments (matrice solide et eau interstitielle)

Dans les sédiments, la teneur en matière organique est très élevée avec plus de 21 %. La concentration en azote organique est également assez élevée. Le rapport C/N est de 11, ce qui indique que la matière organique récemment déposée est à prédominance macrophytique en voie de dégradation. La concentration en phosphore est proche de 2 g/kg MS, ce qui correspond à un stockage très important de phosphore dans les sédiments, lié à des apports aux saisons précédentes.

L'eau interstitielle contient les minéraux facilement mobilisables dans les sédiments. L'ammonium est en quantité moyenne alors que le phosphore total est élevée. NH₄⁺ provient de la dégradation de l'azote organique en conditions d'hypoxie ne permettant pas l'oxydation ultime vers les nitrates.

2.1.2.2. Micropolluants minéraux

Ils ont été dosés sur la fraction solide du sédiment.

Tableau 9 : résultats d'analyses de métaux sur sédiment

Sédiment : Micropolluants minéraux						
	Lac d' Ilay	seuil quantification				
code plan d'eau : V2035003		•	08/09/2009			
Aluminium	mg(Al)/kg MS	5	8300			
Bore	mg(B)/kg MS	0,2	13,4			
Fer total	mg(Fe)/kg MS	5	22500			
Mercure	mg(Hg)/kg MS	0,02	0,04			
Zinc	mg(Zn)/kg MS	0,2	90,4			
Antimoine	mg(Sb)/kg MS	0,2	1,2			
Argent	mg(Ag)/kg MS	0,2	0,5			
Arsenic	mg(As)/kg MS	0,2	12,5			
Baryum	mg(Ba)/kg MS	0,2	27,1			
Beryllium	mg(Be)/kg MS	0,2	0,3			
Cadmium	mg(Cd)/kg MS	0,2	0,7			
Chrome Total	mg(Cr)/kg MS	0,2	15,8			
Cobalt	mg(Co)/kg MS	0,2	2			
Cuivre	mg(Cu)/kg MS	0,2	12,1			
Etain	mg(Sn)/kg MS	0,2	3,6			
Manganèse	mg(Mn)/kg MS	0,2	143,1			
Molybdène	mg(Mo)/kg MS	0,2	1,2			
Nickel	mg(Ni)/kg MS	0,2	8,5			
Plomb	mg(Pb)/kg MS	0,2	43,2			
Sélénium	mg(Se)/kg MS	0,2	1,3			
Tellurium	mg(Te)/kg MS	0,2	<ld< td=""></ld<>			
Thallium	mg(Th)/kg MS	0,2	0,2			
Titane	mg(Ti)/kg MS	0,2	425,5			
Uranium	mg(U)/kg MS	0,2	1,2			
Vanadium	mg(V)/kg MS	0,2	40,5			

Tous les métaux sont quantifiés dans le prélèvement de sédiment. Les éléments aluminium et fer sont à des teneurs remarquables. L'analyse ne met pas en évidence de pollutions particulières en métaux lourds.

2.1.2.3. Micropolluants organiques

Le tableau 10 indique les micropolluants organiques qui ont été quantifiés dans les sédiments lors de la campagne de prélèvements en 2009. La liste de l'ensemble des substances analysées est fournie en annexe 2.

Tableau 10 : résultats d'analyses de micropolluants organiques présents sur sédiment

Sédiment : Micropolluants organiques mis en évidence						
Lac d'	Ilay	seuil quantification				
code plan d'eau : V2035003			08/09/2009			
Benzo (a) anthracène	μg/kg MS	10	51			
Benzo (a) pyrène	μg/kg MS	10	76			
Benzo (b) fluoranthène	μg/kg MS	10	212			
Benzo (ghi) pérylène	μg/kg MS	10	198			
Benzo (k) fluoranthène	μg/kg MS	10	80			
Di(2-éthylhexyl)phtalate (DEHP)	μg/kg MS	100	1802			
Chrysène	μg/kg MS	50	78			
Dibenzo (a,h) anthracène	μg/kg MS	20	185			
Fluoranthène	μg/kg MS	40	245			
Para-tert-octylphénol	μg/kg MS	10	102			
PCB totaux	μg/kg MS	5	5			
PCB101	μg/kg MS	1	2			
PCB138	μg/kg MS	1	présence			
PCB153	μg/kg MS	1	1			
PCB52	μg/kg MS	1	1			
Phénanthrène	μg/kg MS	50	102			
Pyrène	μg/kg MS	40	220			

Plusieurs substances sont mesurées dans l'échantillon de sédiments :

- ✓ des Hydrocarbures Aromatiques Polycycliques (10 substances) dont la somme des concentrations atteint près de 1,5 mg/kg;
- un indicateur plastifiant : le DEHP est quantifié à 1802 μg/kg MS. Cette concentration paraît relativement élevée comparativement aux valeurs obtenues sur les autres plans d'eau suivis dans le cadre du programme de surveillance sur les bassins Rhône-Méditerranée et Corse (il s'agit de la deuxième plus forte valeur obtenue sur les 46 plans d'eau suivis sur la période 2007-2009) ;
- ✓ des PCB (4 substances) sont mesurées à des concentrations faibles (somme=5 µg/kg);
- ✓ un composé de la famille des alkylphénols est également mesuré à une concentration relativement faible.

2.2. PHYTOPLANCTON

2.2.1. Prélèvements intégrés

Les prélèvements intégrés destinés à l'analyse du phytoplancton ont été réalisés en même temps que les prélèvements pour analyses physicochimiques. Sur le lac d'Ilay, la zone euphotique et la transparence mesurées sont représentées par le graphique de la figure 6. La transparence est moyenne, elle varie entre 2,5 et 4,2 m induisant des prélèvements sur une zone euphotique de 7 et 11 m lors des quatre campagnes réalisées.

Figure 6 : évolution de la transparence et de la zone euphotique aux 4 campagnes

La liste des espèces de phytoplancton par plan d'eau a été établie selon la méthodologie développée par le CEMAGREF: *Protocole standardisé d'échantillonnage*, *de conservation*, *d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en oeuvre de la DCE*, Mars 2009.

On fixe ci-après les règles qui ont été appliquées dans les dénombrements du peuplement phytoplanctonique, sur la base des considérations pratiques imposées par les observations au microscope :

La liste présente le nombre de cellules observées/ml, identifiées à l'espèce dans la mesure du possible. Dans certains cas, l'identification à l'espèce s'avère toutefois impossible :

- certains critères d'identification sont visibles uniquement en période de reproduction de l'algue (stade de sporulation) ;
- des individus peuvent être détériorés dans l'échantillon, ne permettant pas une identification précise.

Les cellules concernées sont alors identifiées au genre (*Mougeotia sp., Mallomonas sp...*), voire à la classe (ex : chlorophycées indéterminées, kystes de chrysophycées).

Plus spécifiquement, le groupe des "chlorophycées indéterminées" correspond à l'ensemble des "algues vertes" non identifiables parce que ces dernières sont dégradées, sont au stade végétatif ou plus fréquemment encore, sont sous la forme de cellules sphériques ou ovales qui peuvent être identifiées comme un grand nombre d'espèces dans les ouvrages de taxonomie. Par ailleurs, et par expérience, il s'avère que ces individus correspondent rarement à des espèces déjà identifiées dans le même échantillon.

De ces faits, il ressort que la création d'une ligne de taxon déterminé seulement au genre (par ex. : *Mallomonas, Mougeotia*) suivi de « sp » correspond très probablement à une, voire même plusieurs espèces supplémentaires distinctes de celles par ailleurs identifiées à l'espèce dans ce même échantillon. Ex : les cellules de *Mougeotia sp.* ainsi identifiées au genre n'appartiennent pas à l'espèce *Mougeotia gracillima* identifiée par ailleurs dans le même échantillon. Ce taxon ainsi identifié au genre doit donc être compté pour au minimum une espèce supplémentaire.

Cette méthodologie de comptage des taxons et espèces, basée sur ces considérations techniques, est très certainement celle qui minimise au mieux les distorsions entre nombre d'espèces véritablement présentes et nombre comptable d'espèces identifiables au vu de l'état des individus les représentant.

En somme, le nombre d'espèces apparaissant en bas de tableau est :

- ✓ premier nombre N (entre parenthèses) = nombre d'espèces strictement identifiées à ce niveau, fournissant une borne minimale de la diversité spécifique (valeur certaine) ;
- ✓ deuxième nombre N' = somme du nombre N d'espèces véritablement identifiées, augmenté de 1 espèce pour 1 taxon au genre (ou classe,...).

2.2.2. Liste floristique (nombre de cellules/ml)

Nb cellules /ml Date prélè				lèvement	
Groupe algal	Nom Taxon	20/04/2009	10/06/2009	28/07/2009	08/09/2009
Chlorophycées	Ankyra judayi			9	
1 7	Chlorella vulgaris	47	44	382	346
	Chlorophycées flagellées				
	indéterminées diam 2 - 5 μm	33			
	Chlorophycées flagellées				
	indéterminées diam 5 - 10 µm		40	100	137
	Chlorophycées indéterminées	109	47	100	55
	Chlorophycées ovales	10)	.,	209	200
	Didymocystis fina			36	200
	Didymocystis planctonica	7			
	Elakatothrix gelatinosa	·	18	55	
	Oocystis lacustris	15	10	55	
	Phacotus lendneri	10	4	- 55	9
	Scenedesmus parisiensis		44	73	36
	Tetraedron caudatum		7	27	82
	Tetraedron minimum	58	11	18	27
Chrysophycées	Bitrichia chodatii		4	10	
Jack Jack	Chrysolykos planctonicus	58	11		55
	Dinobryon acuminatum	4			
	Dinobryon bavaricum	11	22		
	Dinobryon divergens	7	84		27
	Dinobryon elegantissimum	· · · · · · · · · · · · · · · · · · ·	11		100
	Dinobryon pediforme		11		
				27	
	Dinobryon petiolatum		47	27	
	Dinobryon sertularia	4			
	Dinobryon sociale var. stipitatum	7	47	173	209
	Epipyxis minuta				9
	Erkenia subaequiciliata	160	40	100	464
	Kephyrion mastigophorum	131	40		9
	Kephyrion spirale	7			
	Ochromonas sp.	29	22	27	73
Cryptophycées	Cryptomonas marssonii		15		18
	Cryptomonas sp.	25	7	46	
	Rhodomonas minuta	36	22	18	18
	Rhodomonas minuta var.	33	178	228	64
	nannoplanctica	33	170	220	04
Cyanophycées	Anabaena bergii var. limnetica				64
	Aphanocapsa delicatissima		1310440		146
	Aphanocapsa planctonica		32761	6543	7817
	Aphanothece clathrata			6379	2402
	Microcystis flos-aquae		7	64	182
	Oscillatoria sp.	127			
	Planktolyngbya limnetica				846
	Planktothrix rubescens			182	
	Rhabdoderma lineare			637	9
Desmidiées	Cosmarium sp.	4			
	Spondylosium planum		51	36	9

	Nb cellules /ml	Date prélèvement					
Groupe algal	Nom Taxon	20/04/2009	10/06/2009	28/07/2009	08/09/2009		
Diatomées	Asterionella formosa	7					
	Aulacoseira islandica ssp.		7	27			
	helvetica						
	Aulacoseira sp.	58					
	Cyclotella costei		430	1693	846		
	Cyclotella sp.		22				
	Diatomées centriques						
	indéterminées	808					
	Stephanodiscus sp.			46	9		
	Surirella sp.				9		
Dinophycées	Gymnodinium helveticum	7	7	9			
	Gymnodinium lantzschii	15	33	9	18		
	Gymnodinium sp.				9		
	Peridiniopsis edax		40	9			
	Peridinium willei	4	4				
Total	nombre cellules/ml	1813	1344577	17318	14306		
	diversité taxonomique N espèces	24	30	27	28		
	diversité taxonomique N'	27	34	30	32		

Tableau 11: Liste taxonomique du phytoplancton

2.2.3. Évolutions saisonnières des groupements phytoplanctoniques

Les échantillons destinés à la détermination du phytoplancton sont constitués d'un prélèvement intégré sur la zone euphotique (équivalant à 2,5 fois la transparence lors de la campagne). Les graphiques suivants présentent la répartition du phytoplancton par groupe algal en cellules/ml puis en biovolume en mm³/l lors des quatre campagnes.

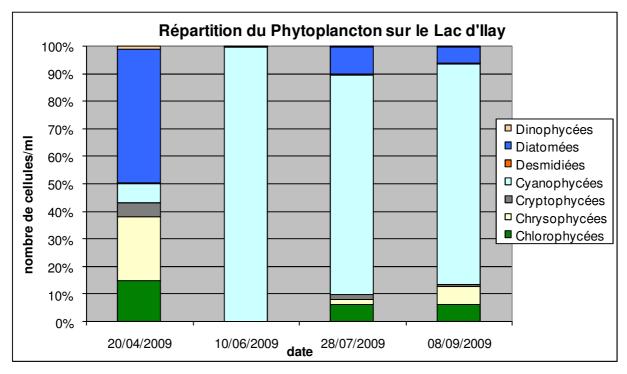


Figure 7: répartition du phytoplancton par groupe algal, en nombre de cellules

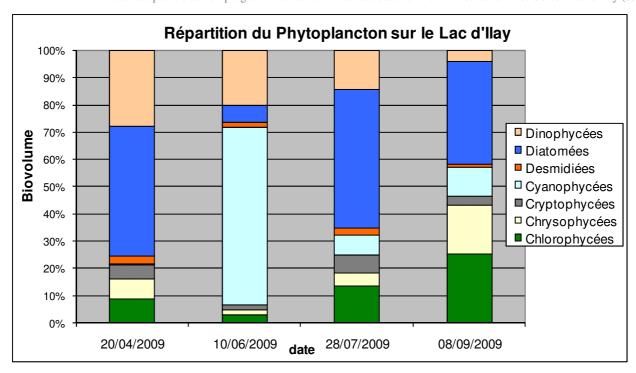


Figure 8: répartition du phytoplancton par groupe algal, en biovolumes

Le peuplement phytoplanctonique est peu abondant lors de la 1^{ère} campagne ; par contre, on note en campagne 2, un développement très important de petites Cyanophycées de l'espèce *Aphanocapsa delicatissima* (plus d'1 million de cellules mais qui représentent un biovolume de 1,5 mm³/l). L'abondance est assez élevée lors des campagnes suivantes avec encore la présence de petites cyanophycées. La diversité taxonomique est élevée, comprise entre 24 et 30 espèces.

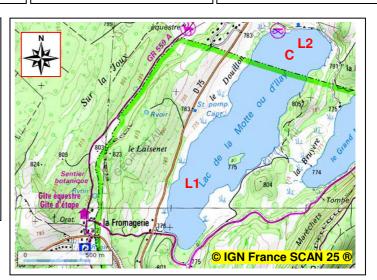
En fin d'hiver, le peuplement est dominé par les diatomées centriques et quelques grosses Dinophycées du genre *Gymnodinium*. Au printemps, les Cyanophycées dominent le milieu avec l'*espèce Aphanocapsa delicatissima*, petite espèce qui colonise les eaux riches en nutriments, accompagnée par *Aphanocapsa planctonica*. Les Cyanophycées se maintiennent en juillet avec le développement d'une autre espèce *Aphanothece clathrata*, elles sont devancées par les Diatomées *Cyclotella costei*. Les Chlorophycées colonisent le milieu avec *Chlorella vulgaris*. La répartition du peuplement est assez similaire en fin d'été.

Globalement, la production algale indique un milieu bien eutrophisé avec des teneurs en azote limitantes, favorables au développement des Cyanophycées. L'Indice phytoplanctonique à partir des biovolumes est de 42, correspondant à un milieu mésotrophe. L'IPL calculé à partir de l'abondance cellulaire est de 70,3, qualifiant le milieu d'eutrophe.

2.3. **OLIGOCHETES**

2.3.1. Conditions de prélèvements

Nom (dépt): Ilay (lac d') - 39


Type: plan d'eau naturel

Code PE: V2035003 Code ME: FRDL25

Coordonnées GPS (Lambert II étendu) X-Y des points :

L1 (latéral 1): 872234 - 2186309 C (centre): 872870 - 2187296 L2 (latéral 2): 872997 - 2187333

Caractéristiques:

L1	\mathbf{C}	1.2
LI		LZ

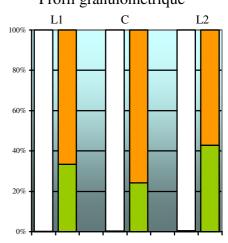
> Prélèvements

Date
Heure
Prof (m)
Nombre et type de benne
Surface (m²)

2 septembre 2009				
13h30	8h30	11h00		
15	30,1	15		
4 Ekman	3 Ekman	4 Ekman		
0,084	0,063	0,084		

Profil granulométrique

Remplissage de la benne


> **Sédiments** (les volumes sont donnés en ml)

Odeur
Vol. total
Vol. < 0,5 mm (fines)
Vol.> 0,5 mm (débris)
Vol. 0,5 à 5 mm, organique
Vol. 0,5 à 5 mm, minéral
Vol. > 5 mm, organique
Vol. > 5 mm, minéral

légère	légère	légère
15150	11500	14250
15135	11467	14180
15	33	70
10	25	40
0	0	0
5	8	30
0	0	0

gris-noir

gris-beige

Particularités (conditions extérieures remarquables, écart au protocole...):

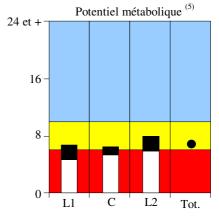
gris-noir

RAS

Couleur

Commentaires:

- Le taux de remplissage de la benne est maximal (100%) sur les trois points de prélèvement
- Les débris sont peu abondants (< 10%) et sont dominés par la fraction organique fine sur les trois points de prélèvement


2.3.2. Liste faunistique des oligochètes

Liste faunistique (oligochètes) et indice IOBL

Nom: Ilay (lac d')	Type : plan d'eau naturel	Date : 2 septembre 2009					
	Taxon	Code Sandre	I (1)	Lat 1	Centre (Zmax)	Lat 2. I	90% Zmax
Naididae	Limnodrilus hoffmeisteri	2991	m	1			
	Naididae ASC immat.	5231	a	25	34	60	53
	Naididae SSC immat.	5230	a	1		2	
	Potamothrix hammoniensis	9795	m			13	
	Tubifex tubifex	946	m		2		3
	Nombre de taxons = $S^{(2)}$				1	2	1
	Nombre d'oligo	27	36	75	56		
	Nombre d'oligochètes récoltés				36	75	56
Paramètres faunistiques	Surface échantillonnée (m²)			0,084	0,063	0,084	0,168
	Densité en oligochètes (pour 0,1 m²) = D			32	57	89	33
	Indice IOI	6,6	6,3	7,9	5,6		
	Indice IC				6,8		

Commentaires:

- Le potentiel métabolique des sédiments est globalement moyen et il varie peu entre les différents points de prélèvements. A 90% de la profondeur maximale, le potentiel métabolique est proche de celui prévalant à la profondeur maximale
- Pas d'espèces figurant sur la liste des oligochètes sensibles à la pollution en annexe C de la Norme NF T90-391.

Remarques:

- (1) Identification possible du taxon à tous les stades (a) ou seulement à l'état mature (m)
- (2) S est le nombre minimal possible de taxons parmi les 100 oligochètes comptés. Ainsi, Naididae ASC immat. (identification généralement limitée par le caractère immature de l'individu) sera comptabilisé comme un taxon uniquement en cas d'absence d'autres Naididae ASC identifiables seulement au stade mature.
- (3) Indice IOBL par site = S + 3log10 (D+1) où S = nombre de taxons parmi les oligochètes comptés et <math>D = densité en oligochètes pour 0,1 m².
- (4) Indice IOBL global = ½(IOBLcentre) + ¼(IOBLlat1) + ¼(IOBLlat2). Il s'agit donc de la moyenne entre l'indice IOBL de la zone centrale profonde et l'indice IOBL des zones latérales, ce dernier indice étant égal à la moyenne des indices IOBL des deux zones latérales (lat 1 et lat2)
- (5) Le graphique représente les valeurs de l'indice IOBL (ordonnée) dans les différents sites (abscisse). La partie noire des histogrammes correspond à la part "richesse" de l'indice IOBL (S) alors que la partie blanche indique la part "densité" de l'indice (3 log₁₀ (D+1))

2.4. INDICE MOLLUSQUES

2.4.1. Informations générales

Plan d'eau : lac d'Ilay	Code lac : V2035003				
Commune : Le Frasnois	Département : Jura (39)				
Type: Plan d'eau naturel					
Date de prélèvement : 02/09/2009	Heure de prélèvement : 8h00 – 15h00				
Coordonnées GPS (RGF93): 05°54'05" E - 46°37'48" N (point central)					
Altitude: 775 m Profondeur maximale: 30 m					
Organisme demandeur : Agence de l'Eau Rhône-Méditerranée & Corse					
Finalité de l'étude : Etude des lacs du RCS du district Rhône-Méditerranée					
Echantillon prélevé par : Jean WUILLOT					
Echantillon trié et déterminé par : Pâquerette DESSAIX					

2.4.2. Localisation des points de prélèvements

carte 2 : localisation des prélèvements de sédiments pour la détermination des mollusques

Prélèvements	M1	L1	C1	C2	L2	M2
Caractéristiques Prélèvements						
coordonnées X (Lambert2Etendu)	872031	872159	872860	872794	872937	873012
coordonnées Y (Lambert2Etendu)	2185994	2186335	2187218	2187359	2187378	2187481
Date	02/09/09	02/09/09	02/09/09	02/09/09	02/09/09	02/09/09
Heure	15h00	13h30	9h00	9h30	11h00	10h30
Profondeur (m)	3	15	26	26,5	15	3
Technique	Benne d'Ekmann	Benne d'Ekmann	Benne d'Ekmann	Benne d'Ekmann	Benne d'Ekmann	Benne d'Ekmann
Nombre de bennes	5	5	5	5	5	5
Surface (m2)	0,1	0,1	0,1	0,1	0,1	0,1

La benne Ekman permet l'échantillonnage d'une surface de 0.21 m^2 , soit pour 5 bennes : 0.105 m^2 . Compte tenu des approximations de mesures et d'échantillonnages de la benne (perte de matériaux, remplissage partiel,...), la surface totale échantillonnée est arrondie à 0.1 m^2 .

2.4.3. Liste faunistique et résultats de l'indice IMOL

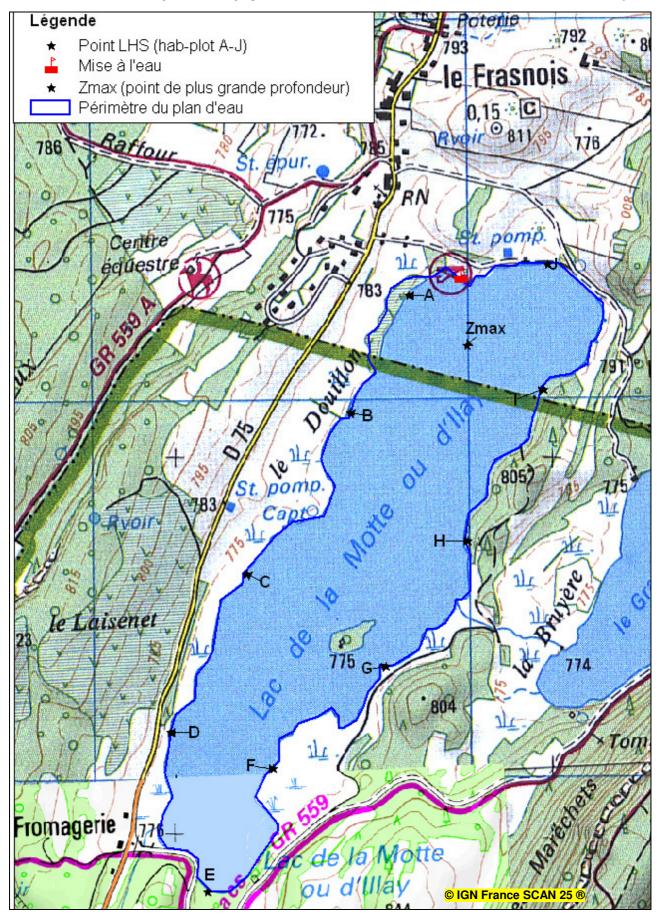
Profondeurs théoriques des prélèvements			Ilay				
C = 90 % prof. max	code lac			V203	35003		
L : lat = 10 à 20 m	Date d'échantillonnage			02/09	/2009		
M : zone littorale = 3 à 5 m	Points de prélèvements	M1	M2	L1	L2	C1	C2
	Profondeurs (m)	3	3	15	15	26	26,5
BIVALVES							
CORBICULIDAE	Corbicula fluminea						
DREISSENIDAE	Dreissena polymorpha						
SPHAERIDAE	Pisidium spp. (+ Sphaerium spp.)	31	32				
UNIONIDAE	Anodonta anatina						
GASTEROPODES							
BITHYNIIDAE	Bithynia tentaculata						
HYDROBIIDAE	Potamopyrgus antipodarum						
LYMNAEIDAE	Radix sp.						
VALVATIDAE	Valvata piscinalis	2	3				
Nb d'individus par station	(surface totale : 0,1m²)	33	35	0	0	0	0
Richesse taxonomique		2	2	0	0	0	0

	Ilay
IMOL	2

Les mollusques ne sont observés que dans les prélèvements à faible profondeur. Deux taxons seulement sont repérés. Les conditions de désoxygénation du milieu dans les zones profondes en lien avec la richesse des sédiments en matières organiques sont peu favorables au développement des mollusques. La note IMOL indique une qualité médiocre du milieu (IMOL = 2/8).

2.5. Hydromorphologie

2.5.1. Déroulement des investigations


Le lac d'Ilay est un lac naturel d'origine glaciaire et tectonique. Le bassin versant du plan d'eau est essentiellement constitué de prairies et de zones humides. La reconnaissance hydromorphologique a été réalisée le 28 juillet 2009 en même temps que la campagne physicochimique estivale et l'étude des macrophytes.

La méthode utilisée est le Lake Habitat Survey (LHS), elle aboutit au calcul de deux indices :

- ✓ LHMS : évaluation de l'altération du milieu ;
- ✓ LHQA : évaluation de la qualité des habitats du lac.

La localisation des points d'observations sur le lac est présentée sur la carte 3.

Les vues sur les 10 points d'observations sont fournies dans la suite du document (Figure 9).

carte 3: localisation des points d'observation LHS sur le Lac d'Ilay (éch : $1/10\ 000^{\rm e}$)

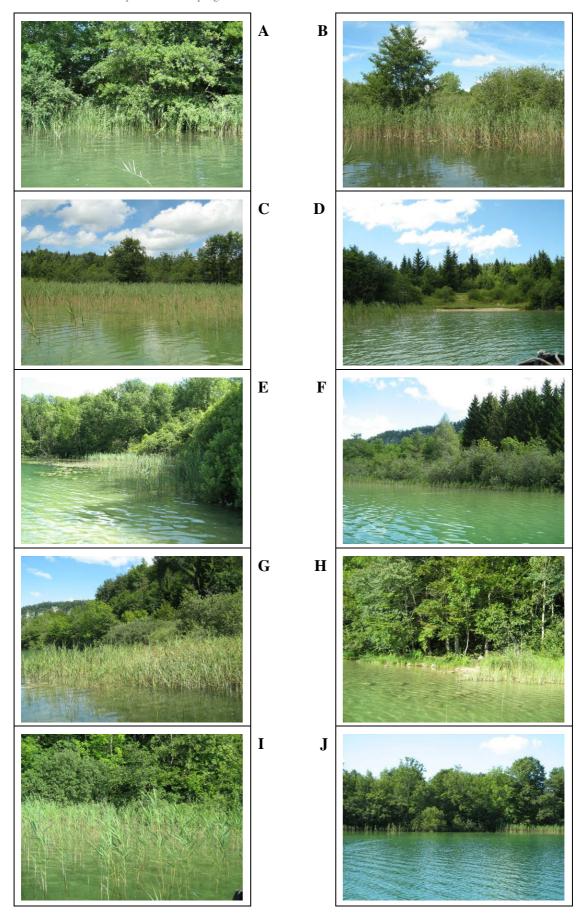


Figure 9 : Photos des 10 points d'observation LHS

2.5.2. Résultats : indices de qualité des habitats et de l'altération morphologique

Le lac d'Ilay présente des rives majoritairement naturelles, à plus de 90% :

- ✓ habitats humides constitués de roselières, prairie humide et tourbières : 82% du littoral ;
- ✓ forêts de conifères : 10% du périmètre ;

et quelque zones artificialisées : plage, port estimés à 8% du périmètre.

Les berges du lac sont naturelles, essentiellement en zone humide. Globalement, l'altération du milieu est modérée sur le lac (LHMS = 24/42) avec cependant beaucoup de dépôts vaseux en zone littorale.

La zone littorale présente une diversité importante, avec de belles roselières et des herbiers aquatiques. Les substrats sont variés aussi bien sur les berges que dans l'eau. La qualité des habitats apparaît bonne (LHQA = 76/112).

Figure 10 : vues générales sur le lac

LHS - Fiche de synthèse

Caractéristiques générales du lac Nom du lac llay V2035003 Code lac Date 28-juil-09 Points d'observation 10 AEP/irrigation Usage principal Type lacustre N4 Prise(s) d'eau 1 Surface du lac (km2) 0,71 Périmètre du lac (m) 4910 5,25 Surface BV (km2) Altitude (m) 774 0,5 Marnage max (m) Profondeur max (m) 32

Ouvrages hydrauliques	1	Exploitation forestière	0	Décharge, poubelles	0
éléments libres	0	Prairie de fauche	3	Exploitation minière	0
éléments liés	0	Cultures	0	Route, voie ferrée, chemin	2
Protection de berges par		Vergers	0	Jardins, parcs	3
des méthodes douces	0	Erosion	0	Plages (baignade)	3
Ports et marinas	0	Zone résidentielle	0	Plantations de conifères	0
Activités commerciales	0	Aire de jeux	1	Camping, caravaning	0
Épandage	0				

Points d'observation

Nombre de points d'observation présentant:

une grève 3 une occupation naturelle du sol 9 des espèces nuisibles (sur berges et /ou sur littoral) 0 un talus de berge 3 des macrophytes 9

	Zones humides et autres habitats %				
Roselière	37	Tapis de flottants	0	Forêt feuillus/mixte	18
Bois humide	29	Surface en eau	0	Forêt de conifères	6
Tourbière	13	Prairie	3	Lande	0
Marécage/marais	0	Autre espace humide	0	Rochers, dunes	0

LHMS		LHQ	A
Score LHMS	24 /42	Score LHQA	76 /112
Modification de la grève	0 /8	Berges	13 /20
Usage intensif de la grève	4 /8	Plage/grève	12 /24
Pressions sur le lac	6 /8	Zone littorale	26 /32
Hydrologie (ouvrage)	8 /8	Lac	25 /36
Transport solide	6 /6		
Espèces exotiques	0 /4		

2.6. MACROPHYTES

2.6.1. Choix des unités d'observations

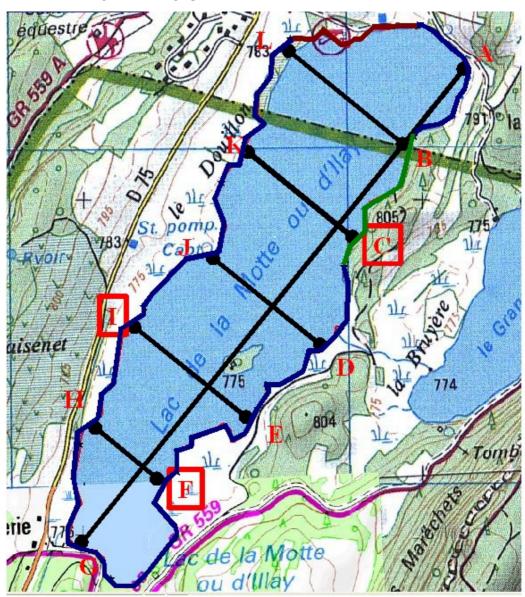
Le positionnement des unités d'observation est déterminé avec la méthode de Jensen. Pour le lac d'Ilay (ou de La Motte), 5 profils² perpendiculaires à la plus grande longueur du plan d'eau ont été représentés, soit 10 points contacts potentiels auxquels s'ajoutent les 2 points correspondant au point de départ et d'arrivée de cette ligne de base.

Le protocole d'échantillonnage s'appuie sur le type de rives recensées sur le plan d'eau, et la largeur de la zone littorale (profondeur de colonisation des végétaux). Sur le lac d'Ilay, 3 types de rives ont été observés, une appréciation du recouvrement est donnée en % du périmètre total :

- ✓ Type 1 ; zones humides caractéristiques : 82% ;
- ✓ Type 2 ; zones rivulaires colonisées par une végétation arbustive ou arborescente non humide : 10% ;
- ✓ Type 4 ; zones artificialisées ou subissant des pressions anthropiques visibles : 8%.

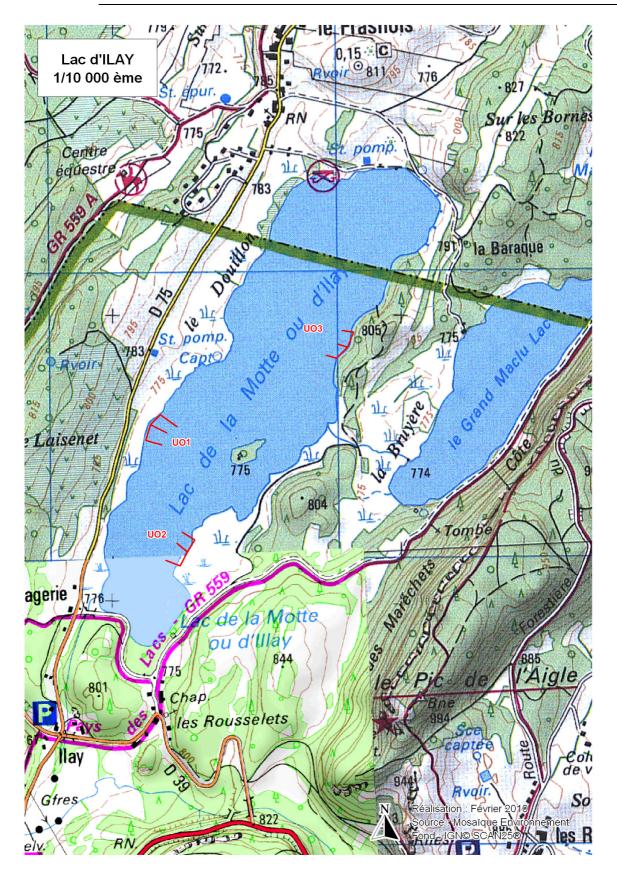
La transparence est assez élevée sur le lac d'Ilay, avec 3,6 m mesuré au disque de Secchi. La zone euphotique atteint donc une profondeur de 9 m, la largeur de la zone littorale euphotique est considérée comme importante (type a) sur toutes les rives du lac, sauf dans sa partie nord-est en zone forestière, où la pente est forte.

La superficie du plan d'eau étant de 73 ha; 3 unités d'observation ont été sélectionnées selon leur représentativité d'un type de rive soit :


- ✓ UO 1 : 1 unité de type 1a (bas-marais) ;
- ✓ UO 2 : 1 unité de type 1a (zone humide) ;
- ✓ UO 3: 1 unité de type 2b (zone boisée).

Pour chaque UO, le choix a porté sur un secteur exclusivement constitué d'un type de rive (sur 100 m minimum), accessible, à l'exclusion des arrivées de tributaires, et des singularités. Le type 4 n'a pas été représenté compte tenu du faible linéaire concerné, et de la singularité du site : port abrité, plage à l'extrémité du lac. Le secteur n'est pas homogène.

Les relevés de terrain ont été menés lors d'une campagne réalisée le 28 juillet 2009. Le niveau d'eau était plutôt "bas", 10 cm de marnage sont observables. Le vent était nul à faible lors de l'intervention.


Une carte indiquant la position de chaque unité d'observation et le recouvrement des types de rives est présentée en page suivante.

² Le nombre de profils est défini selon la surface du lac et son périmètre.

Légende Lac d'Ilay Type de rives 1 - zone humide 400 m 100 200 2 - végétation arbustive/arborescente 3 - végétation herbacée/absente 4 - zones artificielles © IGN France SCAN 25® quadrillage Jensen site potentiel d'étude Carte de localisation des unités d'observation pour l'étude des macrophytes aquatiques station préselectionnée

2.6.2. Carte de localisation des unités d'observations

2.6.3. Végétation aquatique identifiée

Le lac est bordé de milieux naturels (prairies, bas-marais, forêts mésohygrophiles). Le recouvrement global de macrophytes sur le lac est estimé entre 20 à 30% de la surface du plan d'eau.

Le lac d'Ilay abrite une bonne diversité d'espèces. On y observe de grandes surfaces de roselières à Roseau commun, de roselières à Marisque (cladiaies) ainsi que des herbiers aquatiques (herbiers de nénuphar blanc et jaune et herbiers de characées).

UO1:

La première unité d'observation située sur la berge Ouest est réalisée dans une zone de bas-marais alcalin à *Cladium mariscus*. On y observe en berges de nombreuses espèces des bas-marais alcalins telles que *Carex davalliana*, *Gentiana pneumonanthe*, *Molinia arundinacea*, etc. ainsi que quelques bryophytes: *Callergionella cuspidata*, *Palustriella commutata* ou encore *Fissidens adanthioides*.

Dès les premiers centimètres, quelques algues sont présentes en croûte telles que *Lyngbya sp*. de même que quelques characées comme *Chara contraria*.

Sur le transect, on observe une roselière à roseau commun mêlé de *Carex rostrata* jusqu'à 0,7m de profondeur.

Entre 1,2 et 2,2 m de profondeur, sur le substrat vaseux, apparaissent quelques tapis de *Nuphar lutea* assez denses (*cf. photo ci-dessus*).

UO2:

La seconde unité d'observation est réalisée au Sud-Est du lac dans une zone humide.

La zone littorale est marquée par une cariçaie à *Carex rostrata* jusqu'à 0,3 m puis par une roselière à Roseau commun et *Scirpus lacustris* jusqu'à 0,8 m de profondeur.

Aucun herbier aquatique n'a été observé ensuite si ce n'est une petite touffe d'une espèce de *Chara* isolée. Des algues sont également observées : algues filamenteuses avec *Mougeotia sp.* et *Zygnema sp* ; ainsi que des cyanobactéries avec *Oscillatoria sp.* et *Lyngbya sp.*

UO3:

La troisième et dernière unité d'observation est localisée en rive Nord-Est dans une zone boisée. La zone littorale est marquée par une cariçaie à *Carex rostrata* jusqu'à 0,3 m puis par une roselière à Roseau commun et *Scirpus lacustris* jusqu'à 0,9 m de profondeur.

Aucun herbier aquatique n'a été observé ensuite si ce n'est une petite touffe d'une espèce de *Chara* isolée ainsi qu'une touffe de *Fontinalis antipyretica*.

2.6.4. Liste des espèces protégées et des espèces invasives

Aucune espèce végétale invasive n'a été observée sur le lac.

Une seule espèce protégée a été observée en zone littorale : la gentiane pneumonanthe : *Gentiana pneumonanthe (cf. photo ci-contre)*.

2.6.5. Approche du niveau trophique du plan d'eau

Parmi les hélophytes observés, les cladiaies (roselière à *Cladium mariscus*) représentent des groupements végétaux calcaires oligotrophes bien présents en zone littorale. Les roselières à Roseau commun sont très bien développées sur le lac. Elles sont sensibles aux variations de niveau d'eau importantes.

Concernant les herbiers aquatiques, les tapis de nénuphar blanc et jaune sont également bien développés. Ils sont sensibles à l'eutrophisation et aux variations de niveau d'eau. Les herbiers de characées sont en revanche très relictuels et très peu fournis.

Les espèces de macrophytes observées sur le lac traduisent un niveau de trophie du lac moyen.

2.6.6. Relevés des unités d'observations

Les relevés des 3 unités d'observations réalisés ont été reportés dans le formulaire de saisie version 3 élaboré par le CEMAGREF. Les 3 fichiers sont disponibles sur demande.

3. Interpretation globale des resultats

Les résultats acquis durant le suivi annuel ont été interprétés en termes d'état écologique (ou de potentiel écologique pour les plans d'eau d'origine anthropique) et d'état chimique selon les critères et méthodes d'évaluation décrites dans l'arrêté du 25 janvier 2010.

Ces résultats ont également été traités en terme de niveau trophique à l'aide des outils de la diagnose rapide (Cemagref, 2003).

Les résultats de ces deux approches sont présentés dans le document complémentaire : Note synthétique d'interprétation des résultats.

✓ Critères d'applicabilité de la diagnose rapide

La diagnose rapide vise à évaluer l'état trophique des lacs et à mettre en évidence les phénomènes d'eutrophisation. Elle fait appel au principe fondamental du fonctionnement des lacs qui suppose qu'il existe un lien entre la composition physico-chimique à l'époque du mélange hivernal et les phénomènes qu'elle est susceptible d'engendrer dans les divers compartiments de l'écosystème au cours de la période de croissance végétale qui lui succède.

Cette méthode est donc adaptée aux plans d'eau qui **stratifient durablement en été** et exclut les plans d'eau **au temps de séjour réduit** (CEMAGREF, 1990, 2003) et les lacs dont la profondeur moyenne est **inférieure à 3 m**.

Le lac d'Ilay est un lac d'une profondeur moyenne de 10,7 m. La masse d'eau stratifie durablement en été avec en 2009 une stratification marquée de mai à septembre.

Il s'agit d'un lac dimictique qui stratifie également en période hivernale avec un gel en surface (de décembre à mars) en raison de son contexte géoclimatique. En 2009, le dégel a eu lieu début avril.

Le temps de séjour sur le lac est long, il est évalué à 330 jours.

En revanche, du fait de l'importance du recouvrement en macrophytes sur le lac d'Ilay, on se trouve en limite du champ d'application de la diagnose rapide

Le lac d'Ilay répond néanmoins aux exigences pour appliquer la diagnose rapide sur l'année 2009.

NB : La 1^{ère} campagne ayant été légèrement tardive, on note un léger réchauffement des eaux dès la campagne de fin d'hiver qui s'accompagne d'un début de stratification. On constate également que la ré-oxygénation des couches profondes n'a pas été complète.

gence de l'Eau Rhône - Méditerranée & Corse
Etude des plans d'eau du programme de surveillance des bassins Rhône- Méditerranée et Corse –Lac d'Ilay (39)

4. ANNEXES

Annexe 1 : Liste des micropolluants analysés sur eau

Code			Code		
SANDRE	Libel_param	Famille composés	SANDRE	Libel_param	Famille composés
5474	4-n-nonylphénol	Alkylphénols	1118	Benzo (ghi) Pérylène	HAP
1957	Nonylphénols	Alkylphénols	1117	Benzo (k) Fluoranthène	HAP
1920	p-(n-octyl)phénols	Alkylphénols	1476	Chrysène	HAP
1958	Para-nonylphénols ramifiés	Alkylphénols	1621	Dibenzo (ah) Anthracène	HAP
1959	Para-tert-octylphénol	Alkylphénols	1191	Fluoranthène	HAP
1593	Chloroaniline-2	Anilines et Chloroanilines	1623	Fluorène	HAP
1592	Chloroaniline-3	Anilines et Chloroanilines	1204	Indéno (123c) Pyrène	HAP
1591	Chloroaniline-4	Anilines et Chloroanilines	1619	Méthyl-2-Fluoranthène	HAP
1589	Dichloroaniline-2,4	Anilines et Chloroanilines	1618	Méthyl-2-naphtalène	HAP
1114	Benzène	BTEX	1517	Naphtalène	HAP
1602	Chlorotoluène-2	BTEX	1524	Phénanthrène	HAP
1601	Chlorotoluène-3	BTEX	1537	Pyrène	HAP
1600	Chlorotoluène-4	BTEX	1370	Aluminium	Métaux
1497	Ethylbenzène	BTEX	1376	Antimoine	Métaux
1633	Isopropylbenzène	BTEX	1368	Argent	Métaux
1278	Toluène	BTEX	1369	Arsenic	Métaux
5431	Xylène (ortho+meta+para)	BTEX	1396	Baryum	Métaux
1292	Xylène-ortho	BTEX	1377	Beryllium	Métaux
1955	Chloroalcanes C10-C13	Chloroalacanes	1362	Bore	Métaux
1467	Chlorobenzène (Mono)	Chlorobenzènes	1388	Cadmium	Métaux
1165	Dichlorobenzène-1,2	Chlorobenzènes	1389	Chrome	Métaux
1164	Dichlorobenzène-1,3	Chlorobenzènes	1379	Cobalt	Métaux
1166	Dichlorobenzène-1,4	Chlorobenzènes	1392	Cuivre	Métaux
1199	Hexachlorobenzène	Chlorobenzènes	1380	Etain	Métaux
1888	Pentachlorobenzène	Chlorobenzènes	1393	Fer	Métaux
1631	Tétrachlorobenzène-1,2,4,5	Chlorobenzènes	1394	Manganèse	Métaux
1630	Trichlorobenzène-1,2,3	Chlorobenzènes	1387	Mercure	Métaux
1283	Trichlorobenzène-1,2,4	Chlorobenzènes	1395	Molybdène	Métaux
1629	Trichlorobenzène-1,3,5	Chlorobenzènes	1386	Nickel	Métaux
1774	Trichlorobenzènes	Chlorobenzènes	1382	Plomb	Métaux
1469	Chloronitrobenzène-1,2	Chloronitrobenzènes	1385	Sélénium	Métaux
1468	Chloronitrobenzène-1,3	Chloronitrobenzènes	2559	Tellurium	Métaux
1470	Chloronitrobenzène-1,4	Chloronitrobenzènes	2555	Thallium	Métaux
1617	Dichloronitrobenzène-2,3	Chloronitrobenzènes	1373	Titane	Métaux
1615	Dichloronitrobenzène-2,5	Chloronitrobenzènes	1361	Uranium	Métaux
1614	Dichloronitrobenzène-3,4	Chloronitrobenzènes	1384	Vanadium	Métaux
2915	BDE100	Diphényléthers bromés	1383	Zinc	Métaux
2912	BDE153	Diphényléthers bromés	1135	Chloroforme (trichlorométhane)	OHV
2911	BDE154	Diphényléthers bromés	2611	Chloroprène	OHV
2920	BDE28	Diphényléthers bromés	2065	Chloropropène-3	OHV
2919	BDE47	Diphényléthers bromés	1160	Dichloréthane-1,1	OHV
2916	BDE99	Diphényléthers bromés	1161	Dichloréthane-1,2	OHV
1815	Décabromodiphényléther	Diphényléthers bromés	1162	Dichloréthylène-1,1	OHV
2609	Octabromodiphénylether	Diphényléthers bromés	1163	Dichloréthylène-1,2	OHV
1921	Pentabromodiphényléther	Diphényléthers bromés	1456	Dichloréthylène-1,2 cis	OHV
1465	Acide monochloroacétique	Divers	1727	Dichloréthylène-1,2 trans	OHV
1753	Chlorure de vinyle	Chlorure de vinyles	1168	Dichlorométhane	OHV
2826	Diéthylamine	Divers	1652	Hexachlorobutadiène	OHV
2773	Diméthylamine	Divers	1271	Tétrachloréthane-1,1,2,2	OHV
1494	Epichlorohydrine	Divers	1272	Tétrachloréthylène	OHV
1453	Acénaphtène	HAP	1276	Tétrachlorure de C	OHV
1622	Acénaphtylène	HAP	1284	Trichloréthane-1,1,1	OHV
1458	Anthracène	HAP	1285	Trichloréthane-1,1,2	OHV
1082	Benzo (a) Anthracène	HAP	1286	Trichloréthylène	OHV
1115	Benzo (a) Pyrène	HAP	1771	Dibutylétain	Organostanneux complets
1116	Benzo (b) Fluoranthène	HAP	1936	Tétrabutylétain	Organostanneux complets

page 1/2

SANDRE Libel param	Code			Code		1
1977	SANDRE	Libel_param	Famille_composés	SANDRE	Libel_param	Famille composés
1242 PCB 101	2879	Tributylétain-cation	Organostanneux complets	1187	Fénitrothion	Pesticides
1244 PCB 118	1779	Triphénylétain	Organostanneux complets	1967	Fénoxycarbe	Pesticides
1244 PCB 139	1242	PCB 101	PCB	2022	Fludioxonil	Pesticides
1949 PCB 189	1243	PCB 118	PCB	1765	Fluroxypyr	Pesticides
1949 PCB 189 PCB	1244	PCB 138	PCB	2547	Fluroxypyr-meptyl	Pesticides
1099 PCB 169 PCB 1702 Formadelryde Pesticides 1224 PCB 160 PCB 1506 150		PCB 153				
1239 PGB 28 PGB 1200 HCH alpha Pesticides 1214 PCB 25 PCB 1201 HCH bota Pesticides 1201 PCB 27 PCB 1202 HCH delta Pesticides 1203 HCH quarma Pesticides 1203 HCH quarma Pesticides 1205 HCH quarma Pesticides 1206 Hordon Pesticides 1206 Hordon Pesticides 1206 Hordon Pesticides 1207 Isodrine Pesticides 1207 Isodrine Pesticides 1207 Isodrine Pesticides 1208 Hambad Cyhsiothrine Pesticides 1209 Limuron Pesticides 1209 Metallarion Pesticides 1209 Limuron Pesticides 1209 Metallarion Pesticides 1209 Limuron Pesticides 1209 Metallarion Pesticides		PCB 169	PCB	1702	Formaldéhyde	
1239 PGB 28 PGB 1200 HCH alpha Pesticides 1214 PCB 25 PCB 1201 HCH bota Pesticides 1201 PCB 27 PCB 1202 HCH delta Pesticides 1203 HCH quarma Pesticides 1203 HCH quarma Pesticides 1205 HCH quarma Pesticides 1206 Hordon Pesticides 1206 Hordon Pesticides 1206 Hordon Pesticides 1207 Isodrine Pesticides 1207 Isodrine Pesticides 1207 Isodrine Pesticides 1208 Hambad Cyhsiothrine Pesticides 1209 Limuron Pesticides 1209 Metallarion Pesticides 1209 Limuron Pesticides 1209 Metallarion Pesticides 1209 Limuron Pesticides 1209 Metallarion Pesticides	1246	PCB 180	PCB	1506	Glyphosate	Pesticides
1241 PCB 52 PCB 1202 HCH beta Pesticides PcB 1221 PCB 52 PCB 1202 HCH delta Pesticides PcB 77 PCB 2046 HCH epsilon Pesticides PcB 77 PCB 2046 HCH epsilon PcB 77 PcB 1221 PcB 77 P						
1201						
1091 PCB 77						
1141						
1405 Hexaconazole Pesticides 1405 Hexaconazole Pesticides 1932 2 Hydrory-atraizin Pesticides 1207 Imidaclopride Pesticides 1208 Imidaclopride Pesticides 1207 Imidaclopride Pesticides 1207 Isodrine Pesticides 1207 Isodrine Pesticides 1208 Isogroutron Pesticides 1209 Inuron Pesticides 1210 Inuron Pesticides 1220 Inuron Pesticides 1221 Inuron Pesticides 1221 Inuron Pesticides 1222 Inuron Pesticides 1223 Inuron Pesticides 1224 Inuron Pesti						
1832 Z-Hydroxy-atraine Pesticides 1877 Imidaclopride Pesticides 1903 Action Pesticides 1206 Iprodoine Pesticides 1207 Isodrine Pesticides 1208 Isoproturon Pesticides 1350 Kresoxim méthyl Pesticides 1350 Kresoxim méthyl Pesticides 1350 Kresoxim méthyl Pesticides 1209 Linuron Pesticides 1209 Linuron Pesticides 1209 Linuron Pesticides 1210 Malatition Pesticides 1210 Malatition Pesticides 1211 Malatition Pesticides 1211 Malatition Pesticides 1214 Mécoprop Pesticides 1215 Malatition Pesticides 1216 Mécoprop Pesticides 1216 Metazane Pesticides 1217 Malatition Pesticides 1218 Metazane Pesticides 1227 Monolinuron Pesticides 1227 Monolinuron Pesticides 1227 Monolinuron Pesticides 1227 Monolinuron Pesticides 1340 Chlorepophame Pesticides 1882 Nicosulfuron Pesticides 1882 Nicosulfuron Pesticides 1882 Nicosulfuron Pesticides 1882 Nicosulfuron Pesticides 1667 Oxadiazon Pesticides 1667 Oxadiazon Pesticides 1231 Oxydémeton méthyl Pesticides 1231 Oxydémeton méthyl Pesticides 1668 Proximical Pesticides 1669 Proximical Pesticides 1669 Proximical Pesticides 1669 Proximical Pesticides 1660 Proximical Pesticides 1661 Proximical Pesticides 1662 Sulcicidos 1663 Proximical Pesticides 1664 Proximical Pesticides 1666 Proximical Pesticides 1666 Proximical Pesticides 1666 Proximical Pesticides 1661 Proximical Pesticides 1661 Proximical Pesticides 1661 Proximical Pesticides 1662 Sulcicidos 1663 Pesticides 1664 Proximical Pesticid						
1903						
1968 Actonifen Pesticides 1207 Isodrinen Pesticides 1101 Alachirer Pesticides 1208 Isoproturon Pesticides 1105 Alichiren Pesticides 1950 Kriscoxim méthyl Pesticides 1970 Alfaraine Pesticides 1971 Alfaraine Pesticides 1209 Limuron Pesticides 1972 Alfaraine Pesticides 1209 Limuron Pesticides 1210 Malathiron Pesticides 1210 Malathiron Pesticides 1210 Malathiron Pesticides 1211 Malathiron Pesticides 1212 Malathiron Pesticides 1213 Malathiron Pesticides 1214 Macoprop Pesticides 1215 Metantirone Pesticides 1216 Metantirone Pesticides 1227 Manofilmuron Pesticides 1228 Malathiron Pesticides 1229 Malathiron Pesticides 1229 Malathiron Pesticides 1221 Malathirone Pesticides 1221 Malathirone Pesticides 1222 Manofilmuron Pesticides 1223 Malathiron Pesticides 1224 Malathiron Pesticides 1224 Malathiron Pesticides 1224 Malathiron Pesticides 1224 Pendiméthaline P					·	
1101 Alachlore Pesticides 1208 Isoproturon Pesticides 1105 Artinore Pesticides 1105 Artinore Pesticides 1105 Artinore Pesticides 1105 Artinore Pesticides 11094 Lambda Cyhalothrine Pesticides 11097 Artazine Pesticides 1209 Linuron Pesticides 11097 Artazine Pesticides 1210 Malathion Pesticides 1210 Malathion Pesticides 1210 Malathion Pesticides 1214 Mecoprop Pesticides 1214 Mecoprop Pesticides 1214 Mecoprop Pesticides 1215 Avoyartobine Pesticides 1216 Metalativine Pesticides 1227 Monoliruron Pesticides 1228 Monoliruron Pesticides 1229 Monolir						
1105 Aldrine						
1097 Amnortrazole Pesticides 1094 Lambda Cyhalothrine Pesticides 1107 Artazine Pesticides 1209 Lurunon Pesticides 1109 Artazine Pesticides 1210 Malathion Pesticides 1211 Malathion Pesticides 1214 Macoprop Pesticides 1214 Macoprop Pesticides 1214 Malathion Pesticides 1215 Malathion Pesticides 1216 Malathion Pesticides 1227 Malathion Pesticides 1228 Malathion Pesticides 1229 Pe						
1907 AMPA						
1107 Atrazine deispropy Pesticides 1210 Malathino Pesticides 1214 Mécoprop Pesticides 1214 Mécoprop Pesticides 1215 Mécoprop Pesticides 1216 Mécoprop Pesticides 1216 Mécoprop Pesticides 1216 Mécoprop Pesticides 1216 Métaladhyde Pesticides 1224 Pendimethaline Pesticides 1224 Pendim						
1108 Atrazine désigorpoy Pesticides 2987 Méctagory m = mefenoxam Pesticides 1796 Métalacy m = mefenoxam Pesticides 1794 Métalacy m = mefenoxam Pesticides 1898 Norfurazon Pesticides 1898 Norfurazon Pesticides 1898 Norfurazon Pesticides 1898 Morpurphos methyl Pesticides 1894 Pesticides 1894 Pesticides 1894 Pesticides 1894 Métalacy m = mefenoxam Pesticides 1894 Métalacy m = mesticides 1894						
1108						
1951 Azoxystrobine Pesticides 1796 Métantérrone Pesticides 1113 Bentazone Pesticides 1215 Métamitrone Pesticides 1125 Bromoxynil cranate Pesticides 1216 Métamitrone Pesticides 1129 Carbendazine Pesticides 1227 Monolinuron Pesticides 1130 Carbofuran Pesticides 1519 Napropamide Pesticides 1444 Chlorfenvinphos Pesticides 1669 Norflurazon Pesticides 1474 Chlorprophame Pesticides 1669 Oxadiazon Pesticides 1474 Chlorpryiphos éthyl Pesticides 1660 Oxadiazon Pesticides 1474 Chlorpryiphos éthyl Pesticides 1231 Oxydémeton méthyl Pesticides 1430 Chlorpryiphos éthyl Pesticides 1231 Oxydémeton méthyl Pesticides 1430 Cyproconazole Pesticides 1665 Phoxime Pesticides 1432 Cyprodinil						
1113 Bentazone						
1686 Bromazil					,	
1215 Bromoxynil Pesticides 1216 Méthabenzthiazuron Pesticides 1291 Bromoxynil octanoate Pesticides 1227 Monolinuron Pesticides 1319 Napropamide Pesticides 1310 Carbofuran Pesticides 1319 Napropamide Pesticides 1314 Chlorfenvinphos Pesticides 1667 Oxadizzon Pesticides 1668 Oxadizzon Pesticides 1669 Oxadizzon Pesticides 1660 Proxymidon Proxymidon Pesticides 1660 Proxymidon Proxymidon Pesticides 1660 Proxymidon Proxymidon Pesticides 1660 Proxymidon P						
1941 Bromoxymil octanoate Pesticides 1227 Monolinuron Pesticides 1129 Carbendazime Pesticides 1519 Napropamide Pesticides 1519 Napropamide Pesticides 1664 Chlorreninphos Pesticides 1669 Norflurazon Pesticides 1660 Norflurazon Pesticides 1661 Norflurazon Pesticides 1661 Norflurazon Pesticides 1662 Norflurazon Pesticides 1663 Norflurazon Pesticides 1664 Procymidon Pesticides 1665 Phoxime Pesticides 1665 Phoxime Pesticides 1665 Phoxime Pesticides 1665 Phoxime Pesticides 1665 Procymidone Pesticides 1664 Procymidone Pesticides 1665 Procymidone Pesticides 1414 Propyzamide Pesticides 1414 Propyzamide Pesticides 1414 Propyzamide Pesticides 1414 Propyzamide Pesticides 1661 Procymidone Pesticides 1662 Procymidone Pesticides 1662 Procymidone Pesticides 1662 Procymidone Pesticides 1662 Procymidone Pesticides 1663 Procymidone Pesticides 1664 Procymidone Pesticides 1665 Procymidone Pesticides 1666 Procymidone Pesticides 1667 Procymidone Pesticides 1668 Procymidone Pesticides 1669 Procymidone Pesticides 1660 P						
1129 Carbendzime Pesticides 1130 Carbofuran Resticides 1130 Carbofuran Pesticides 1144 Chlorfenvinphos Pesticides 1134 Chlorméphos Pesticides 1134 Chlorprophame Pesticides 1083 Chlorpryiphos éthyl Pesticides 1540 Chlorpyriphos éthyl Pesticides 1540 Chlordoluron Pesticides 1550 Chlordoluron Pesticides 1661 Procymidone Pesticides 1550 Phonimethaline Pesticides 1550 Pesticides 1665 Phoxime 1550 Popromidone Pesticides 1560 Cyproconazole Pesticides 1550 Pesticides 1414 Propryamide Pesticides 1560						
1130 Carbofuran Pesticides 1882 Nicosulfuron Pesticides 1464 Chlorfenvinphos Pesticides 1667 Oxadiazon Pesticides 1474 Chlorporphame Pesticides 1666 Oxadixyl Pesticides 1083 Chlorpyriphos éthyl Pesticides 1231 Oxadixyl Pesticides 1540 Chlorpyriphos méthyl Pesticides 1234 Pendiméthaline Pesticides 1136 Chlorofuluron Pesticides 1665 Phoxime Pesticides 2017 Clomazone Pesticides 1664 Proxymidone Pesticides 1680 Cyprocinial Pesticides 1664 Proxymidone Pesticides 1143 DDD-o,p' Pesticides 1414 Propyzamide Pesticides 1144 DDD-p,p' Pesticides 1892 Rimsulfuron Pesticides 1144 DDD-p,p' Pesticides 1892 Rimsulfuron Pesticides 1144 DDD-p,p' Pesticides 1802 Silvativinon Pesticides 1144 DDD-p,p' <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1464 Chlorfenvinphos Pesticides 1669 Norflurazon Pesticides 1134 Chlorprophame Pesticides 1666 Oxadiazon Pesticides 1083 Chlorpriphos éthyl Pesticides 1666 Oxadixyl Pesticides 1540 Chlorpriphos méthyl Pesticides 1231 Oxydéméton méthyl Pesticides 1136 Chlortoluron Pesticides 1665 Phoxime Pesticides 2017 Clomazone Pesticides 1664 Procymidone Pesticides 1680 Cyproconazole Pesticides 1414 Propyzamide Pesticides 1359 Cyprodinil Pesticides 1414 Propyzamide Pesticides 1143 DDD-o.p' Pesticides 1892 Rimsulfuron Pesticides 1144 DDD-p.p' Pesticides 1263 Simazune Pesticides 1145 DDE-p.p' Pesticides 1662 Sulcotrione Pesticides 1145 DDE-p.p' Pesticides 1661 Tébuconazole Pesticides 1148 DDT-p.p' <td></td> <td>Carbendazime</td> <td>Pesticides</td> <td></td> <td></td> <td></td>		Carbendazime	Pesticides			
1134 Chlorméphos Pesticides 1667 Oxadiazon Pesticides 1474 Chlorpophame Pesticides 1666 Oxadixyl Pesticides 1661 Oxadixyl Pesticides 1231 Oxydéméton méthyl Pesticides 1444 Propyzamide Pesticides 1442 Pyriméthanil Pesticides 1232 Rimsulfuron Pesticides 1232 Rimsulfuron Pesticides 12331 Oxydéméton méthyl Pesticides 12341 Oxydéméton méthyl Pesticides 12341 Oxydéméton méthyl Pesticides 12341 Oxydéméton méthyl Pesticides 12341 Oxydéméton méthyl Oxydéméton Pesticides 12341 Oxydéméton Pesticides 12341 Oxydéméton						Pesticides
1474 Chlorprophame Pesticides 1666 Oxadixyl Pesticides 1331 Oxydéméton méthyl Pesticides 1331 Oxydéméton méthyl Pesticides 1331 Oxydéméton méthyl Pesticides 1331 Oxydéméton méthyl Pesticides 1334 Pesticides 1334 Pesticides 1334 Pesticides 1334 Pesticides 1665 Phoxime Pesticides 1665 Phoxime Pesticides 1665 Phoxime Pesticides 1666 Procymidone Pesticides 1414 Propyzamide Pesticides 1414 Propyzamide Pesticides 1414 Propyzamide Pesticides 1414 Propyzamide Pesticides 1414 DDD-0,p' Pesticides 1432 Pyriméthanil Pesticides 1434 DDE-0,p' Pesticides 1662 Sulcotrione Pesticides 1662 Sulcotrione Pesticides 1664 Tébutame Pesticides 1666 Tébutame Pesticides 1666 Tébutame Pesticides 1666 Tébutama Pesticides 1666 Tébutama Pesticides 1666 Tébutama Pesticides 1660 Tétraconazole Pesticides 1660	1464	Chlorfenvinphos	Pesticides	1669	Norflurazon	Pesticides
1083 Chlorpyriphos éthyl Pesticides 1231 Oxydéméton méthyl Pesticides 1234 Pendiméthaline Pesticides 1235 Pendiméthaline Pendiméthaline Pesticides 1235 Pendiméthaline Pendiméthaline Pesticides 1235 Pendiméthaline Pesticides 1235 Pendiméthaline Pesticides 1235 Pendiméthaline Pesticides 1235 Pendiméthaline Pendiméthaline 1235 Pendiméthaline Pendiméthaline 1235 Pendiméthaline 1235 Pe	1134	Chlorméphos	Pesticides	1667	Oxadiazon	Pesticides
1540 Chlorpyriphos méthyl Pesticides 1234 Pendiméthaline Pesticides 1136 Chlordoluron Pesticides 1665 Phoxime Pesticides 1665 Phoxime Pesticides 1660 Cyproconazole Pesticides 1660 Cyproconazole Pesticides 1441 Propyzamide Pesticides 1432 Pyriméthanil Pesticides 1434 DDD-p,p' Pesticides 1263 Simazine Pesticides 1445 DDE-p,p' Pesticides 1662 Sulcotrione Pesticides 1445 DDE-p,p' Pesticides 1662 Sulcotrione Pesticides 1447 DDT-o,p' Pesticides 1661 Tébutame Pesticides 1661 Tébutame Pesticides 1661 Tébutame Pesticides 1661 Tébutame Pesticides 1268 Terbuthylazine Pesticides 1268 Terbuthylazine hydroxy Pesticides 1954 Terbuthylazine hydroxy Pesticides 1269 Terbuthylazine hydroxy Pesticides 1269 Terbuthylazine Pesticides 1269 Terbuthylazine Pesticides 1288 Trichlopyr Pesticides 1288 Trichlopyr Pesticides 1289 Trifluralline Pesticides 1289 Trifluralline Pesticides 1471 Chlorophénol-2 Phénols et chlorophénols 1473 Diuron Pesticides 1451 Chlorophénol-2 Phénols et chlorophénols 1474 Endosulfan aultate Pesticides 1486 Dichlorophénol-2,4,5 Phénols et chlorophénols 1474 Endosulfan sulfate Pesticides 1486 Dichlorophénol-2,4,6 Phénols et chlorophénols 1549 Trichlorophénol-2,4,6 Phénols et chlorophénols 1549 Trichlorophénol-2,4,6 Phénols et chlorophénols 1541 Endosulfan total Pesticides 1461 DEPH Semi volatils organiques divers	1474	Chlorprophame	Pesticides	1666	Oxadixyl	Pesticides
1136 Chlortoluron Pesticides 1685 Phoxime Pesticides 1680 Cyproconazole Pesticides 1684 Propyzamide Pesticides 1359 Cyprodinil Pesticides 1414 Propyzamide Pesticides 1414 Propyzamide Pesticides 1414 Propyzamide Pesticides 1415 DDD-o,p' Pesticides 1422 Pyriméthanil Pesticides 1432 Pyriméthanil Pesticides 1662 Sulcotrione Pesticides 1663 Tébutame Pesticides 1664 Tébutame Pesticides 1665 Tébutame Pesticides 1268 Terbuthylazine Pesticides 1268 Terbuthylazine Pesticides 1268 Terbuthylazine Pesticides 1269 Terbutryne Pesticides 1260 Tétraconazole Pes	1083	Chlorpyriphos éthyl	Pesticides	1231	Oxydéméton méthyl	Pesticides
2017ClomazonePesticides1664ProcymidonePesticides1680CyproconazolePesticides1414PropyzamidePesticides1359CyprodinilPesticides1432PyriméthanilPesticides1143DDD-o,p'Pesticides1892RimsulfuronPesticides1144DDD-p,p'Pesticides1263SimazinePesticides1145DDE-o,p'Pesticides1662SulcotrionePesticides1146DDE-p,p'Pesticides1662SulcotrionePesticides1147DDT-o,p'Pesticides1661TébucanazolePesticides1148DDT-p,p'Pesticides1268TerbuthylazinePesticides1149DeltaméthrinePesticides1268TerbuthylazinePesticides1149DeltaméthrinePesticides1954Terbuthylazine hydroxyPesticides1480DicambaPesticides1269Terbuthylazine hydroxyPesticides1169DichloryropPesticides1269Terbuthylazine hydroxyPesticides1170DichloryrosPesticides1289TrichlopyrPesticides1171DicdrinePesticides1289TrifluralinePesticides1814DiffufenicanilPesticides1471Chlorophénol-4,3Phénols et chlorophénols1840DiméthénamidePesticides1650Chlorophénol-2Phénols et chlorophénols1841DiméthénamidePesticides <t< td=""><td>1540</td><td>Chlorpyriphos méthyl</td><td>Pesticides</td><td>1234</td><td>Pendiméthaline</td><td>Pesticides</td></t<>	1540	Chlorpyriphos méthyl	Pesticides	1234	Pendiméthaline	Pesticides
1680 Cyproconazole Pesticides 1414 Propyzamide Pesticides 1359 Cyprodinil Pesticides 1432 Pyriméthanil Pesticides 1432 Pyriméthanil Pesticides 1432 Pyriméthanil Pesticides 1892 Rimsuffuron Pesticides 1894 Rimsuffuron Pesticides 1895 Rimsuffuron Rimsuffuron Rimsuffuron Rimsuffuron Rimsuffuron Rimsuffuron Rimsuffuron Rimsuffuron Rimsuffuron Rim	1136	Chlortoluron	Pesticides	1665	Phoxime	Pesticides
1359 Cyprodinil Pesticides 1143 DDD-o,p' Pesticides 1144 DDD-p,p' Pesticides 1145 DDE-o,p' Pesticides 1146 DDE-o,p' Pesticides 1147 DDE-o,p' Pesticides 1148 DDE-o,p' Pesticides 1149 DDE-o,p' Pesticides 1140 DDE-p,p' Pesticides 1141 DDT-o,p' Pesticides 1142 DDT-o,p' Pesticides 1143 DDT-o,p' Pesticides 1144 DDT-o,p' Pesticides 1145 DDT-o,p' Pesticides 1146 DDT-p,p' Pesticides 1147 DDT-o,p' Pesticides 1148 DDT-p,p' Pesticides 1148 DDT-p,p' Pesticides 1149 Deltaméthrine Pesticides 1149 Deltaméthrine Pesticides 1149 Dicamba Pesticides 1169 Terbuthylazine déséthyl Pesticides 1169 Terbuthylazine deséthyl Pesticides 1160 Terbuthylazine deséthyl P	2017	Clomazone	Pesticides	1664	Procymidone	Pesticides
1143 DDD-o,p' Pesticides 1144 DDD-p,p' Pesticides 1145 DDE-o,p' Pesticides 1146 DDE-p,p' Pesticides 1146 DDE-p,p' Pesticides 1147 DDT-o,p' Pesticides 1148 DDT-o,p' Pesticides 1149 DE-p,p' Pesticides 1149 DE-p,p' Pesticides 1149 DDT-o,p' Pesticides 1149 DE-p,p' Pesticides 1149 Terbuthylazine Pesticides 1149 DE-p,p' Pesticides 1140 DE-p-p,p' Pesticides 1140 DE-p-p,p' Pesticides 1140 DE-p-p-p-p-esticides 1140 DE-p-p-p-p-esticides 1140 DE-p-p-p-p-esticides 1140 DE-p-p-p-p-p-esticides 1140 DE-p-p-p-p-p-esticides 1140 DE-p-p-p-p-p-esticides 1140 DE-p-p-p-p-esticides 1140 DE-p-p-p-p-esticides 1140 DE-p-p-p-p-p-p-p-esticides 1140 DE-p-p-p-p-p-esticides 1140 DE-p-p-p-p-p-p-p-p-esticides 1140 DE-p-p-p-p-p-esticides 1141 DE-p-p-p-p-p-p-p-p-p-p-esticides 1141 DE-p-p-p-p-p-p-p-p-p-p-p-p-p-p-p-p-p-p-p	1680	Cyproconazole	Pesticides	1414	Propyzamide	Pesticides
1143 DDD-o,p' Pesticides 1144 DDD-p,p' Pesticides 1145 DDE-o,p' Pesticides 1146 DDE-p,p' Pesticides 1146 DDE-p,p' Pesticides 1147 DDT-o,p' Pesticides 1148 DDT-o,p' Pesticides 1149 DE-p,p' Pesticides 1149 DE-p,p' Pesticides 1149 DDT-o,p' Pesticides 1149 DE-p,p' Pesticides 1149 Terbuthylazine Pesticides 1149 DE-p,p' Pesticides 1140 DE-p-p,p' Pesticides 1140 DE-p-p,p' Pesticides 1140 DE-p-p-p-p-esticides 1140 DE-p-p-p-p-esticides 1140 DE-p-p-p-p-esticides 1140 DE-p-p-p-p-p-esticides 1140 DE-p-p-p-p-p-esticides 1140 DE-p-p-p-p-p-esticides 1140 DE-p-p-p-p-esticides 1140 DE-p-p-p-p-esticides 1140 DE-p-p-p-p-p-p-p-esticides 1140 DE-p-p-p-p-p-esticides 1140 DE-p-p-p-p-p-p-p-p-esticides 1140 DE-p-p-p-p-p-esticides 1141 DE-p-p-p-p-p-p-p-p-p-p-esticides 1141 DE-p-p-p-p-p-p-p-p-p-p-p-p-p-p-p-p-p-p-p	1359			1432		Pesticides
1144 DDD-p,p' Pesticides 1145 DDE-o,p' Pesticides 1146 DDE-p,p' Pesticides 1147 DDT-o,p' Pesticides 1148 DDT-p,p' Pesticides 1149 Deltaméthrine Pesticides 1149 Deltaméthrine Pesticides 1149 Dicamba Pesticides 1160 Terbuthylazine déséthyl Pesticides 1160 Dichlorprop Pesticides 1160 Terbuthylazine hydroxy Pesticides 1170 Dichlorvos Pesticides 1171 Dichlorvos Pesticides 11814 Diffurênicanil Pesticides 11814 Diffurênicanil Pesticides 11815 Diméthénamide Pesticides 11816 Diméthénamide Pesticides 11817 Diuron Pesticides 11818 Endosulfan alpha Pesticides 11819 Endosulfan sulfate Pesticides 11814 Diffurênicanil Pesticides 11815 Endosulfan Itotal Pesticides 11816 Dichlorophénols 11817 Endosulfan sulfate Pesticides 11818 Dichlorophénol Pesticides 11819 Endosulfan Itotal Pesticides 11814 Tirchlorophénol Phénols et chlorophénols 11815 Endosulfan Total Pesticides 11816 DEPH Semi volatils organiques divers	1143			1892		
1145 DDE-o,p' Pesticides 1146 DDE-p,p' Pesticides 1147 DDT-o,p' Pesticides 1148 DDT-p,p' Pesticides 1148 DDT-p,p' Pesticides 1148 DDT-p,p' Pesticides 1149 Deltaméthrine Pesticides 1149 Deltaméthrine Pesticides 1149 Dichlorpop Pesticides 1169 Dichlorpop Pesticides 1170 Dichlorvos Pesticides 1173 Dieldrine Pesticides 11814 Diffufénicanil Pesticides 11814 Diffufénicanil Pesticides 11815 Diméthénamide Pesticides 11816 Diméthénamide Pesticides 11817 Diuron Pesticides 11818 Endosulfan alpha Pesticides 11819 Endosulfan Total Pesticides 11814 Endrine Pesticides 11814 Diffue 11814 Diffue 11814 Pesticides 11815 Pentacolarola Pesticides 11816 Diméthénamide Pesticides 11817 Pentacolarolarolarolarolarolarolarolarolarolar						
1146 DDE-p,p' Pesticides 1147 DDT-o,p' Pesticides 1148 DDT-p,p' Pesticides 1148 DDT-p,p' Pesticides 1180 Déisopropyl-déséthyl-atrazine 1180 Déisopropyl-déséthyl-atrazine 1180 Dicamba 1180 Dicamba 1180 Dichlorprop 1180 Dichlorprop 1180 Pesticides 1180 Dichlorprop 1180 Pesticides 1180 Dichlorprop 1180 Pesticides 1180 Dichlorprop 1180 Dichlorprop 1180 Dichlorprop 1180 Pesticides 1181 Diflufénicanil 1181 Diflufénicanil 1181 Diflufénicanil 1181 Diméthénamide 1181 Pesticides 1181 Chlorophénol-2 1181 Endosulfan alpha 1181 Pesticides 1183 Pentachlorophénol-2,4 Phénols et chlorophénols 1184 Pesticides 1185 Pentachlorophénol 1184 Pesticides 1184 Pichlorophénoles 1185 Pentachlorophénoles 1186 Pesticides 1189 Pesticides 1180 Pesticides						
1147DDT-o,p'Pesticides1661TébutamePesticides1148DDT-p,p'Pesticides1268TerbuthylazinePesticides1830Déisopropyl-déséthyl-atrazinePesticides2045Terbuthylazine déséthylPesticides1149DeltaméthrinePesticides1954Terbuthylazine hydroxyPesticides1480DicambaPesticides1269Terbuthylazine hydroxyPesticides1169DichlorpropPesticides1269TerbutrynePesticides1170DichlorvosPesticides1660TétraconazolePesticides1173DieldrinePesticides1289TrifluralinePesticides1814DiflufénicanilPesticides1289TrifluralinePesticides1814DiflufénicanilPesticides1636Chlorométhylphénol-4,3Phénols et chlorophénols1678DiméthénamidePesticides1471Chlorophénol-2Phénols et chlorophénols1403DiméthomorphePesticides1651Chlorophénol-3Phénols et chlorophénols1177DiuronPesticides1650Chlorophénol-4Phénols et chlorophénols1178Endosulfan alphaPesticides1486Dichlorophénol-2,4Phénols et chlorophénols1179Endosulfan betaPesticides1548Trichlorophénol-2,4,5Phénols et chlorophénols1743Endosulfan TotalPesticides1548Trichlorophénol-2,4,6Phénols et chlorophénols1818E						
1148DDT-p.p'Pesticides1268TerbuthylazinePesticides1830Déisopropyl-déséthyl-atrazinePesticides2045Terbuthylazine déséthylPesticides1149DeltaméthrinePesticides1954Terbuthylazine hydroxyPesticides1480DicambaPesticides1269TerbutrynePesticides1169DichloryopPesticides1660TétraconazolePesticides1170DichlorvosPesticides1288TrichlopyrPesticides1173DieldrinePesticides1289TrifluralinePesticides1814DifflufénicanilPesticides1636Chlorométhylphénol-4,3Phénols et chlorophénols1678DiméthénamidePesticides1471Chlorophénol-2Phénols et chlorophénols1403DiméthomorphePesticides1650Chlorophénol-3Phénols et chlorophénols1177DiuronPesticides1650Chlorophénol-4Phénols et chlorophénols1178Endosulfan alphaPesticides1486Dichlorophénol-2,4Phénols et chlorophénols1179Endosulfan betaPesticides1235Pentachlorophénol-2,4,5Phénols et chlorophénols1743Endosulfan sulfatePesticides1548Trichlorophénol-2,4,6Phénols et chlorophénols1181EndrinePesticides1584BiphényleSemi volatils organiques divers1744EpoxiconazolePesticides1461DEPHSemi volatils organiques divers </td <td></td> <td>DDT-o.p'</td> <td></td> <td></td> <td></td> <td></td>		DDT-o.p'				
1830 Déisopropyl-déséthyl-atrazine Pesticides 1149 Deltaméthrine Pesticides 1140 Dicamba Pesticides 1169 Dichlorprop Pesticides 1170 Dichlorvos Pesticides 1173 Dieldrine Pesticides 11814 Diffurénicanil Pesticides 11814 Diffurénicanil Pesticides 11815 Diméthénamide Pesticides 11816 Diméthénamide Pesticides 11817 Diuron Pesticides 11818 Endosulfan alpha Pesticides 11819 Endosulfan sulfate Pesticides 11810 Dichlorophénols 11811 Endrine Pesticides 11812 Endosulfan Total Pesticides 11813 Pesticides 11814 Diffurénicanil Pesticides 11815 Endorophénol Pesticides 11816 Diméthénamide Pesticides 11817 Diuron Pesticides 11818 Endosulfan sulfate Pesticides 11819 Endosulfan sulfate Pesticides 11810 Pesticides 11810 Dichlorophénol-2 11810 Endosulfan sulfate Pesticides 11811 Endrine Pesticides 11812 Endorine Pesticides 11813 Endosulfan Total Pesticides 11814 Epoxiconazole 11815 Endrine Pesticides 11814 Epoxiconazole 11815 Endrine Pesticides 11816 DEPH Semi volatils organiques divers						
1149DeltaméthrinePesticides1954Terbuthylazine hydroxyPesticides1480DicambaPesticides1269TerbutrynePesticides1169DichlorpropPesticides1660TétraconazolePesticides1170DichlorvosPesticides1288TrichlopyrPesticides1173DieldrinePesticides1289TrifluralinePesticides1814DiflufénicanilPesticides1636Chlorométhylphénol-4,3Phénols et chlorophénols1678DiméthénamidePesticides1471Chlorophénol-2Phénols et chlorophénols1403DiméthomorphePesticides1651Chlorophénol-3Phénols et chlorophénols1177DiuronPesticides1650Chlorophénol-4Phénols et chlorophénols1178Endosulfan alphaPesticides1486Dichlorophénol-2,4Phénols et chlorophénols1179Endosulfan betaPesticides1235PentachlorophénolPhénols et chlorophénols1742Endosulfan sulfatePesticides1548Trichlorophénol-2,4,5Phénols et chlorophénols1743Endosulfan TotalPesticides1549Trichlorophénol-2,4,6Phénols et chlorophénols1181EndrinePesticides1584BiphényleSemi volatils organiques divers1744EpoxiconazolePesticides1461DEPHSemi volatils organiques divers						
1480DicambaPesticides1269TerbutrynePesticides1169DichlorpropPesticides1660TétraconazolePesticides1170DichlorvosPesticides1288TrichlopyrPesticides1173DieldrinePesticides1289TrifluralinePesticides1814DiflufénicanilPesticides1636Chlorométhylphénol-4,3Phénols et chlorophénols1678DiméthénamidePesticides1471Chlorophénol-2Phénols et chlorophénols1403DiméthomorphePesticides1651Chlorophénol-3Phénols et chlorophénols1177DiuronPesticides1650Chlorophénol-4Phénols et chlorophénols1178Endosulfan alphaPesticides1486Dichlorophénol-2,4Phénols et chlorophénols1179Endosulfan betaPesticides1235PentachlorophénolPhénols et chlorophénols1742Endosulfan sulfatePesticides1548Trichlorophénol-2,4,5Phénols et chlorophénols1743Endosulfan TotalPesticides1548Trichlorophénol-2,4,6Phénols et chlorophénols1181EndrinePesticides1584BiphényleSemi volatils organiques divers1744EpoxiconazolePesticides1461DEPHSemi volatils organiques divers						-
1169 Dichloryop Pesticides 1170 Dichlorvos Pesticides 1173 Dieldrine Pesticides 1184 Diffurfenicanil Pesticides 1185 Trifluraline Pesticides 1186 Chlorométhylphénol-4,3 Phénols et chlorophénols 1187 Diméthénamide Pesticides 1188 Trifluraline Pesticides 1289 Trifluraline Pesticides 1280 Trifluraline Pesticides 1471 Chlorophénol-2, Phénols et chlorophénols 1472 Diméthomorphe Pesticides 1280 Trifluraline Pesticides 1481 Dichlorophénol-2 1480 D						-
1170 Dichlorvos Pesticides 1173 Dieldrine Pesticides 1184 Diflufénicanil Pesticides 11678 Diméthénamide Pesticides 1140 Diméthénomorphe Pesticides 1140 Diméthénomorphe Pesticides 11471 Chlorophénol-2 Phénols et chlorophénols 11473 Diuron Pesticides 1177 Diuron Pesticides 1178 Endosulfan alpha Pesticides 1179 Endosulfan beta Pesticides 1179 Endosulfan sulfate Pesticides 1174 Endosulfan sulfate Pesticides 1181 Endosulfan Total Pesticides 1181 Endrine Pesticides 1184 Trichlorophénol-4,3 Phénols et chlorophénols 1650 Chlorophénol-3 Phénols et chlorophénols 1650 Chlorophénol-4 Phénols et chlorophénols 1486 Dichlorophénol-2,4 Phénols et chlorophénols 1235 Pentachlorophénol Phénols et chlorophénols 1548 Trichlorophénol-2,4,5 Phénols et chlorophénols 1548 Trichlorophénol-2,4,6 Phénols et chlorophénols 1549 Trichlorophénol-2,4,6 Phénols et chlorophénols 1584 Biphényle Semi volatils organiques divers						
1173 Dieldrine Pesticides 1814 Diflufénicanil Pesticides 1636 Chlorométhylphénol-4,3 Phénols et chlorophénols 1678 Diméthénamide Pesticides 1471 Chlorophénol-2 Phénols et chlorophénols 1403 Diméthomorphe Pesticides 1651 Chlorophénol-3 Phénols et chlorophénols 1177 Diuron Pesticides 1650 Chlorophénol-4 Phénols et chlorophénols 1178 Endosulfan alpha Pesticides 1179 Endosulfan beta Pesticides 1179 Endosulfan sulfate 1289 Trifluraline Pesticides 1636 Chlorométhylphénol-4,3 Phénols et chlorophénols 1651 Chlorophénol-3 Phénols et chlorophénols 1650 Chlorophénol-4 Phénols et chlorophénols 1650 Chlorophénol-2,4 Phénols et chlorophénols 1179 Endosulfan abeta Pesticides 1181 Endosulfan Total Pesticides 1548 Trichlorophénol-2,4,5 Phénols et chlorophénols 1549 Trichlorophénol-2,4,6 Phénols et chlorophénols 1549 Trichlorophénol-2,4,6 Phénols et chlorophénols 1584 Biphényle Semi volatils organiques divers 1744 Epoxiconazole Pesticides 1461 DEPH Semi volatils organiques divers						
1814DiffurfenicanilPesticides1636Chlorométhylphénol-4,3Phénols et chlorophénols1678DiméthénamidePesticides1471Chlorophénol-2Phénols et chlorophénols1403DiméthomorphePesticides1651Chlorophénol-3Phénols et chlorophénols1177DiuronPesticides1650Chlorophénol-4Phénols et chlorophénols1178Endosulfan alphaPesticides1486Dichlorophénol-2,4Phénols et chlorophénols1179Endosulfan betaPesticides1235PentachlorophénolPhénols et chlorophénols1742Endosulfan sulfatePesticides1548Trichlorophénol-2,4,5Phénols et chlorophénols1743Endosulfan TotalPesticides1549Trichlorophénol-2,4,6Phénols et chlorophénols1181EndrinePesticides1584BiphényleSemi volatils organiques divers1744EpoxiconazolePesticides1461DEPHSemi volatils organiques divers						
1678DiméthénamidePesticides1471Chlorophénol-2Phénols et chlorophénols1403DiméthomorphePesticides1651Chlorophénol-3Phénols et chlorophénols1177DiuronPesticides1650Chlorophénol-4Phénols et chlorophénols1178Endosulfan alphaPesticides1486Dichlorophénol-2,4Phénols et chlorophénols1179Endosulfan betaPesticides1235PentachlorophénolPhénols et chlorophénols1742Endosulfan sulfatePesticides1548Trichlorophénol-2,4,5Phénols et chlorophénols1743Endosulfan TotalPesticides1549Trichlorophénol-2,4,6Phénols et chlorophénols1181EndrinePesticides1584BiphényleSemi volatils organiques divers1744EpoxiconazolePesticides1461DEPHSemi volatils organiques divers						
1403DiméthomorphePesticides1651Chlorophénol-3Phénols et chlorophénols1177DiuronPesticides1650Chlorophénol-4Phénols et chlorophénols1178Endosulfan alphaPesticides1486Dichlorophénol-2,4Phénols et chlorophénols1179Endosulfan betaPesticides1235PentachlorophénolPhénols et chlorophénols1742Endosulfan sulfatePesticides1548Trichlorophénol-2,4,5Phénols et chlorophénols1743Endosulfan TotalPesticides1549Trichlorophénol-2,4,6Phénols et chlorophénols1181EndrinePesticides1584BiphényleSemi volatils organiques divers1744EpoxiconazolePesticides1461DEPHSemi volatils organiques divers						
1177DiuronPesticides1650Chlorophénol-4Phénols et chlorophénols1178Endosulfan alphaPesticides1486Dichlorophénol-2,4Phénols et chlorophénols1179Endosulfan betaPesticides1235PentachlorophénolPhénols et chlorophénols1742Endosulfan sulfatePesticides1548Trichlorophénol-2,4,5Phénols et chlorophénols1743Endosulfan TotalPesticides1549Trichlorophénol-2,4,6Phénols et chlorophénols1181EndrinePesticides1584BiphényleSemi volatils organiques divers1744EpoxiconazolePesticides1461DEPHSemi volatils organiques divers						
1178Endosulfan alphaPesticides1486Dichlorophénol-2,4Phénols et chlorophénols1179Endosulfan betaPesticides1235PentachlorophénolPhénols et chlorophénols1742Endosulfan sulfatePesticides1548Trichlorophénol-2,4,5Phénols et chlorophénols1743Endosulfan TotalPesticides1549Trichlorophénol-2,4,6Phénols et chlorophénols1181EndrinePesticides1584BiphényleSemi volatils organiques divers1744EpoxiconazolePesticides1461DEPHSemi volatils organiques divers						
1179Endosulfan betaPesticides1235PentachlorophénolPhénols et chlorophénols1742Endosulfan sulfatePesticides1548Trichlorophénol-2,4,5Phénols et chlorophénols1743Endosulfan TotalPesticides1549Trichlorophénol-2,4,6Phénols et chlorophénols1181EndrinePesticides1584BiphényleSemi volatils organiques divers1744EpoxiconazolePesticides1461DEPHSemi volatils organiques divers						
1742Endosulfan sulfatePesticides1548Trichlorophénol-2,4,5Phénols et chlorophénols1743Endosulfan TotalPesticides1549Trichlorophénol-2,4,6Phénols et chlorophénols1181EndrinePesticides1584BiphényleSemi volatils organiques divers1744EpoxiconazolePesticides1461DEPHSemi volatils organiques divers					,	
1743Endosulfan TotalPesticides1549Trichlorophénol-2,4,6Phénols et chlorophénols1181EndrinePesticides1584BiphényleSemi volatils organiques divers1744EpoxiconazolePesticides1461DEPHSemi volatils organiques divers						
1181EndrinePesticides1584BiphényleSemi volatils organiques divers1744EpoxiconazolePesticides1461DEPHSemi volatils organiques divers					- / /	
1744 Epoxiconazole Pesticides 1461 DEPH Semi volatils organiques divers						
1184 Ethofumésate Pesticides 1847 Tributylphosphate Semi volatils organiques divers						
	1184	Ethofumésate	Pesticides	1847	Tributylphosphate	Semi volatils organiques divers

page 2/2

Annexe 2 : Liste des micropolluants analysés sur sédiment

	Libel param	Famille_composés	Code_SANDR		Famille_composés
5474	4-n-nonylphénol	Alkylphénols	1652	Hexachlorobutadiène	OHV
1957	Nonylphénols	Alkylphénols	1770	Dibutylétain (oxyde)	Organostanneux complets
1920 1958	p-(n-octyl)phénols	Alkylphénols	1936	Tétrabutylétain	Organostanneux complets
1956	Para-nonylphénols ramifiés Para-tert-octylphénol	Alkylphénols Alkylphénols	2879 1779	Tributylétain-cation Triphénylétain	Organostanneux complets Organostanneux complets
1602	Chlorotoluène-2	BTEX	1242	PCB 101	PCB
1601	Chlorotoluène-3	BTEX	1243	PCB 118	PCB
1600	Chlorotoluène-4	BTEX	1244	PCB 138	PCB
1497	Ethylbenzène	BTEX	1245	PCB 153	PCB
1633	Isopropylbenzène	BTEX	1090	PCB 169	PCB
5431	Xylène (ortho+meta+para)	BTEX	1246	PCB 180	PCB
1292	Xylène-ortho	BTEX	1239	PCB 28	PCB
1955	Chloroalcanes C10-C13	Chloroalacanes	1240	PCB 35	PCB
1165	Dichlorobenzène-1,2	Chlorobenzènes	1241	PCB 52	PCB
1164	Dichlorobenzène-1.3	Chlorobenzènes	1091	PCB 77	PCB
1166	Dichlorobenzène-1,4	Chlorobenzènes	1903	Acétochlore	Pesticides
1199	Hexachlorobenzène	Chlorobenzènes	1688	Aclonifen	Pesticides
1888	Pentachlorobenzène	Chlorobenzènes	1103	Aldrine	Pesticides
1631	Tétrachlorobenzène-1,2,4,5	Chlorobenzènes	1125	Bromoxynil	Pesticides
1630	Trichlorobenzène-1,2,3	Chlorobenzènes	1941	Bromoxynil octanoate	Pesticides
1283	Trichlorobenzène-1,2,4	Chlorobenzènes	1464	Chlorfenvinphos	Pesticides
1629	Trichlorobenzène-1,3,5	Chlorobenzènes	1134	Chlorméphos	Pesticides
1774	Trichlorobenzènes	Chlorobenzènes	1474	Chlorprophame	Pesticides
1617	Dichloronitrobenzène-2,3	Chloronitrobenzènes	1083	Chlorpyriphos éthyl	Pesticides
1615	Dichloronitrobenzène-2,5	Chloronitrobenzènes	1540	Chlorpyriphos méthyl	Pesticides
1614	Dichloronitrobenzène-3,4	Chloronitrobenzènes	1359	Cyprodinil	Pesticides
2915	BDE100	Diphényléthers bromés	1143	DDD-o,p'	Pesticides
2912	BDE153	Diphényléthers bromés	1144	DDD-p,p'	Pesticides
2911	BDE154	Diphényléthers bromés	1145	DDE-o,p'	Pesticides
2920	BDE28	Diphényléthers bromés	1146	DDE-p,p'	Pesticides
2919	BDE47	Diphényléthers bromés	1147	DDT-o,p'	Pesticides
2916	BDE99	Diphényléthers bromés	1148	DDT-p,p'	Pesticides
1815	Décabromodiphényléther	Diphényléthers bromés	1149	Deltaméthrine	Pesticides
2609	Octabromodiphénylether	Diphényléthers bromés	1169	Dichlorprop	Pesticides
1921	Pentabromodiphényléther	Diphényléthers bromés	1173	Dieldrine	Pesticides
1453	Acénaphtène	HAP	1814	Diflufénicanil	Pesticides
1622	Acénaphtylène	HAP	1178	Endosulfan alpha	Pesticides
1458	Anthracène	HAP	1179	Endosulfan beta	Pesticides
1082	Benzo (a) Anthracène	HAP	1742	Endosulfan sulfate	Pesticides
1115	Benzo (a) Pyrène	HAP	1743	Endosulfan Total	Pesticides
1116	Benzo (b) Fluoranthène	HAP	1181	Endrine	Pesticides
1118	Benzo (ghi) Pérylène	HAP	1744	Epoxiconazole	Pesticides
1117	Benzo (k) Fluoranthène	HAP	1187	Fénitrothion	Pesticides
1476	Chrysène	HAP	1967	Fénoxycarbe	Pesticides
1621	Dibenzo (ah) Anthracène	HAP	2022	Fludioxonil	Pesticides
1191	Fluoranthène	HAP	2547	Fluroxypyr-meptyl	Pesticides
1623	Fluorène	HAP	1194	Flusilazole	Pesticides
1204	Indéno (123c) Pyrène	HAP	1200	HCH alpha	Pesticides
1619	Méthyl-2-Fluoranthène	HAP	1201	HCH beta	Pesticides
1618	Méthyl-2-naphtalène	HAP	1202	HCH delta	Pesticides
1517	Naphtalène	HAP	2046	HCH epsilon	Pesticides
1524	Phénanthrène	HAP	1203	HCH gamma	Pesticides
1537	Pyrène	HAP	1405	Hexaconazole	Pesticides
1370	Aluminium	Métaux	1206	Iprodione	Pesticides
1376	Antimoine	Métaux	1207	Isodrine	Pesticides
1368	Argent	Métaux	1950	Kresoxim méthyl	Pesticides
1369	Arsenic	Métaux	1094	Lambda Cyhalothrine	Pesticides
1396	Baryum	Métaux	1209	Linuron	Pesticides
1377	Beryllium	Métaux	1519	Napropamide	Pesticides
1362	Bore	Métaux	1667	Oxadiazon	Pesticides
1388	Cadmium	Métaux	1234	Pendiméthaline	Pesticides
1389	Chrome	Métaux	1664	Procymidone	Pesticides
1379	Cobalt	Métaux	1414	Propyzamide	Pesticides
1392	Cuivre	Métaux	1694	Tébuconazole	Pesticides
1380	Etain	Métaux	1661	Tébutame	Pesticides
1393	Fer	Métaux	1268	Terbuthylazine	Pesticides
1394	Manganèse	Métaux	1269	Terbutryne	Pesticides
1387	Mercure	Métaux	1660	Tétraconazole	Pesticides
1395	Molybdène	Métaux	1289	Trifluraline	Pesticides
1386	Nickel	Métaux	1636	Chlorométhylphénol-4,3	Phénols et chlorophénols
1382	Plomb	Métaux	1486	Dichlorophénol-2,4	Phénois et chlorophénois
1385	Sélénium	Métaux	1235	Pentachlorophénol	Phénois et chlorophénois
2559	Tellurium	Métaux	1548	Trichlorophénol-2,4,5	Phénois et chlorophénois
2555	Thallium	Métaux	1549	Trichlorophénol-2,4,6	Phénois et chlorophénois
			1549		
1373	Titane	Métaux		Biphényle	Semi volatils organiques div
1361	Uranium Vanadium	Métaux Métaux	1461 1847	DEPH Tributylphosphate	Semi volatils organiques div Semi volatils organiques div
1384					

Agence de l'Eau Rhône - Méditerranée & Corse Etude des plans d'eau du programme de surveillance des bassins Rhône- Méditerranée et Corse –Lac d'Ilay (39

Annexe 3 : Comptes rendus des campagnes de prélèvements physicochimiques et phytoplanctoniques sur l'année 2009

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES GENERALES PLAN D'EAU - STATION Date: 20/04/2009 Plan d'eau: Ilay (Lac d'-) Type (naturel, artificiel,...): Code lac: V2035003 naturel Organisme / opérateur : **S.T.E.**: Audrey Péricat et Hervé Coppin Campagne 1 marché n° 08M082Organisme demandeur Agence de l'eau RM&C LOCALISATION PLAN D'EAU Commune : Le Frasnois (39) Lac marnant: H.E.R.: Jura non Superficie du bassin-versant : 5,25 km² Superficie du plan d'eau : 72 ha Profondeur maximale: 32 Carte: (extrait SCAN25, IGN 1/25 000) Frasnois angle de prise de vue de la photo localisation du point de prélèvements Photo du site : depuis le port de mise à l'eau

Relevé phytoplanctonique et physi	• •
DONNEES GENERALES CAMP	
Plan d'eau:	Ilay (Lac d'-) Date: 20/04/2009
Type (naturel, artificiel,):	naturel Code lac: V2035003
Organisme / opérateurs :	S.T.E.: Audrey Péricat et Hervé Coppin Campagne 1
Organisme demandeur	Agence de l'eau RM&C marché n° 08M082
STATION	
Coordonnées de la station	relevées sur : GPS
Lambert 93	X: 921858 Y: 6618517 alt.: 773 m
WGS 84 (système international)	GPS (en dms) X: Y: alt.: m
Profondeur:	
1101011001	vent : faible
	météo : très nuageux
	ineteo. tres nuageux
Conditions d'observation :	Surface de l'eau : faiblement agitée
	Hauteur des vagues : 0,05 m P atm standard : 921,42 hPa
	Bloom algal: non Pression atm.: 928 hPa
Mamaga	S
Marnage:	non Hauteur de la bande : m
PRELEVEMENTS Heure de début du relevé : Prélèvements réalisés :	eau chlorophylle matériel employé : pompe phytoplancton
Contact préalable :	AEP: Syndicat de gestion du lac d'Ilay Syndicat de gestion du lac d'Ilay – Mairie du Frasnois- 1, route des lacs 39130 Le Frasnois M. Vallet 03.84.25.51.36 La couche de surface s'est réchauffée rapidement. L'activité biologique a débutée légèrement Le lac a dégelé début avril, soit 15 jours avant l'intervention

DONNEES PHYSICO-CHIMIQUES

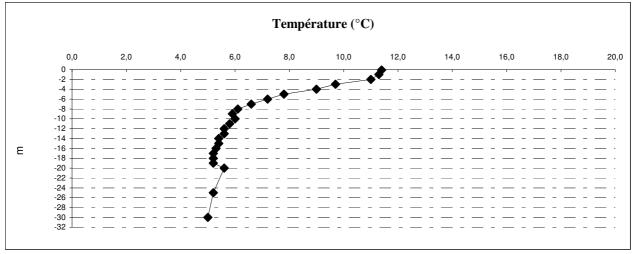
Plan d'eau: Ilay (Lac d'-) Date: 20/04/2009

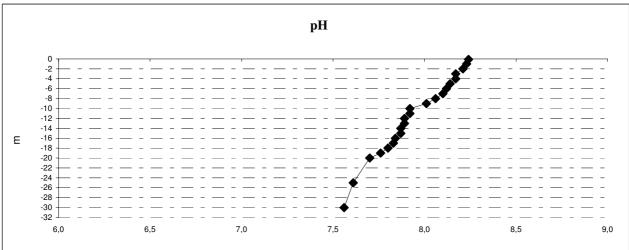
Type (naturel, artificiel,...): naturel Code lac: V2035003

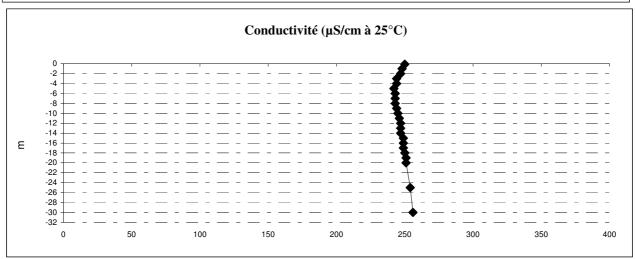
S.T.E.: Audrey Péricat et Hervé Coppin Organisme / opérateur : Campagne 1

Agence de l'eau RM&C marché n° 08M082Organisme demandeur

TRANSPARENCE

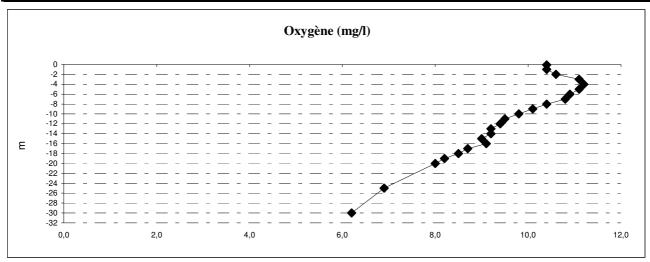

Secchi en m:	5,0	Zone euphotique (2,5 x Sec		ecchi):	12,5 m		
PROFIL VERTICAL							
Moyen de mesure utilisé :		in-situ à ch	aque prof.		X	en surface da	ans un récipient
Volume prélevé (en litres) :	Prof.	Temp.	рН	Cond.	O_2	O_2	Heure
volume preserve (en nues).	(m)	(°C)		(µS/cm 25°)	(mg/l)	(%)	
prélèvement intégré (1 L)	-0,1	11,4	8,24	250	10,4	104%	12:30
prélèvement intégré (1 L)	-1,0	11,3	8,23	248	10,4	104%	
prélèvement intégré (1 L)	-2,0	11,0	8,21	247	10,6	105%	
prélèvement intégré (1 L)	-3,0	9,7	8,17	244	11,1	106%	
prélèvement intégré (1 L)	-4,0	9,0	8,17	244	11,2	106%	
prélèvement intégré (1 L)	-5,0	7,8	8,14	242	11,1	102%	
prélèvement intégré (1 L)	-6,0	7,2	8,12	243	10,9	99%	
prélèvement intégré (1 L)	-7,0	6,6	8,10	243	10,8	96%	
prélèvement intégré (1 L)	-8,0	6,1	8,06	243	10,4	92%	
prélèvement intégré (1 L)	-9,0	5,9	8,01	244	10,1	88%	
prélèvement intégré (1 L)	-10,0	6,0	7,92	245	9,8	86%	
prélèvement intégré (1 L)	-11,0	5,8	7,92	246	9,5	83%	
prélèvement intégré (1 L)	-12,0	5,6	7,89	247	9,4	82%	13:05
	-13,0	5,6	7,89	247	9,2	80%	
	-14,0	5,4	7,87	247	9,2	80%	
	-15,0	5,4	7,87	249	9,0	77%	
	-16,0	5,3	7,84	249	9,1	78%	
	-17,0	5,2	7,83	249	8,7	75%	
	-18,0	5,2	7,80	250	8,5	73%	
	-19,0	5,2	7,76	251	8,2	71%	
	-20,0	5,6	7,70	251	8,0	70%	
	-25,0	5,2	7,61	254	6,9	60%	
prélèvement de fond	-30,0	5,0	7,56	256	6,2	53%	13:30

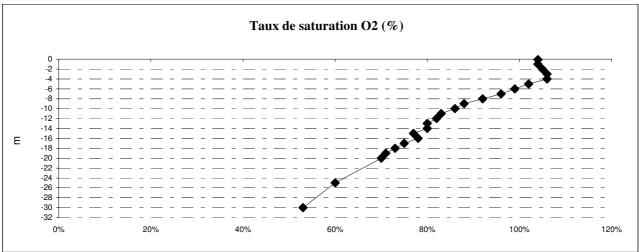

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES


Plan d'eau : Ilay (Lac d'-) Date : 20/04/2009
Type (naturel, artificiel,...) : Code lac : V2035003

Organisme / opérateur : S.T.E. : Audrey Péricat et Hervé Coppin Campagne 1

Organisme demandeur Agence de l'eau RM&C marché n° 08M082




DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES

Plan d'eau: Ilay (Lac d'-) Date: 20/04/2009 Code lac: V2035003 Type (naturel, artificiel,...): naturel

Organisme / opérateur : Campagne 1 S.T.E.: Audrey Péricat et Hervé Coppin

marché n° 08M082Organisme demandeur Agence de l'eau RM&C

Preievement d'eau de fond, po	ur anaiyses physicochimi	ques :				
Distance au fond:	1,5 m soit à Zf =	= 30,0 m				
Remarques et observations :						
Remise des échantillons :						
Echantillons pour analyses ph	ysicochimiques (Laborato	oire LDA26)				
échantillon intégré n°	1334232	Bon transport intégré :				
échantillon de fond n°	1337648	Bon transport fond:				
remise par S.T.E.:		le	à			
Au transporteur:	Chronopost	le 20/04/09	à	16h 00		
arrivée au laboratoire LDA 26 en mi-journée du : 21/04/09						

arrivée au laboratoire LDA 26 en mi-journée du :

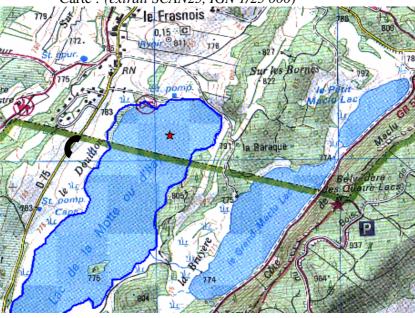
Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le 05/06/09

DONNEES GENERALES PLAN D'EAU - STATION

Plan d'eau : **Ilay (Lac d'-)** Date : 10/06/2009

Type (naturel, artificiel,...): naturel Code lac: V2035003

Organisme / opérateur : S.T.E.: Audrey Péricat et Nicolas Sanmartin Campagne 2
Organisme demandeur Agence de l'eau RM&C marché n° 08M082


LOCALISATION PLAN D'EAU

Commune : Le Frasnois (39)

Lac marnant : non H.E.R. : Jura

Superficie du bassin-versant : 5,25 km²
Superficie du plan d'eau : 72 ha
Profondeur maximale : 32 m

Carte: (extrait SCAN25, IGN 1/25 000)

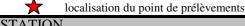


Photo du site : depuis le versant ouest (à proximité de la station de pompage)

angle de prise de vue de la photographie

Relevé phytoplanctonique et physi	co-chimique en plan d'eau		
DONNEES GENERALES CAMP	AGNE		
Plan d'eau:	Ilay (Lac d'-)		Date: 10/06/2009
Type (naturel, artificiel,):	naturel		Code lac: V2035003
Organisme / opérateurs :	S.T.E.: Audrey Péricat et	Nicolas Sanmartin	Campagne 2
Organisme demandeur	Agence de l'eau RM&C		marché n° 08M082
STATION			
Coordonnées de la station	relevées sur : GPS		
Lambert 93	X: 921904	Y: 6618517	7 alt.: 773 m
WGS 84 (système international)	GPS (en dms) X:	Y:	alt.: m
Profondeur:	31,5 m		
	vent: moyen		
	météo : soleil		
	301011		
Conditions d'observation :	Surface de l'eau : agitée	<u>.</u>	
	Hauteur des vagues : 0,05	m P atm stan	dard: 921,42 hPa
	Bloom algal: non	Pression a	
Marnage:	non	Hauteur de la bar	
		11000001 00 10 001	
Campagne:	2 campagne printanière de cr de la thermocline	oissance du phytop	plancton : mise en place
PRELEVEMENTS			
Heure de début du relevé :	12:00 Heure	e de fin du relevé :	13:00
Prélèvements réalisés :	eau chlorophylle matér phytoplancton	iel employé :	pompe
	AEP: Syndicat de gestion du l Syndicat de gestion du lac d'Ila 1, route des lacs 39130 Le Fras M. Vallet 03.84.25.51.36	ay – Mairie du Fras	snois-
Remarques, observations:	Le prélèvement intégré a été au était déjà faible (8°C), on se travec des teneurs en oxygène in Le prélèvement n'a pas été pro	ouve déjà dans les nférieures à 90%.	couches profondes

-19,0

-20,0

-25,0

-29,0

prélèvement de fond

6,3

6,2

6,0

5,9

DONNEES PHYSICO-CHIMIQUES

Plan d'eau : Ilay (Lac d'-) Date : 10/06/2009

Type (naturel, artificiel,...): naturel Code lac: V2035003

Organisme / opérateur : S.T.E. : Audrey Péricat et Nicolas Sanmartin Campagne 2

Organisme demandeur Agence de l'eau RM&C marché n° 08M082

TRANSPARENCE

Secchi en m: 6,0 Zone euphotique (2,5 x Secchi): 15,0 m

PROFIL VERTICAL						_	
Moyen de mesure utilisé :		in-situ à ch	aque prof.		X	en surface d	ans un récipient
Volume prélevé (en litres) :	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
volume prefeve (en nues).	(m)	(°C)		(μS/cm 25°)	(mg/l)	(%)	
prélèvement intégré (1 L)	-0,1	17,3	8,46	228	9,6	109%	12:00
prélèvement intégré (1 L)	-1,0	17,3	8,45	234	9,4	107%	
prélèvement intégré (1 L)	-2,0	17,3	8,44	234	9,4	107%	
prélèvement intégré (1 L)	-3,0	17,3	8,49	235	9,4	107%	
prélèvement intégré (1 I)	-4.0	17.3	8 11	235	0.3	106%	

7,40

7,30

7,32 7,20 245

246

225

241

6,4

6,0

3,8

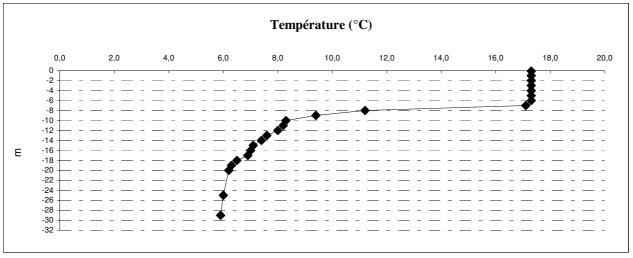
1,8

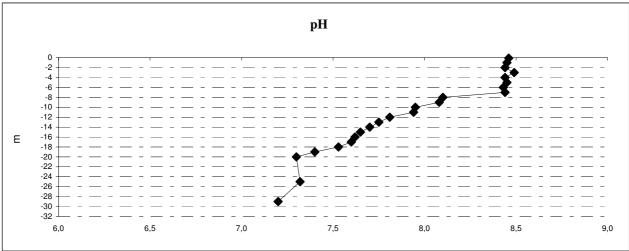
57%

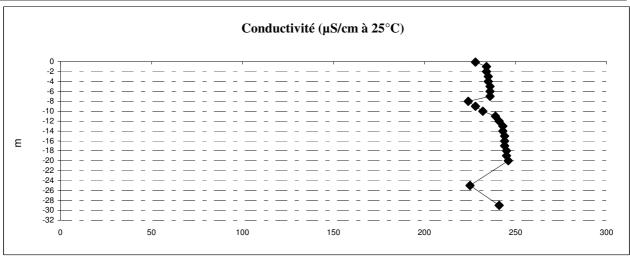
53%

34%

16%

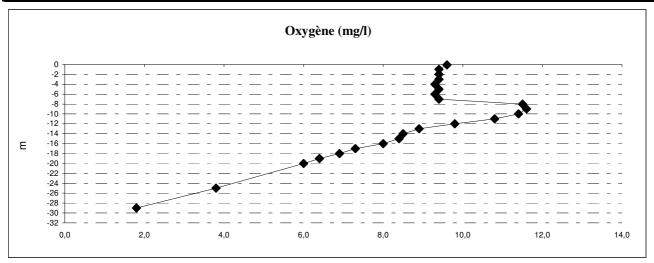

13:00

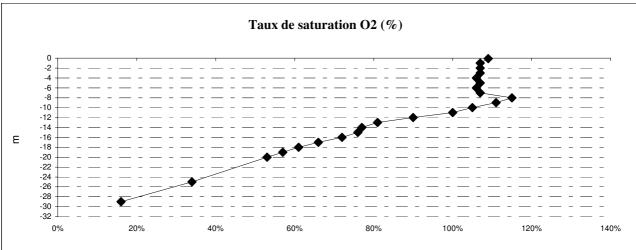

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES


Plan d'eau : Ilay (Lac d'-) Date : 10/06/2009 Type (naturel, artificiel,...) : naturel Code lac : V2035003

Organisme / opérateur : S.T.E. : Audrey Péricat et Nicolas Sanmartin Campagne 2

Organisme demandeur Agence de l'eau RM&C marché n° 08M082




DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES

Plan d'eau : Ilay (Lac d'-) Date : 10/06/2009 Type (naturel, artificiel,...) : naturel Code lac : V2035003

Organisme / opérateur : S.T.E. : Audrey Péricat et Nicolas Sanmartin Campagne 2

Organisme demandeur Agence de l'eau RM&C marché n° 08M082

Prélèvement d'eau de fond, p	our analyses	physicochimiques	:	
Distance au fond	: 2.5 m	soit à Zf =	29.0 m	

Remarques et observations :

Remise des échantillons:

Echantillons pour analyses physicochimiques (Laboratoire LDA26)

 $\begin{array}{ccc} \text{\'echantillon int\'egr\'e } n^{\circ} & 1334249 & Bon transport int\'egr\'e :} \\ \text{\'echantillon de fond } n^{\circ} & 1337662 & Bon transport fond:} \end{array}$

remise par S.T.E.: le à

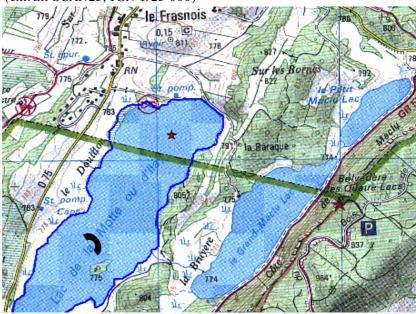
Au transporteur : Chronopost le 10/06/09 à 15h 30

arrivée au laboratoire LDA 26 en mi-journée du : 11/06/09

Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le 30/06/09

Organisme / opérateur : S.T.E.: Audrey Péricat et Nicolas Sanmartin Campagne 3

Organisme demandeur Agence de l'eau RM&C marché n° 08M082


LOCALISATION PLAN D'EAU

Commune: Le Frasnois (39)

Lac marnant : non H.E.R. : Jura

Superficie du bassin-versant : 5,25 km²
Superficie du plan d'eau : 72 ha
Profondeur maximale : 32 m

Carte: (extrait SCAN25, IGN 1/25 000)

angle de prise de vue de la photographie

localisation du point de prélèvements

Photo du site : depuis le partie sued du lac

Relevé phytoplanctonique et physic	o-chimique en plan d'eau	
DONNEES GENERALES CAMPA	AGNE	
Plan d'eau:	Ilay (Lac d'-)	Date: 28/07/2009
Type (naturel, artificiel,):	naturel	Code lac: V2035003
Organisme / opérateurs :	S.T.E.: Audrey Péricat et Nicolas Sanmart	cin Campagne 3
Organisme demandeur	Agence de l'eau RM&C	marché n° 08M082
STATION	·	
Coordonnées de la station	relevées sur : GPS	
Lambert 93	X: 921826 Y: 6	6618511 alt.: 773 m
WGS 84 (système international)	GPS (en dms) X: Y:	alt.: m
Profondeur:	30,5 m	
Tronucui	vent: nul	
	météo : soleil	
	meteo. solen	
Conditions d'observation :	Surface de l'eau : lisse	
Collations a observation.	Surface de feau. Hisse	
	Ht1	11 . 021 42 . ID
	e ,	m standard: 921,42 hPa
		sion atm.: 930 hPa
Marnage:	oui Hauteur de	la bande : -0,1 m
Campagne:	3 campagne estivale : thermocline bien in croissance du phytoplancton	stallée, 2ème phase de
PRELEVEMENTS		
Heure de début du relevé :	10:00 Heure de fin du rel	levé : 10:40
110010 00 00000 00 1010 00	110010 00 1111 00 10	101.0
Prélèvements réalisés :	eau chlorophylle matériel employé : phytoplancton macrophytes	pompe
Contact préalable :	AEP: Syndicat de gestion du lac d'Ilay Syndicat de gestion du lac d'Ilay – Mairie d 1, route des lacs 39130 Le Frasnois M. Vallet 03.84.25.51.36	u Frasnois-
Remarques, observations:		

-20,0

-25,0

-30,0

prélèvement de fond

6,9

7,3

6,8

DONNEES PHYSICO-CHIMIQUES

Plan d'eau : Ilay (Lac d'-) Date : 28/07/2009

Type (naturel, artificiel,...): naturel Code lac: V2035003

Organisme / opérateur : S.T.E. : Audrey Péricat et Nicolas Sanmartin Campagne 3

Organisme demandeur Agence de l'eau RM&C marché n° 08M082

TRANSPARENCE

Secchi en m: 3,6 Zone euphotique (2,5 x Secchi): 9,0 m

Zone euphotique (2,3 x Sectif) . 9,0 iii						111	
	in-situ à chaque prof.			X	en surface dans un récipient		
Prof.	Temp.	pН	Cond.	O_2	O_2	Heure	
(m)	(°C)		(µS/cm 25°)	(mg/l)	(%)		
-0,1	21,3	8,32	238	10,2	125%	10:00	
-1,0	21,3	8,29	235	10,0	123%		
-2,0	21,2	8,28	234	10,1	124%		
-3,0	21,2	8,27	234	10,1	124%		
-4,0	21,2	8,27	234	10,1	124%		
-5,0	21,1	8,27	234	10,1	123%		
-6,0	20,7	8,25	233	10,4	127%		
-7,0	20,1	8,21	234	10,8	130%		
-8,0	16,2	8,15	249	13,6	150%		
-9,0	13,2	8,08	248	13,7	143%		
-10,0	10,8	7,75	255	11,5	114%		
-11,0	10,7	7,60	260	10,7	105%		
-12,0	9,5	7,38	265	8,2	78%		
-13,0	8,8	7,45	264	9,7	91%		
-14,0	8,5	7,44	264	9,7	91%		
-15,0	8,1	7,39	266	8,6	80%		
-16,0	7,8	7,30	269	7,2	66%		
-17,0	7,7	7,26	270	6,9	63%		
-18,0	7,4	7,27	271	5,4	49%		
-19,0	7,1	7,17	273	4,3	39%		
	Prof. (m) -0,1 -1,0 -2,0 -3,0 -4,0 -5,0 -6,0 -7,0 -8,0 -9,0 -11,0 -12,0 -13,0 -14,0 -15,0 -16,0 -17,0 -18,0	in-situ à ch Prof. Temp. (m) (°C) -0,1 21,3 -1,0 21,3 -2,0 21,2 -3,0 21,2 -4,0 21,2 -5,0 21,1 -6,0 20,7 -7,0 20,1 -8,0 16,2 -9,0 13,2 -10,0 10,8 -11,0 10,7 -12,0 9,5 -13,0 8,8 -14,0 8,5 -15,0 8,1 -16,0 7,8 -17,0 7,7 -18,0 7,4	in-situ à chaque prof. Prof. Temp. pH (°C) -0,1 21,3 8,32 -1,0 21,3 8,29 -2,0 21,2 8,28 -3,0 21,2 8,27 -4,0 21,2 8,27 -5,0 21,1 8,27 -6,0 20,7 8,25 -7,0 20,1 8,21 -8,0 16,2 8,15 -9,0 13,2 8,08 -10,0 10,8 7,75 -11,0 10,7 7,60 -12,0 9,5 7,38 -13,0 8,8 7,45 -14,0 8,5 7,44 -15,0 8,1 7,39 -16,0 7,8 7,30 -17,0 7,7 7,26 -18,0 7,4 7,27	in-situ à chaque prof. Prof. Temp. (°C) PH (μS/cm 25°) -0,1 21,3 8,32 238 -1,0 21,3 8,29 235 -2,0 21,2 8,28 234 -3,0 21,2 8,27 234 -4,0 21,2 8,27 234 -5,0 21,1 8,27 234 -6,0 20,7 8,25 233 -7,0 20,1 8,21 234 -8,0 16,2 8,15 249 -9,0 13,2 8,08 248 -10,0 10,8 7,75 255 -11,0 10,7 7,60 260 -12,0 9,5 7,38 265 -13,0 8,8 7,45 264 -14,0 8,5 7,44 264 -15,0 8,1 7,39 266 -16,0 7,8 7,30 269 -17,0 7,7 7,26 270 -18,0 7,4 7,27 271	in-situ à chaque prof. Prof. Temp. pH Cond. (μS/cm 25°) (mg/l) -0,1 21,3 8,32 238 10,2 -1,0 21,3 8,29 235 10,0 -2,0 21,2 8,28 234 10,1 -3,0 21,2 8,27 234 10,1 -4,0 21,2 8,27 234 10,1 -5,0 21,1 8,27 234 10,1 -6,0 20,7 8,25 233 10,4 -7,0 20,1 8,21 234 10,8 -8,0 16,2 8,15 249 13,6 -9,0 13,2 8,08 248 13,7 -10,0 10,8 7,75 255 11,5 -11,0 10,7 7,60 260 10,7 -12,0 9,5 7,38 265 8,2 -13,0 8,8 7,45 264 9,7 -14,0 8,5 7,44 264 9,7 -15,0 8,1 7,39 266 8,6 -16,0 7,8 7,30 269 7,2 -17,0 7,7 7,26 270 6,9 -18,0 7,4 7,27 271 5,4	in-situ à chaque prof. X en surface de la complex (μs/cm 25°) (mg/l) (%) (%) (μs/cm 25°) (mg/l) (%) (πg/l) (πg/l)	

7,15

7,07 7,02 274

276 277 3,9

1,1

0,0

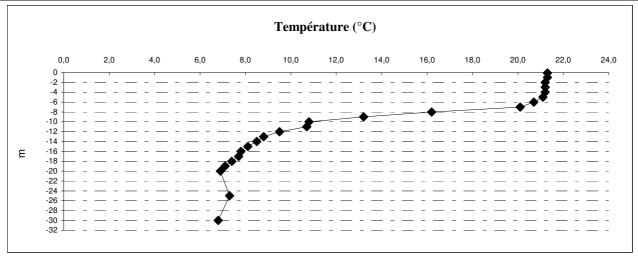
35%

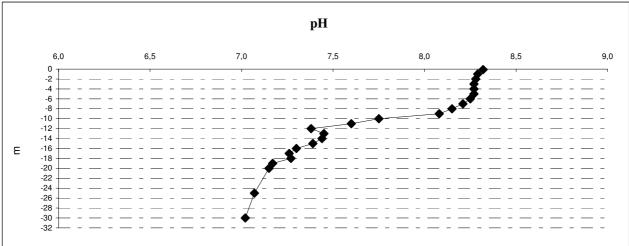
10%

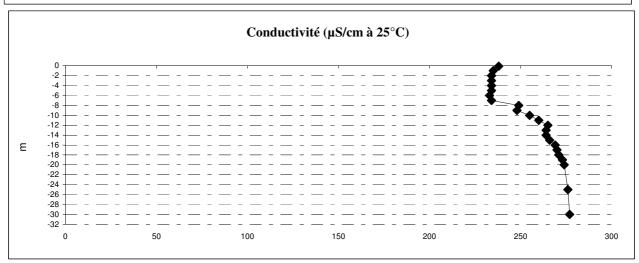
0%

10:40

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES

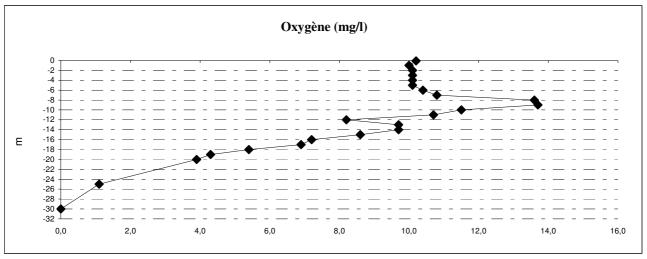

Plan d'eau : Ilay (Lac d'-) Date : 28/07/2009 Type (naturel, artificiel,...) : naturel Code lac : V2035003

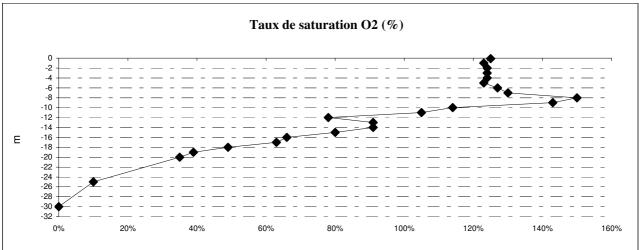

Organisme / opérateur : S.T.E. : Audrey Péricat et Nicolas Sanmartin Campagne 3


Organisme demandeur

Agence de l'eau RM&C

marché n° 08M082




DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES

Plan d'eau : Ilay (Lac d'-) Date : 28/07/2009 Type (naturel, artificiel,...) : naturel Code lac : V2035003

Organisme / opérateur : S.T.E. : Audrey Péricat et Nicolas Sanmartin Campagne 3

Organisme demandeur Agence de l'eau RM&C marché n° 08M082

Prélèvement d'eau de fond, pour analyses physicochimi

Distance au fond : 0.5 m soit à Zf = 30.0 m

Remarques et observations :

Remise des échantillons :

Echantillons pour analyses physicochimiques (Laboratoire LDA26)

échantillon intégré n° 1334280 Bon transport intégré : EZ320952675FR échantillon de fond n° 1337676 Bon transport fond: EZ320952689FR remise par S.T.E. : le à

Au transporteur : Chronopost le 28/07/09 à 15h

arrivée au laboratoire LDA 26 en mi-journée du : 29/07/09

Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le 03/08/09

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES GENERALES PLAN D'EAU - STATION Date: 08/09/2009 Plan d'eau: Ilay (Lac d'-) Type (naturel, artificiel,...): Code lac: V2035003 naturel Organisme / opérateur : **S.T.E.**: Audrey Péricat et Hervé Coppin Campagne 4 $marché \ n^{\circ} \ 08M082$ Organisme demandeur Agence de l'eau RM&C LOCALISATION PLAN D'EAU Commune : Le Frasnois (39) Lac marnant: H.E.R.: Jura non Superficie du bassin-versant : 5,25 km² Superficie du plan d'eau : 72 ha Profondeur maximale: 32 Carte: (extrait SCAN25, IGN 1/ angle de prise de vue de la photographie localisation du point de prélèvements Photo du site : depuis point prélèvement

Relevé phytoplanctonique et physi		
DONNEES GENERALES CAMP	AGNE	
Plan d'eau:	Ilay (Lac d'-) Date: 08/09/200)9
Type (naturel, artificiel,):	naturel Code lac: V203500	3
Organisme / opérateurs :	S.T.E.: Audrey Péricat et Hervé Coppin Campagne 4	
Organisme demandeur	Agence de l'eau RM&C marché n° 08M082	
STATION		
Coordonnées de la station	relevées sur : GPS	
Lambert 93	X: 921928 Y: 6618536 alt.: 773	m
WGS 84 (système international)	GPS (en dms) X: Y: alt.:	m
Profondeur :		
Tiorondent	vent : faible	
	météo: soleil	
Conditions d'observation :	Surface de l'eau : faiblement agitée	
	Hauteur des vagues : 0,05 m P atm standard : 921,42 hPa	
	Bloom algal: non Pression atm.: 930 hPa	
Marnage:		
Campagne:	4 campagne de fin d'été : fin de stratification estivale, avant baisse de l température	a
PRELEVEMENTS		
Heure de début du relevé :	12h 30 Heure de fin du relevé : 14h 00	
Prélèvements réalisés :	eau chlorophylle matériel employé : pompe phytoplancton sédiments benne Ekmann	
Castian	AED. Comdised de costion du les differe	\dashv
	AEP: Syndicat de gestion du lac d'Ilay Syndicat de gestion du lac d'Ilay – Mairie du Frasnois- 1, route des lacs 39130 Le Frasnois M. Vallet 03.84.25.51.36	
Remarques, observations:	milieu anoxique dans le fond du lac.	

DONNEES PHYSICO-CHIMIQUES

Plan d'eau : Ilay (Lac d'-) Date : 08/09/2009

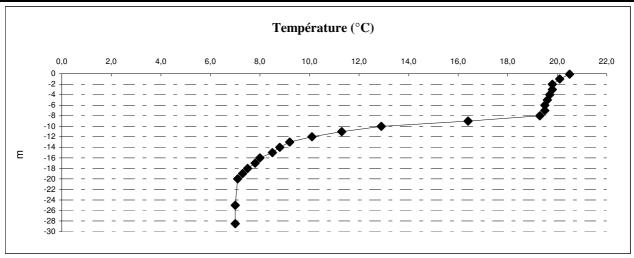
Type (naturel, artificiel,...): naturel Code lac: V2035003

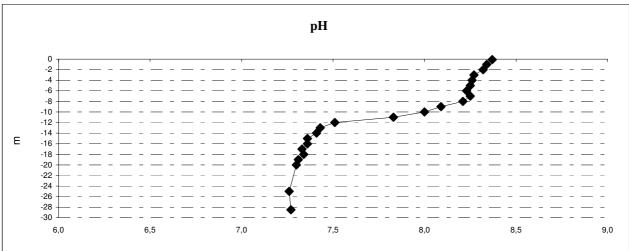
Organisme / opérateur : S.T.E. : Audrey Péricat et Hervé Coppin Campagne 4

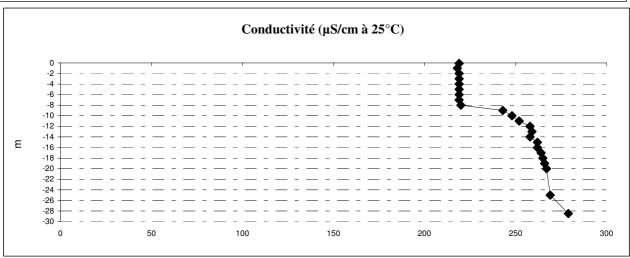
Organisme demandeur Agence de l'eau RM&C marché n° 08M082

TRANSPARENCE

Secchi en m: 4,1 Zone euphotique (2,5 x Secchi): 10,3 m

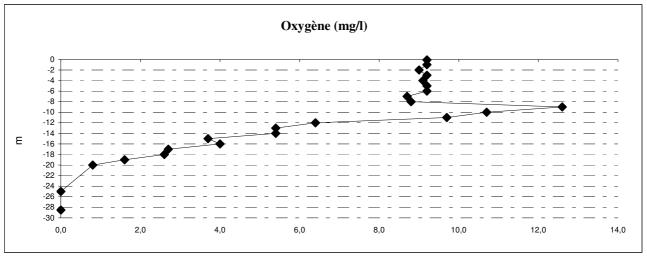

Seccili eli ili .	4,1	4,1 Zone euphotique (2,5 x Secciii) . 10,3 iii						
PROFIL VERTICAL								
Moyen de mesure utilisé :		in-situ à chaque prof.			X	en surface dans un récipien		
Volume prélevé (en litres) :	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure	
voidine preieve (en nices):	(m)	(°C)		(μS/cm 25°)	(mg/l)	(%)		
prélèvement intégré (1 L)	-0,1	20,5	8,37	219	9,2	111%	12:40	
prélèvement intégré (1 L)	-1,0	20,1	8,34	218	9,2	110%		
prélèvement intégré (1 L)	-2,0	19,8	8,32	219	9,0	107%		
prélèvement intégré (1 L)	-3,0	19,8	8,27	219	9,2	109%		
prélèvement intégré (1 L)	-4,0	19,7	8,26	219	9,1	108%		
prélèvement intégré (1 L)	-5,0	19,6	8,25	219	9,2	109%		
prélèvement intégré (1 L)	-6,0	19,5	8,23	219	9,2	109%		
prélèvement intégré (1 L)	-7,0	19,5	8,25	219	8,7	103%		
prélèvement intégré (1 L)	-8,0	19,3	8,21	220	8,8	104%		
prélèvement intégré (1 L)	-9,0	16,4	8,09	243	12,6	140%		
prélèvement intégré (1 L)	-10,0	12,9	8,00	248	10,7	111%		
	-11,0	11,3	7,83	252	9,7	97%		
	-12,0	10,1	7,51	258	6,4	62%		
	-13,0	9,2	7,43	259	5,4	51%		
	-14,0	8,8	7,41	258	5,4	51%		
	-15,0	8,5	7,36	262	3,7	34%		
	-16,0	8,0	7,36	262	4,0	37%		
	-17,0	7,8	7,33	264	2,7	25%		
	-18,0	7,5	7,34	265	2,6	23%		
	-19,0	7,3	7,31	266	1,6	15%		
	-20,0	7,1	7,30	267	0,8	7%		
	-25,0	7,0	7,26	269	0,0	0%		
prélèvement de fond	-28,5	7,0	7,27	279	0,0	0%	13:30	

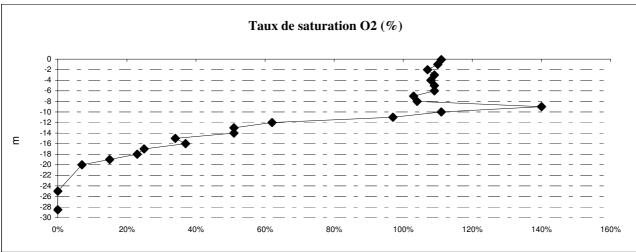

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES


Plan d'eau : Ilay (Lac d'-) Date : 08/09/2009 Type (naturel, artificiel,...) : naturel Code lac : V2035003

Organisme / opérateur : S.T.E. : Audrey Péricat et Hervé Coppin Campagne 4

Organisme demandeur Agence de l'eau RM&C marché n° 08M082




DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES

Plan d'eau: Ilay (Lac d'-) Date: 08/09/2009 Type (naturel, artificiel,...): naturel Code lac: V2035003

S.T.E.: Audrey Péricat et Campagne 4 Organisme / opérateur : Hervé Coppin

marché n° 08M082 Organisme demandeur Agence de l'eau RM&C

soit à Zf = Distance au fond: 1,0 m 28,5 m

Remarques et observations :

Remise des échantillons:

Echantillons pour analyses physicochimiques (Laboratoire LDA26)

échantillon intégré n° 1334294 Bon transport intégré: échantillon de fond n° 1337696 Bon transport fond:

remise par S.T.E.: 1e à

Au transporteur : Chronopost le 08/09/09 à 16h 00

> arrivée au laboratoire LDA 26 en mi-journée du : 09/09/09

Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le 12/10/09

Prélèvements de sédiments pour analyses p	hysico-chimia	jues			
DONNEES GENERALES PLAN D'EAU -	•				
Plan d'eau : Ilay (Lac d'-)				Date : 08/0)9/2009
Type (naturel, artificiel,): naturel				Code lac : V	
	Audrey Pério	rat et	Hervé Coppin heure: 13:50		
Organisme demandeur : Agence de l'	•	cai ci	marché n° 08M082		
organisme demandedi . Trigenee de 1	caa ravice			iarene ii oor	1002
couvert mort et sédir	née favorable mentation du j n de MES de	plancton	débits X X >>	des affluents turbidité affl Secchi (m)	L
Matériel drague fond plat pelle à main		benne X	piège	card	ottier
Localisation générale de la zone de prélève Point de plus grande profondeur (cf campag	•	particulier, X	Y Lambert II é	tendu, profo	ndeur)
Prélèvements	1	2	3	4	5
profondeur (en m)	29,5	29,5	29,5		
épaisseur échantillonnée					
récents (<2cm)	X	X	X		
anciens (>2cm)					
indéterminé					
épaisseur, en cm :	1	1	2		
granulomérie dominante					
blocs					
pierres galets					
graviers					
sables					
limons					
vases	X	X	X		
argile					
aspect du sédiment					
homogène			X		
hétérogène	X	X			
couleur	gris	gris	gris		
odeur	non	non	non		
présence de débris végétx non décomp	oui	oui	oui		
présence d'hydrocarbures	non	non	non		
présence d'autres débris	non	non	non		
Ramaranas gánáralas •	•	•	•	•	

1+2: sédiment très liquide avec des végétaux en décomposition et des trainées noires - milieu anoxique

Remise des échantillons :

Echantillons pour analyses physicochimiques (Laboratoire LDA26)

échantillons n° 1466213 1466232 remise par S.T.E.: à le

Au transporteur: le 08/09/2009 à 16h 00

arrivée au laboratoire LDA 26 en mi-journée du : 09/09/2009