

Agence de l'Eau Rhône-Méditerranée et Corse

ETUDE DES PLANS D'EAU DU PROGRAMME DE SURVEILLANCE DES BASSINS RHONE-MEDITERRANEE ET CORSE - RAPPORT DE DONNEES BRUTES ET INTERPRETATION - RETENUE DE COISELET (39) SUIVI ANNUEL 2010

Rapport n° 08-283/2011-PE2010-12- septembre 2011

co-traitants

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Coiselet (39)

Maître d'Ouvrage :	Agence de l'Eau Rhô Direction des Donné 2-4, allée de Lodz 69363 Lyon cedex 09	
	Interlocuteur:	Mr Imbert Loïc
	Coordonnées :	loic.imbert@eaurmc.fr

Titre du Rapport	ETUDE DES PLANS D'EAU DU PROGRAMME DE SURVEILLANCE DES BASSINS RHONE-MEDITERRANEE ET CORSE				
Résumé	Le rapport rend compte de l'ensemble des données collectées sur la retenue de Coiselet, lors des campagnes de suivi 2010. Une présentation du plan d'eau et du cadre d'intervention est menée puis les résultats des investigations sont développés dans la suite du document.				
Mots-clés		s Rhône-Méditerranée et Corse - Jura de surveillance - Etat trophique - Pla			
Date	septembre 2011 Statut du rapport définitif				
Présent tirage en exemplaire (s)	1	Diffusion informatique au Maître d'Ouvrage	oui		
Auteur	•				
Rédacteur(s)	Audrey Péricat, Hervé Coppin				
Chef de projet – contrôle qualité	Eric Bertrand				

SOMMAIRE

- PI	REAMBULE	1
1 1.1	CADRE DU PROGRAMME DE SUIVI	
1.2	INVESTIGATIONS HYDROMORPHOLOGIQUES ET HYDROBIOLOGIQUES	5
2	PRESENTATION DU PLAN D'EAU ET LOCALISATION	6
3	CONTENU DU SUIVI 2010	7
- R	ESULTATS DES INVESTIGATIONS	<u>9</u>
1	INVESTIGATIONS PHYSICOCHIMIQUES	11
1.1	ANALYSES DES EAUX DU PLAN D'EAU	11
1.2	ANALYSES DE SEDIMENTS	19
2	PHYTOPLANCTON	22
2.1	Prelevements integres	22
2.2		
2.3	ÉVOLUTIONS SAISONNIERES DES GROUPEMENTS PHYTOPLANCTONIQUES	24
3	OLIGOCHETES ET MACROINVERTEBRES	26
3.1	CONDITIONS DE PRELEVEMENTS	
3.2	· ·	
3.3	LISTE FAUNISTIQUE ET CALCUL DE L'INDICE IOBL	
3.4	INTERPRETATION DES RESULTATS	30
4	HYDROMORPHOLOGIE	
4.1	DEROULEMENT DES INVESTIGATIONS	
4.2	CARTOGRAPHIE ET PHOTOGRAPHIE DES POINTS D'OBSERVATIONS	
4.3	RESULTATS: INDICES DE QUALITE DES HABITATS ET D'ALTERATION MORPHOLOGIQUE	
	MACROPHYTES	
5.1	METHODOLOGIE ADAPTEE AUX PLANS D'EAU MARNANTS	
5.2	VEGETATION AQUATIQUE IDENTIFIEE	
5.3	CARTOGRAPHIE DE L'UNITE D'OBSERVATION	
5.4	LISTE DES ESPECES PROTEGEES ET DES ESPECES INVASIVES	
5.5	APPROCHE DU NIVEAU TROPHIQUE DU PLAN D'EAU	39
INT	TERPRETATION GLOBALE DES RESULTATS	40
- A 1	NNEXES	41
1 1		······································

Agence de l'Eau Rhône - Méditerranée & Corse Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Coiselet (39)	
- PREAMBULE-	

1 CADRE DU PROGRAMME DE SUIVI

Dans le cadre de la mise en œuvre de la Directive Cadre Européenne sur l'Eau (DCE), un programme de surveillance doit être établi pour suivre l'état écologique (ou le potentiel écologique) et l'état chimique des eaux douces de surface.

Différents réseaux constituent le programme de surveillance. Parmi ceux-ci, deux réseaux sont actuellement mis en œuvre sur les plans d'eau :

- Le réseau de contrôle de surveillance (RCS) vise à donner une image globale de la qualité des eaux. Tous les plans d'eau naturels supérieurs à 50ha ont été pris en compte sur les bassins Rhône-Méditerranée et Corse. Pour les plans d'eau d'origine anthropique, une sélection a été opérée parmi les plans d'eau supérieurs à 50 ha, afin de couvrir au mieux les différents types présents (grandes retenues, plans d'eau de digue, plans d'eau de creusement).
- <u>Le contrôle opérationnel (CO)</u> vise à suivre spécifiquement les masses d'eau (naturelles ou anthropiques) supérieures à 50 ha, à risque de non atteinte du bon état (ou du bon potentiel) des eaux en 2015.

Au total, 80 plans d'eau sont suivis sur les bassins Rhône-Méditerranée et Corse dans le cadre de ces deux réseaux.

Le contenu du programme de suivi sur les plans d'eau est identique pour le RCS et le CO. Un plan d'eau concerné par le CO sera cependant suivi à une fréquence plus soutenue (tous les 3 ans) comparativement à un plan d'eau strictement visé par le RCS (tous les 6 ans).

Le tableau 1 résume les différents éléments suivis par an et les fréquences d'intervention associées. Il s'agit du suivi qualitatif type mis en place sur les plans d'eau du programme de surveillance.

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Coiselet (39)

Tableau 1 : synoptique des investigations menées sur une année de suivi du plan d'eau

			Paramètres	Type de prélèvements/ Mesures		PRINTEMPS	ЕТЕ	AUTOMNE
Mesures in situ		Mesures in situ	O2 dis. (mg/l, %sat.), pH, COND (25℃), T℃, transparence secchi	Profils verticaux	Х	Х	Х	х
	2	Physico-chimie classique	DBO5, PO4, Ptot, NH4, NKJ, NO3, NO2, COT, COD, MEST, Turbidité, Si dissoute	Intégré Ponctuel de fond	X	X	X	X
	Sur EAU	Substances prioritaires, autres substances et pesticides	Micropolluants sur eau*	Intégré		X	X	X
		Pigments chlorophylliens Chlorophylle a + phéopigments		Intégré Ponctuel de fond	Х	Х	Х	Х
		Minéralisation	Ca ²⁺ , Na ⁺ , Mg ²⁺ , K ⁺ , dureté, TA, TAC, SO ₄ ²⁻ , Cl ⁻ , HCO ₃ ⁻	Intégré Ponctuel de fond				
6	Eau	interstitielle : Physico-chimie	PO4, Ptot, NH4					
Ϊ́								
r SEDIMENTS	nase solide (<2mm)	Physico-chimie	Corg., Ptot, NKJ, Granulomètrie, perte au feu	Prélèvement au point de plus grande profondeur				X
Sur SEDIMEN	Phase solide (<2mm)	Physico-chimie Substances prioritaires, autres substances et pesticides		grande profondeur				х
Sur SEDIMEN	Phase solide (<2mm)	Substances prioritaires, autres	perte au feu	grande profondeur Prélèvement Intégré	X	X	X	x
Sur SEDIMEN	Phase solide (<2mm)	Substances prioritaires, autres	perte au feu Micropolluants sur sédiments*	grande profondeur	X	X	X	
Sur SEDIMEN		Substances prioritaires, autres	perte au feu Micropolluants sur sédiments* Phytoplancton	grande profondeur Prélèvement Intégré (Cemagref/Utermöhl)	X	X	X	Х
Sur SEDIMEN		Substances prioritaires, autres substances et pesticides	perte au feu Micropolluants sur sédiments* Phytoplancton Oligochètes	Prélèvement Intégré (Cemagref/Utermöhl) IOBL IMOL Protocole Cemagref		X	X	X
Sur SEDIMEN		Substances prioritaires, autres substances et pesticides	perte au feu Micropolluants sur sédiments* Phytoplancton Oligochètes Mollusques	grande profondeur Prélèvement Intégré (Cemagref/Utermöhl) IOBL IMOL		×		X

^{* :} se référer à l'annexe 5 de la circulaire DCE 2006/16, analyses à réaliser sur les paramètres pertinents à suivre sur le support concerné

RCS: un passage par plan de gestion (soit une fois tous les six ans)

CO: un passage tous les trois ans

Poissons en charge de l'ONEMA (un passage tous les 6 ans)

1.1 INVESTIGATIONS PHYSICOCHIMIQUES

Les différents paramètres physico-chimiques analysés sur l'eau sont suivis lors de quatre campagnes calées aux différentes phases du cycle annuel de fonctionnement du plan d'eau, soit entre le mois de février et le mois d'octobre. Les dates d'intervention sont mentionnées dans le tableau 2, au paragraphe 3.

A chaque campagne, sont réalisés au point de plus grande profondeur :

- 1. un profil vertical des paramètres physico-chimiques de terrain : température, conductivité, oxygène dissous (en mg/l et % saturation) et pH;
- 2. des échantillons d'eau pour analyses (physico-chimie, micropolluants, pigments chlorophylliens), il s'agit :
 - ✓ d'un prélèvement intégré sur la colonne d'eau (constitué à partir du mélange de prélèvements ponctuels réalisés tous les mètres entre la surface et 2,5 fois la transparence mesurée avec le disque de Secchi);
 - ✓ d'un prélèvement de fond (réalisé généralement à un mètre du fond).

Agence de l'Eau Rhône - Méditerranée & Corse

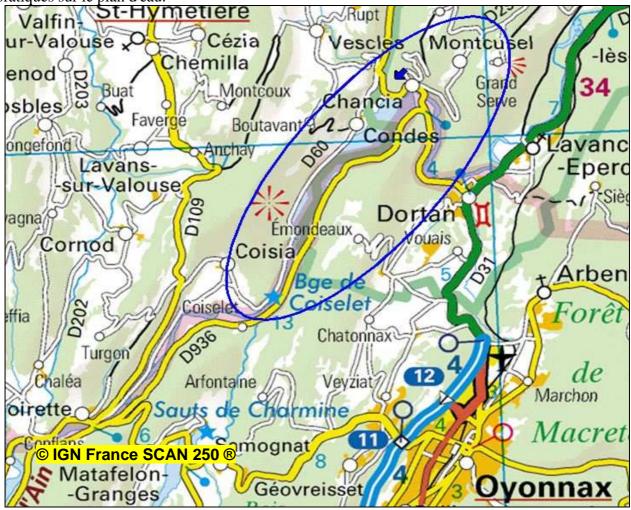
Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Coiselet (39) Les sédiments sont prélevés une fois par an lors de la 4^{ème} et dernière campagne au point de plus grande profondeur.

Les échantillons d'eau et de sédiments ont été transmis au Laboratoire Départemental d'Analyses de la Drôme (LDA 26) en charge des analyses.

1.2 Investigations hydromorphologiques et hydrobiologiques

Les investigations hydromorphologiques et hydrobiologiques ont été réalisées à des périodes adaptées aux objectifs des méthodes utilisées.

L'évaluation morphologique du lac est établie en suivant le protocole du Lake Habitat Survey (LHS) dans sa version 3.1 (mai 2006).


Les investigations hydrobiologiques comprennent plusieurs volets :

- l'étude des peuplements phytoplanctoniques à partir du protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en œuvre de la DCE (CEMAGREF INRA; version 3.3 de mars 2009);
- 2 l'étude des peuplements d'oligochètes à travers la détermination de l'Indice Oligochètes de Bio-indication Lacustre : IOBL (Norme AFNOR NF T90-391, mars 2005) : les prélèvements suivent une méthode d'échantillonnage expérimentale des macroinvertébrés benthiques (cf. méthodologies) s'appliquant au cas des plans d'eau de retenue soumis à un marnage ((Note technique : protocole d'échantillonnage des invertébrés benthiques adapté aux plans d'eau de retenues ; CEMAGREF. Mazzella et Argilier).
- 3 l'étude des peuplements de macrophytes sur le lac s'appuie sur la méthode mise au point par le CEMAGREF : Méthodologie d'étude des communautés de macrophytes en plan d'eau, version mai 2009.

2 PRESENTATION DU PLAN D'EAU ET LOCALISATION

La retenue de Coiselet est située dans le département du Jura sur les communes de Chancia et de Coisia notamment. Le plan d'eau est formé par un barrage sur la rivière Ain à une altitude de 304 m. Il s'agit du 1^{er} des plans d'eau de la "chaîne de l'Ain" qui se succèdent en aval du grand barrage de Vouglans. Ce plan d'eau se trouve à la confluence de l'*Ain* et de la *Bienne* : le bassin versant géographique est évalué à 1910 km².

Cette retenue s'étend au fil de l'Ain avec un bras vers la Bienne sur 12 km environ. La superficie du plan d'eau est de 302 ha pour la cote normale d'exploitation, la profondeur maximale mesurée est de 21 m. Cette retenue artificielle classée MEFM¹, est exploitée par EDF pour l'hydroélectricité. Sa cote varie au pas journalier entre 303 et 304 m NGF selon les données EDF. Les eaux sont renouvelées très rapidement (temps de séjour = 6 jours). Le plan d'eau est également utilisé pour le soutien d'étiage et l'écrêtage des crues. Des activités nautiques ainsi que du motonautisme sont pratiqués sur le plan d'eau.

carte 1 : localisation de la retenue de Coiselet (Jura) – (source : IGN Scan 250 - éch . 1/100 000°)

Masse d'eau fortement modifiée

3 CONTENU DU SUIVI 2010

La retenue de Coiselet comme les autres retenues de la chaîne de l'Ain est suivie au titre du contrôle opérationnel (CO). Tous les compartiments précités sont étudiés. Le tableau ci-dessous indique la répartition des missions au sein du groupement aussi bien en phase terrain qu'en phase laboratoire/détermination. S.T.E. a en outre eu en charge de coordonner la mission et de collecter l'ensemble des données pour établir les rapports et mener l'exploitation des données.

Tableau 2 : synoptique des interventions de terrain et de laboratoire sur le plan d'eau, par campagne

Retenue de Coiselet (39)	phase terrain					laboratoire - détermination
Campagne	C1	campagne IOBL	C2	C3	C4	
date	11/03/2010	22/04/2010	18/05/2010	28 et 29/07/2010	08/09/2010	automne/hiver 2010-2011
physicochimie des eaux	S.T.E.		S.T.E.	S.T.E.	S.T.E.	LDA26
physicochimie des sédiments					S.T.E.	LDA26
phytoplancton	S.T.E.		S.T.E.	S.T.E.	S.T.E.	BECQ'Eau
hydromorphologie				S.T.E.		S.T.E.
macrophytes				Mosaïque environnement		Mosaïque environnement
oligochètes et macroinvertébrés		IRIS consultants				IRIS consultants

En 2010, les conditions météorologiques ont été froides et pluvieuses durant l'hiver. Le printemps a été doux et faiblement pluvieux. De fortes pluies ont entraîné des montées des eaux en été et début septembre. La gestion de ce plan d'eau induit des mouvements hydrauliques qui perturbent la stratification thermique du plan d'eau. Dès septembre, l'exploitant commence le déstockage de la retenue de Vouglans, qui provoque la destratification des retenues de la chaîne de l'Ain.

Les campagnes de prélèvements menées correspondent aux objectifs de la méthodologie, à l'exception de la dernière campagne² qui intervient après une destratification du plan d'eau.

² EDF nous a indiqué que les eaux étaient brassées le 18/08/10 sur la retenue d'Allement (située en aval de Coiselet) selon leur suivi thermique : l'augmentation du débit entrant de l'Ain et ses eaux fraîches ont entraîné une destratification du plan d'eau. Compte tenu du phénomène "précoce" dans l'année, nous avons été obligé d'intervenir après le brassage pour la dernière campagne de prélèvements.

de l'Eau Rhône - Méditerranée & Corse Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Coiselet (39
- RESULTATS DES INVESTIGATIONS -

1 INVESTIGATIONS PHYSICOCHIMIQUES

Les comptes rendus des campagnes de prélèvements physicochimiques et phytoplanctoniques sont présentés en annexe 3.

1.1 ANALYSES DES EAUX DU PLAN D'EAU

1.1.1 Profils verticaux et evolutions saisonnieres

Le suivi prévoit la réalisation de profils verticaux sur la colonne d'eau à chaque campagne. Quatre paramètres sont mesurés : la température, la conductivité, l'oxygène (en concentration et en % saturation) et le pH. Les graphiques regroupant ces résultats pour chaque paramètre lors des 4 campagnes sont affichés dans ce chapitre.

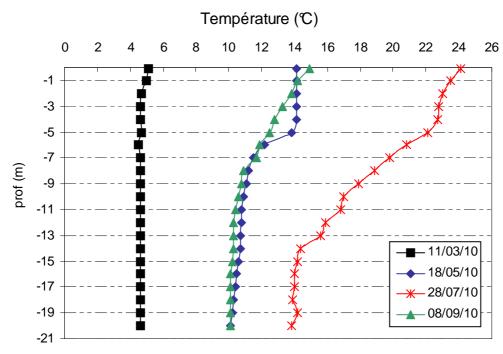


Figure 1: profils verticaux de température au point de plus grande profondeur

Lors de la 1^{ère} campagne, la température est homogène sur la colonne d'eau (4-5°C). Au printemps, une stratification thermique s'installe : les eaux se réchauffent sur les cinq premiers

Au printemps, une stratification thermique s'installe : les eaux se rechauffent sur les cinq premiers mètres (14°C) tandis que les eaux sous 7 m sont à 11°C. Lors de la campagne estivale, un gradient thermique est observable entre 5 et 11 m de profondeur, les eaux de surface atteignent 24°C alors que le fond est à 14°C. Il semble qu'un courant d'eau (arrivée de l'Ain ou de la Bienne) se soit intercalé entre 7 et 10m provoquant une division de la thermocline.

Un brassage des eaux a eu lieu mi août : ainsi la colonne d'eau est homogène (11°C) lors de la 4ème campagne, avec un réchauffement sur la couche de surface entre 0 et 7 m (jusqu'à 15°C). La stratification thermique est peu marquée sur la retenue de Coiselet sur l'année 2010.

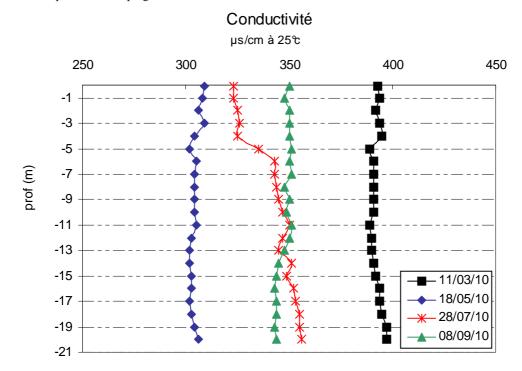


Figure 2 : profils verticaux de conductivité au point de plus grande profondeur

La conductivité indique une eau bien minéralisée, typiquement en lien avec la nature carbonatée des substrats. La conductivité est élevée en fin d'hiver (400 μ S/cm). Au printemps, les minéraux sont consommés entraînant une baisse de la conductivité (310 μ S/cm). En été, la minéralisation reste similaire dans l'épilimnion, tandis qu'elle augmente dans l'hypolimnion (350 μ S/cm) avec les processus de dégradation de la matière algale. Le brassage de fin d'été entraîne une homogénéisation de la colonne d'eau à une valeur de 340 μ S/cm.

Oxygène dissous (mg/l)

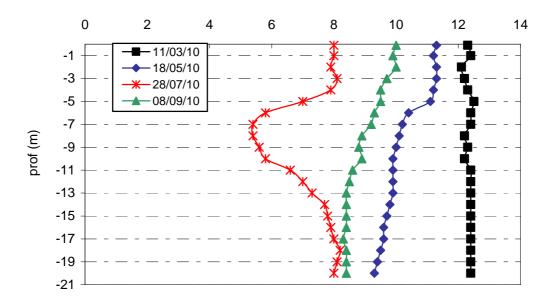


Figure 3 : profils verticaux d'oxygène (mg/l) au point de plus grande profondeur

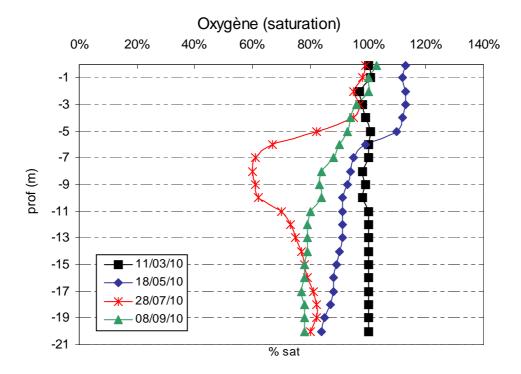


Figure 4: profils verticaux d'oxygène (% sat.) au point de plus grande profondeur

En fin d'hiver, l'oxygène dissous est homogène à 100% de saturation.

Au printemps, une oxycline apparaît entre 5 et 7 m, l'activité biologique est assez élevée et fournie de l'oxygène dans l'épilimnion, tandis que l'on note une légère consommation en profondeur.

Le phénomène est plus marqué en été, où la teneur en oxygène est réduite à 60% sous 7 m. Il semble qu'un courant d'eau (arrivée de l'Ain) ait permis la réoxygénation des eaux sous 11 m.

Agence de l'Eau Rhône - Méditerranée & Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Coiselet (39) L'oxygénation de la colonne d'eau présente un léger gradient entre 100 et 80 % en C4 suite au brassage des eaux.

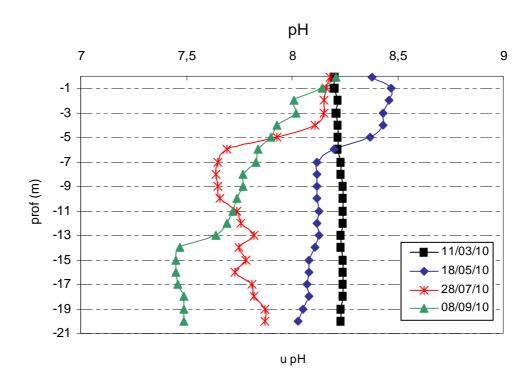


Figure 5 : profils verticaux de pH au point de plus grande profondeur

Le pH est compris entre 7,5 et 8,5. En fin d'hiver, le pH est à 8,2 sur toute la colonne d'eau. En $2^{\text{ème}}$ campagne, l'activité biologique entraîne une hausse du pH au dessus de 5m (8,5), tandis que l'hypolimnion est à pH 8,1. Lors de la campagne du 28 juillet, on observe deux couches distinctes : une couche sur 4 m (pH 8,2) puis une baisse significative du pH en dessous de 6 m (pH \approx 7,7) liée à la dégradation de la matière organique.

En septembre, la courbe de pH est perturbée en raison du brassage partiel : le pH diminue progressivement de 8,2 (surface) à 7,6 (-13 m). La couche sous 14 m est réduite à pH 7,5.

1.1.2 PARAMETRES DE CONSTITUTION ET TYPOLOGIE DU PLAN D'EAU

N.B. pour tous les tableaux suivants :

LD = limite de détection, généralement =SQ/3, sauf pour DBO5 et turbidité pour lesquels LD=SQ, avec SQ = seuil de quantification; Présence = valeur comprise entre LD et SQ, composé présent mais non précisément quantifiable.

Les paramètres de minéralisation sont étudiés lors de la 1^{ère} campagne uniquement. Les résultats sont présentés dans le tableau 3.

Tableau 3 : résultats des paramètres de minéralisation lors de la 1° campagne

Retenue	seuil quantification	11/03/2010		
code plan d'eau : V23003		scun quantification	Intégré	Fond
Dureté calculée	°F	0.1 pour C1 seule	21,2	
T.A.C.	°F	0.5 pour C1 seule	19,7	
T.A.	°F	0.5 pour C1 seule	<ld< td=""><td></td></ld<>	
CO3	mg(CO3)/l	6 pour C1 seule	<ld< td=""><td></td></ld<>	
HCO3-	mg(HCO3)/l	6.1 pour C1 seule	240,3	
Calcium total	mg(Ca)/l	1 pour C1 seule	79	
Magnésium	mg(Mg)/l	1 pour C1 seule	3,6	
Sodium	mg(Na)/l	1 pour C1 seule	3,6	
Potassium	mg(K)/l	1 pour C1 seule	<ld< td=""><td></td></ld<>	
Chlorures	mg(Cl)/l	1 pour C1 seule	6,5	
Sulfates	mg(SO4)/l	1 pour C1 seule	4,2	

Les résultats indiquent une eau très riche en hydrogénocarbonates et en calcaire, de dureté forte conformément à la nature calcaire des terrains observés sur le bassin versant.

1.1.3 RESULTATS DES ANALYSES PHYSICOCHIMIQUES DES EAUX (HORS MICROPOLLUANTS)

Tableau 4 : résultats des paramètres de physico-chimie classique sur eau.

Physico-chimie sur eau										
Retenue de Coiselet		seuil quantification	11/03/2010		18/05/2010		28/07/2010		08/09/2010	
code plan d'eau :	V23003	sean quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
Turbidité	NTU	0.1 pour C1 à C4	1,6	2	0,7	0,9	1,3	2,5	0,7	1,1
M.E.S.T.	mg/l	1 pour C1 à C4	2	3	<ld< td=""><td><ld< td=""><td>3</td><td><ld< td=""><td>2</td><td>2</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>3</td><td><ld< td=""><td>2</td><td>2</td></ld<></td></ld<>	3	<ld< td=""><td>2</td><td>2</td></ld<>	2	2
C.O.D.	mg(C)/l	0.1 pour C1 à C4	2	1,9	2	2	2,3	1,9	2	1,7
C.O.T.	mg(C)/l	0.1 pour C1 à C4	2	1,9	2	2	2,3	1,9	2,2	2
D.B.O.5	mg(O2)/l	0.5 pour C1 à C4	0,9	1	1	0,8	0,6	<ld< td=""><td>1,2</td><td>1,1</td></ld<>	1,2	1,1
Azote Kjeldahl	mg(N)/l	1 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
NH4+	mg(NH4)/l	0.05 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,14</td><td>0,08</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,14</td><td>0,08</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,14</td><td>0,08</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,14</td><td>0,08</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,14	0,08	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
NO3-	mg(NO3)/l	1 pour C1 à C4	3,9	3,9	2,6	2,7	1,5	2,9	3,2	3,9
NO2-	mg(NO2)/l	0.02 pour C1 à C4	0,02	0,02	0,02	0,02	0,04	0,03	0,02	0,02
PO4	mg(PO4)/l	0.015 pour C1 à C4	0,025	0,021	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Phosphore Total	mg(P)/l	0.005 pour C1 à C4	0,034	0,036	0,023	0,019	0,042	0,011	<ld< td=""><td>0,016</td></ld<>	0,016
Silice dissoute	mg(SiO2)/l	0.2 pour C1 à C4	1,5	1,5	0,9	1,3	1,9	1,9	1,3	1,7
Chl. A	μg/l	1 pour C1 à C4	1,4		2,7		<ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<>		<ld< td=""><td></td></ld<>	
Chl. B	μg/l	1 pour C1 à C4	<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<>		<ld< td=""><td></td></ld<>	
Chl. C	μg/l	1 pour C1 à C4	<ld< td=""><td></td><td><ld< td=""><td></td><td>1</td><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td>1</td><td></td><td><ld< td=""><td></td></ld<></td></ld<>		1		<ld< td=""><td></td></ld<>	
Phéophytine	μg/l	1 pour C1 à C4	<ld< td=""><td></td><td><ld< td=""><td></td><td>1</td><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td>1</td><td></td><td><ld< td=""><td></td></ld<></td></ld<>		1		<ld< td=""><td></td></ld<>	

Les analyses des fractions dissoutes ont été réalisées sur eau filtrée (COD, NH4, NO3, NO2, PO4, Si).

Les concentrations en carbone organique sont faibles sur les 4 campagnes, comprises entre 1,9 et 2,2 mg/l. Les eaux présentent peu de matières en suspension (≤ 3 mg/l).

Globalement, les concentrations en nutriments disponibles sont assez élevées aussi bien en nitrates qu'en phosphore. Le rapport N/P³ est de 108, ce qui témoigne d'un excédent en azote, phosphore limitant, favorisant la croissance des chlorophycées. L'Ain semble apporter des concentrations en nitrates de l'ordre de 3 mg/l.

La teneur en silice dissoute est assez faible sur l'échantillon intégré, elle ne semble cependant pas limiter le développement des diatomées.

Compte tenu du renouvellement fréquent des eaux, le peuplement de phytoplancton apparaît assez instable sur le plan d'eau. En effet, la production chlorophyllienne est faible dans les eaux de la retenue.

 $^{^3}$ le rapport N/P est calculé à partir de [Nminéral]/ [P-PO $_4^{3-}$] avec N minéral = [N-NO $_3^{-}$]+[N-NO $_2^{-}$]+[N-NH $_4^{+}$] sur la campagne de fin d'hiver.

1.1.4 MICROPOLLUANTS MINERAUX

Tableau 5 : résultats d'analyses de métaux sur eau

Micropolluants minéraux sur eau										
Retenue de		seuil quantification	11/03	3/2010	18/05	/2010	28/07	/2010	08/09	0/2010
code plan d'eau :	V23003	seun quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
Aluminium	μg (Al)/l	5 pour C1 à C4	30	30	15	16	13	28	14	15
Antimoine	μg(Sb)/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Argent	μg(Ag)/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Arsenic	μg(As)/l	0.2 pour C1 à C4	0,3	0,3	0,3	0,3	0,6	0,4	0,3	0,3
Baryum	μg(Ba)/l	0.2 pour C1 à C4	4,2	4,2	3,6	3,6	4,3	4,3	4,1	3,9
Beryllium	μg(Be)/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Bore	μg(B)/l	5 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>7</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>7</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>7</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>7</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	7	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Cadmium	μg(Cd)/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,5</td><td><ld< td=""><td>0,5</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,5</td><td><ld< td=""><td>0,5</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,5</td><td><ld< td=""><td>0,5</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,5</td><td><ld< td=""><td>0,5</td><td><ld< td=""></ld<></td></ld<></td></ld<>	0,5	<ld< td=""><td>0,5</td><td><ld< td=""></ld<></td></ld<>	0,5	<ld< td=""></ld<>
Chrome Total	μg(Cr)/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Cobalt	μg(Co)/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Cuivre	μg(Cu)/l	0.2 pour C1 à C4	1,6	0,6	1,1	0,9	1,1	0,9	0,8	0,6
Etain	μg(Sn)/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,4</td><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,4</td><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,4</td><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,4</td><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,4	0,2	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Fer total	μg(Fe)/l	5 pour C1 à C4	29	29	25	33	48	70	17	19
Manganèse	μg(Mn)/l	0.2 pour C1 à C4	2,3	2,2	2,8	4,2	7,5	8,9	2,4	3,1
Mercure	μg(Hg)/l	0.1 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Molybdène	μg(Mo)/l	0.2 pour C1 à C4	0,2	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,2</td><td>0,3</td><td>0,2</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,2</td><td>0,3</td><td>0,2</td></ld<></td></ld<>	<ld< td=""><td>0,2</td><td>0,3</td><td>0,2</td></ld<>	0,2	0,3	0,2
Nickel	μg(Ni)/l	0.2 pour C1 à C4	0,3	0,3	0,6	0,5	0,7	0,5	0,4	0,2
Plomb	μg(Pb)/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,2</td><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,2</td><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,2</td><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,2</td><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,2	0,2	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Sélénium	μg(Se)/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Thallium	μg(Tl)/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Titane	μg(Ti)/l	0.2 pour C1 à C4	1	1	<ld< td=""><td><ld< td=""><td>0,7</td><td>1</td><td>0,2</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,7</td><td>1</td><td>0,2</td><td><ld< td=""></ld<></td></ld<>	0,7	1	0,2	<ld< td=""></ld<>
Uranium	μg(U)/l	0.2 pour C1 à C4	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,4
Vanadium	μg(V)/l	0.2 pour C1 à C4	0,4	0,3	0,3	0,3	0,4	0,4	0,3	0,3
Zinc	μg(Zn)/l	2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>3</td><td>3</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>3</td><td>3</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>3</td><td>3</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>3</td><td>3</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	3	3	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

Les analyses sur les métaux ont été effectuées sur eau brute

Plusieurs micropolluants minéraux sont présents dans l'eau en quantité plus ou moins importante :

- ✓ l'Arsenic est présent dans l'eau à des concentrations comprises entre 0,3 et 0,6 µg/l;
- ✓ le Cuivre est présent dans l'eau à des concentrations comprises entre 0,6 et 1,6 μg/l;
- ✓ le Nickel est présent dans l'eau à des concentrations comprises entre 0,3 et 0,7 µg/l;
- ✓ l'Aluminium est quantifié sur tous les échantillons entre 13 et 30 µg/l;

Baryum, Fer, Manganèse, Vanadium et Uranium sont également quantifiés dans les eaux de la retenue.

1.1.5 MICROPOLLUANTS ORGANIQUES

Le tableau 6 indique les micropolluants organiques qui ont été quantifiés lors des campagnes de prélèvements en 2010. La liste de l'ensemble des substances analysées est fournie en annexe 1.

Tableau 6: résultats d'analyses de micropolluants organiques présents sur eau

Micropolluants organiques mis en évidence sur eau										
Retenue de Coiselet		seuil quantification	11/03/2010		18/05/2010		28/0	7/2010	08/09/	2010
code plan d'eau :	V23003		Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
4-ter-butylphénol	μg/l	0.04 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>présence</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>présence</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>présence</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>présence</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>présence</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	présence	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Benzo (a) pyrène	μg/l	0.001 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,001</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,001</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,001</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,001</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,001</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,001	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Di(2-éthylhexyl)phtalate (DEHP)	μg/l	1 pour C1 à C4	<ld< td=""><td>1,1</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	1,1	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Dioctylétain	μg/l	0.015 pour C1 à C4	<ld< td=""><td>0,015</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,015	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Fluoranthène	μg/l	0.01 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,02	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Formaldéhyde	μg/l	1 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1,1</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>1,1</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>1,1</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>1,1</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	1,1	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Méthyl 2 naphtalène	μg/l	0.05 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,06</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,06</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,06</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,06</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,06	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Monobutylétain	μg/l	0.015 pour C1 à C4	0,015	0,015	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Monooctylétain	μg/l	0.02 pour C1 à C4	<ld< td=""><td>0,04</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,04	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Naphtalène	μg/l	0.02 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,03</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,03</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,03</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,03</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,03	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Phénanthrène	μg/l	0.01 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,02	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Toluène	μg/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td>1,</td><td><ld< td=""><td>0,5</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>1,</td><td><ld< td=""><td>0,5</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	1,	<ld< td=""><td>0,5</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,5	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

Toutes les valeurs quantifiées sont présentées dans le tableau 6. Cependant certaines valeurs pourront être qualifiées d'incertaines suite à la validation finale des résultats (cas des valeurs mesurées en DEHP, BTEX, Formaldéhyde, dont une contamination via la chaîne de prélèvement et/ou d'analyse de laboratoire est privilégiée.

Des hydrocarbures (fluoranthène, naphtalène, phénanthrène, méthyl2naphtalène et benzo(a)pyrène) sont repérés dans les eaux lors de la 3^{ème} campagne.

Le toluène est mesuré sur les échantillons "intégré" des campagnes 2 et 3.

La présence de composés organostanneux est également mise en évidence sur les échantillons de la 1^{ère} campagne.

Le DEHP (composé plastifiant), le formaldéhyde et le 4-ter-butylphénol sont mesurés ponctuellement à très faible dose.

1.2 ANALYSES DE SEDIMENTS

1.2.1 Physicochimie des sediments

Le tableau 7 fournit la synthèse de l'analyse granulométrique menée sur les sédiments prélevés.

Tableau 7 : synthèse granulométrique sur le sédiment du point de plus grande profondeur

Sédiment : composition granulométrique (%)								
	Retenue de Coiselet							
	code plan d'	eau: V23003	- 08/09/2010					
classe granule	%							
0	à	2	6,8					
2	à	20	61,9					
20	à	50	23,5					
50	à	63	2,1					
63	à	200	5,7					
200	à	1000	0,0					
1000	à	2000	0,0					
> 2000	•		0,0					

Il s'agit de sédiments très fins, de nature vaso-limoneuse de 0 à $200~\mu m$ à 100~% (exempts de débris grossiers).

Les analyses de physico-chimie classique menées sur la fraction solide (MS de particules < 2mm) et sur l'eau interstitielle du sédiment sont rapportées au tableau 8.

Tableau 8 : analyses de sédiments

Eau interstitielle du sédiment : Physico-chimie								
Retenue de	seuil							
code plan d'eau :	quantification	08/09/2010						
NH4+	mg(NH4)/l	0,5	<ld< td=""></ld<>					
PO4	mg(PO4)/l	1,5	<ld< td=""></ld<>					
Phosphore Total	mg(P)/l	0,1	<ld< td=""></ld<>					

Sédiment : Physico-chimie									
Retenue de	seuil								
code plan d'eau	quantification	08/09/2010							
Matières sèches minérales	% MS	0,3	92,0						
Perte au feu	% MS	0,3	8,0						
Matières sèches totales	%	0,3	47,2						
C.O.T.	mg(C)/kg MS	1	25600,0						
Azote Kjeldahl	mg(N)/kg MS	1	3220,0						
Phosphore Total	mg(P)/kg MS	0,5	1014,3						

Dans les sédiments, la teneur en matière organique est **moyenne** avec 8 % de perte au feu. La concentration en azote organique est également considérée comme moyenne. Le rapport C/N est de 8 (C/N<10), il indique une prédominance de matière algale récemment déposée dont une partie sera recyclée en azote organique. La concentration en phosphore est élevée, supérieure à 1 g/kg MS.

Agence de l'Eau Rhône - Méditerranée & Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Coiselet (39) L'eau interstitielle contient les minéraux facilement mobilisables dans les sédiments. Les éléments phosphore et azote sont en dessous du seuil de quantification. Cependant, les prélèvements de sédiments ont été réalisés à la suite d'une période de brassage, conduisant à la réoxygénation des couches profondes. L'oxygénation reste tout de même acceptable dans le fond du plan d'eau, y compris en période estivale (cf. § sur l'oxygène dissous), ce qui ne suggère pas l'émergence du phénomène de relargage.

1.2.2 MICROPOLLUANTS MINERAUX

Ils ont été dosés sur la fraction solide du sédiment.

Tableau 9 : Micropolluants minéraux sur sédiment

Sédiment : Micropolluants minéraux								
Retenue	de Coiselet	seuil quantification						
code plan d'eau : V23003		- seum quantification	08/09/2010					
Aluminium	mg(Al)/kg MS	10	7243					
Bore	mg(B)/kg MS	0,2	40,9					
Fer total	mg(Fe)/kg MS	10	18642					
Mercure	mg(Hg)/kg MS	0,02	<ld< td=""></ld<>					
Zinc	mg(Zn)/kg MS	0,2	118,3					
Antimoine	mg(Sb)/kg MS	0,2	0,4					
Argent	mg(Ag)/kg MS	0,2	0,4					
Arsenic	mg(As)/kg MS	0,2	10					
Baryum	mg(Ba)/kg MS	0,2	53,4					
Beryllium	mg(Be)/kg MS	0,2	0,7					
Cadmium	mg(Cd)/kg MS	0,2	0,5					
Chrome Total	mg(Cr)/kg MS	0,2	46,6					
Cobalt	mg(Co)/kg MS	0,2	4,9					
Cuivre	mg(Cu)/kg MS	0,2	27,1					
Etain	mg(Sn)/kg MS	0,2	5,2					
Manganèse	mg(Mn)/kg MS	0,2	269,3					
Molybdène	mg(Mo)/kg MS	0,2	1					
Nickel	mg(Ni)/kg MS	0,2	22,4					
Plomb	mg(Pb)/kg MS	0,2	27,2					
Sélénium	mg(Se)/kg MS	0,2	0,7					
Tellurium	mg(Te)/kg MS	0,2	<ld< td=""></ld<>					
Thallium	mg(Th)/kg MS	0,2	0,3					
Titane	mg(Ti)/kg MS	0,2	1517,6					
Uranium	mg(U)/kg MS	0,2	1,4					
Vanadium	mg(V)/kg MS	0,2	63,2					

Les sédiments sont riches en Aluminium, en Fer et en Titane. Parmi les métaux lourds, les éléments Chrome et Nickel présentent des concentrations non négligeables.

1.2.3 MICROPOLLUANTS ORGANIQUES

Le tableau 10 indique les micropolluants organiques qui ont été quantifiés dans les sédiments lors de la campagne de prélèvements en 2010. La liste de l'ensemble des substances analysées est fournie en annexe 2.

Tableau 10 : résultats d'analyses de micropolluants organiques présents sur sédiment

Sédiment : Micropolluants organiques mis en évidence								
Retenue de	seuil							
code plan d'eau :	code plan d'eau : V23003		08/09/2010					
Acénaphtylène	μg/kg MS	20	34					
Anthracène	μg/kg MS	20	59					
Benzo (a) anthracène	μg/kg MS	10	115					
Benzo (a) pyrène	μg/kg MS	10	141					
Benzo (b) fluoranthène	μg/kg MS	10	141					
Benzo (ghi) pérylène	μg/kg MS	10	105					
Benzo (k) fluoranthène	μg/kg MS	10	69					
Di(2-éthylhexyl)phtalate (DEHP)	μg/kg MS	100	190					
Chrysène	μg/kg MS	50	157					
Décabromodiphényléther (BDE209)	μg/kg MS	20	54					
Dibenzo (a,h) anthracène	μg/kg MS	20	35					
Equivalent Arochlor 1260	μg/kg MS	5	19					
Fluoranthène	μg/kg MS	40	347					
Indéno (1,2,3-cd) pyrène	μg/kg MS	10	147					
PCB totaux	μg/kg MS	1	6					
PCB101	μg/kg MS	1	présence					
PCB118	μg/kg MS	1	présence					
PCB132	μg/kg MS	1	présence					
PCB138	μg/kg MS	1	2					
PCB149	μg/kg MS	1	1					
PCB153	μg/kg MS	1	2					
PCB170	μg/kg MS	1	présence					
PCB180	μg/kg MS	1	1					
Phénanthrène	μg/kg MS	50	114					
Pyrène	μg/kg MS	40	225					

Des hydrocarbures et des PCB sont quantifiés dans les sédiments de la retenue de Coiselet :

- ✓ 8 substances appartenant aux PCB (polychlorobiphényles) sont mesurées pour une concentration totale faible de 6 μg/kg;
- ✓ 13 hydrocarbures aromatiques polycycliques (HAP) sont quantifiés pour une concentration totale supérieure à **1689 μg/kg.** Les concentrations sont significatives, notamment pour le pyrène et ces dérivés.

Un indicateur plastifiant : le DEHP, est présent à une concentration moyenne (720 µg/kg).

2 PHYTOPLANCTON

2.1 Prelevements integres

Les prélèvements intégrés destinés à l'analyse du phytoplancton ont été réalisés en même temps que les prélèvements pour analyses physicochimiques. Sur la retenue de Coiselet, la zone euphotique et la transparence mesurées sont représentées par le graphique de la figure 6. La transparence est similaire sur les 4 campagnes, comprise entre 3,5 et 5,2 m. Sur les campagnes de production biologique, la zone euphotique représente environ 12 m.

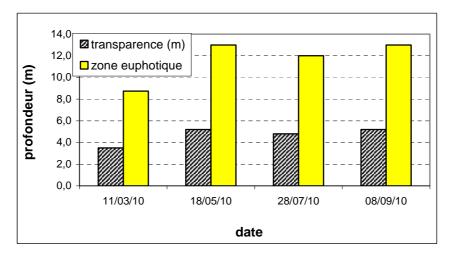


Figure 6 : évolution de la transparence et de la zone euphotique aux 4 campagnes

La liste des espèces de phytoplancton par plan d'eau a été établie selon la méthodologie développée par le CEMAGREF : *Protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en oeuvre de la DCE*, Mars 2009.

La diversité taxonomique N espèces correspond au nombre de taxons identifiés à l'espèce, à l'exclusion des groupes et familles, ainsi que des taxons identifiés au genre quand une espèce du même genre est présente et déterminée à l'espèce. Le nombre N' correspond à la diversité taxonomique totale incluant tous les taxons aux différents niveaux d'identification (nombre le plus probable).

2.2 LISTE FLORISTIQUE (NOMBRE DE CELLULES/ML)

Tableau 11: Liste taxonomique du phytoplancton

	Retenue de Coiselet	Date prélèvement				
Classe	Nom Taxon	11 mars 2010	18 mai 2010	28 juil 2010	8 sept 2010	
Chlorophycées	Ankyra inerme			14		
	Ankyra judayi			19		
	Chlorella vulgaris	15	11	13	22	
	Chlorophycées flagellées indéterminées					
	diam 2 - 5 µm	29	5	8	20	
	Chlorophycées indéterminées	4	11	14		
	Choricystis minor	4			2	
	Didymocystis fina		4			
	Elakatothrix gelatinosa		9			
	Hyaloraphidium contortum		4		2	
	Monoraphidium circinale		-		2	
	Monoraphidium minutum				2 2	
	Phacotus lendneri	7	4	9	25	
	Scenedesmus linearis	,	•	7	25	
	Scenedesmus quadricauda			4		
	Sphaerocystis schroeteri			9		
Chrysophycées	Bicoeca socialis		2	,		
Cinysophycees	Bitrichia chodatii		2		2	
	Chrysococcus rufescens		9		2	
	Dinobryon bavaricum		160			
	Dinobryon divergens		58		55	
	Dinobryon elegantissimum		2		33	
	Dinobryon sertularia		2		24	
	Dinobryon sociale var. stipitatum		51		171	
		76	111	14	171	
	Erkenia subaequiciliata	/0	16	14	124	
	Kephyrion mastigophorum					
	Ochromonas sp.		4 2		27	
Constant	Salpingoeca frequentissima			8	21	
Cryptophycées	Cryptomonas marssonii	22	106		21	
	Cryptomonas sp.	33	106	30	31	
0 1 47	Rhodomonas minuta var. nannoplanctica	135	197	268	129	
Cyanobactéries	Synechococcus elongatus		9			
	Synechocystis parvula	501	16			
D	Synechocystis sp.	531				
Desmidiacées	Mougeotia gracillima				4	
Diatomées	Asterionella formosa	22		1	36	
	Cyclotella comensis	76				
	Cyclotella costei	153			24	
	Cyclotella ocellata	76				
	Fragilaria crotonensis	25	5			
	Fragilaria ulna f. angustissima	4	4		_	
	Nitzschia acicularis				2	
	Nitzschia sp.	25-			4	
	Stephanodiscus minutulus	382	18			
Dinoflagellés	Gymnodinium helveticum		2			
	Gymnodinium lantzschii	4				
Euglènes	Phacus acuminatus		2			
	nombre cellules/ml	1576	821	418	706	
	diversité taxonomique N espèces	15	24	11	18	
	diversité taxonomique N'	17	26	14	20	

2.3 ÉVOLUTIONS SAISONNIERES DES GROUPEMENTS PHYTOPLANCTONIQUES

Les échantillons destinés à la détermination du phytoplancton sont constitués d'un prélèvement intégré sur la zone euphotique (équivalant à 2,5 fois la transparence lors de la campagne). Les graphiques suivants présentent la répartition du phytoplancton par groupe algal à partir des résultats exprimés en cellules/ml d'une part et à partir des biovolumes (mm3/l) d'autre part.

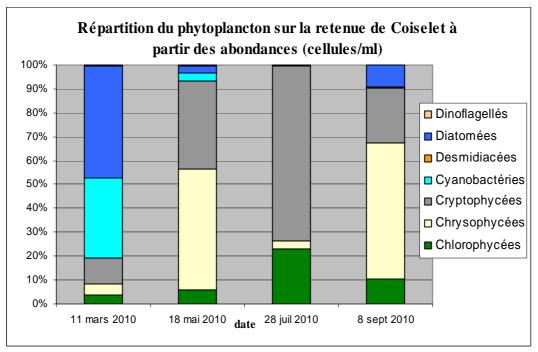


Figure 7: répartition du phytoplancton sur la retenue de Coiselet à partir des abondances (cellules/ml)

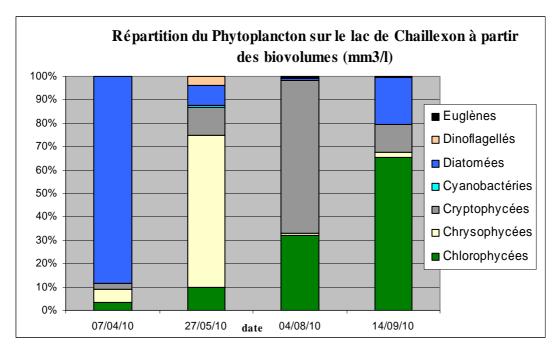


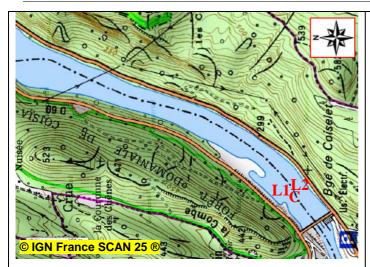
Figure 8: Répartition du phytoplancton sur la retenue de Coiselet à partir des biovolumes (mm³/ml)

Globalement, le peuplement phytoplanctonique présente une abondance faible lors des quatre campagnes, et une diversité plus faible que sur les autres plans d'eau de la chaîne de l'Ain.

En fin d'hiver, le peuplement phytoplanctonique est dominé par les diatomées avec l'espèce commune *Cyclotella costei*. Les cryptophycées représentées par l'espèce *Rhodomonas minuta* se développent massivement au printemps et en été dominant le peuplement algal avec les chrysophycées (*Dynobrion sp.*). Quelques chlorophycées colonisent le milieu aquatique sur les échantillons d'été et de fin d'été.

A noter également la présence d'une cyanobactérie (Synechocystis sp.) en fin d'hiver.

Globalement, le peuplement phytoplanctonique est assez équilibré, les groupes algaux présents ne traduisent pas une eutrophisation marquée. L'indice phytoplanctonique (IPL) est de 37, qualifiant le milieu de mésotrophe (l'indice calculé à partir de l'abondance cellulaire est à 39).


3 OLIGOCHETES ET MACROINVERTEBRES

Les prélèvements destinés aux inventaires oligochètes en 2010 avaient deux objectifs :

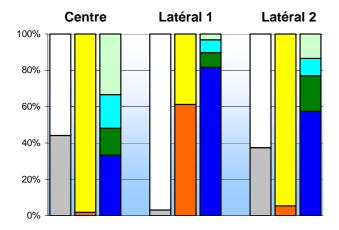
- ✓ tester une nouvelle méthodologie destinée au suivi des invertébrés benthiques dans le cadre de la DCE;
- ✓ et permettre le calcul de l'IOBL classique afin de pouvoir comparer ces résultats avec les données acquises antérieurement.

Du fait, les prélèvements ont été effectués en début de saison, et non, comme le stipule le protocole IOBL, en fin de saison ; élément de condition de réalisation à prendre en compte dans l'interprétation.

3.1 CONDITIONS DE PRELEVEMENTS

carte 2 : Localisation des prélèvements de sédiments sur la retenue de Coiselet

photo 1 : Vue sur l'aval de la retenue depuis la rive gauche


Echantillon	Central (C)	Latéral 1 (L1)	Latéral 2 (L2)	
Date et heure	22/04/2010 08:30	22/04/2010 09:00	22/04/2010 09:30	
Code point sandre	o1	o2	03	
Prof (m)	21	11	11	
Type de benne	Ekman et Ponar	Ponar	Ponar	
Nombre de bennes	5 (3E + 2P)	5	5	
Surface prospectée (m²)	0,114	0,128	0,128	
Localisation	Z max	Nord, proximité RG	Sud, proximité RD	
Coordonnées X (LII étendu)	850929	850923	850987	
Coordonnées Y (LII étendu)	2149107	2149165	2149063	

Remarques (conditions extérieures remarquables, écart au protocole...):

- Protocole de type "retenue" avec les trois points situés sur un axe transversal parallèle au barrage.
- Contenu des bennes très hétérogène sur le point L2.

3.2 CARACTERISTIQUES DES SEDIMENTS RECOLTES

Nom : Coiselet		Date : 22 avril 2010				
Type : Retenue de moyenne montagne, calcaire, profonde						
Echantillon		Central (C)	Latéral (L1)	Latéral (L2)		
Couleur		Beige	Beige	Gris-beige		
Odeur		Légère	Nulle	Nulle		
Taux de remplissage (1 ^{ere} barre)						
Volume (ml) benne		15843	12800	12800		
Volume (ml) avec sédiments		7000	400	4800		
Présence de débris (2 ^{ème} barre)						
Volume (ml) < 0,5 mm (fines)		6865	155	4539		
Volume (ml) > 0,5 mm (débris)		135	245	261		
Granulométrie (3 ^{ème} barre)						
Volume (ml) 0,5 à 5 mm, organique		45	8	35		
Volume (ml) 0,5 à 5 mm, minéral		25	17	25		
Volume (ml) > 5 mm, organique		20	20	51		
Volume (ml) > 5 mm, minéral		45	200	150		

Le taux de remplissage de la benne est moyen sur le point central et le point latéral 2 alors qu'il est faible (< 25%) sur le point latéral 1. Les débris sont peu abondants (< 10%) sur le point central et le point latéral 2 alors qu'ils sont nettement plus abondants sur le point latéral 1. La fraction minérale grossière (> 5 mm) est bien représentée, en particulier sur les points latéraux.

3.3 LISTE FAUNISTIQUE ET CALCUL DE L'INDICE IOBL

3.3.1 DEFINITIONS

Pour comprendre la détermination et le calcul de l'indice IOBL, il est nécessaire de définir certaines notions : (1) L'identification possible des taxons se fait soit à tous les stades (a) soit seulement à l'état mature (m).

- (2) Pour aider à l'interprétation, une analyse des espèces indicatrices est menée en utilisant les éléments de diagnostic de Lafont (2007). Les espèces sont réparties en 6 classes indicatrices de la dynamique du fonctionnement des sédiments lacustres :
- S = espèces sensibles à la pollution organique et toxique,
- I = espèces caractérisant un état intermédiaire,
- D = espèces indicatrices d'une impasse trophique naturelle (dystrophie) quand elles sont dominantes,
- P = espèces indicatrices d'un état de forte pollution quand elles sont dominantes,
- H = espèces indicatrices d'échanges hydriques entre les eaux superficielles et souterraines,
- R = espèces probablement liées à un réchauffement climatique

- (3) Le nombre de taxons = R est le nombre minimal possible de taxons parmi les 100 oligochètes comptés. Par exemple, le taxon Naididae ASC immat. (identification limitée par le caractère immature de l'individu) sera comptabilisé comme un taxon uniquement en cas d'absence d'autres Naididae ASC identifiables seulement au stade mature. Les valeurs d'abondance mises en caractère gras correspondent aux taxons pris en compte pour le calcul de la richesse.
- (4) Le calcul de l'Indice IOBL est le suivant : IOBL = R + 3log10 (D+1) où $R^4 = nombre de taxons parmi les oligochètes comptés et D = densité en oligochètes pour 0,1 m².$
- (5) La valeur IOBL global = ½(valeur centre) + ¼(valeur lat1) + ¼(valeur lat2). Il s'agit donc de la moyenne entre la valeur de la zone centrale profonde et celle des zones latérales, cette dernière étant égale à la moyenne des valeurs des deux zones latérales (lat 1 et lat 2). Pour le pourcentage des espèces sensibles, le nombre de taxon (R) et la densité sur la globalité du plan d'eau, on applique la moyenne arithmétique.

Tableau 12 : liste faunistique pour le calcul de l'IOBL

Groupe	Taxon	Code Sandre	Stades identifiables (1)	Espèces indicatrices (2)	Centre	Lat 1	Lat 2
Naididae ASC	Aulodrilus japonicus	20747	a		1	14	3
	Aulodrilus pluriseta	19316	a	D			1
	Dero digitata	19306	a	P	2		1
	Ilyodrilus templetoni	2995	m			2	2
	Naididae ASC immat.	5231	a		59	40	33
	Piguetiella blanci	3011	a	S		5	
	Potamothrix hammoniensis	9795	m	P	12	20	8
	Psammoryctides barbatus	2988	a	S	1		
	Spirosperma velutinus	19323	a	SH	2	3	11
	Tubifex ignotus	2986	a		1		
	Tubifex tubifex	946	m	D			1
Naididae SSC	Limnodrilus hoffmeisteri	2991	m	P	4		3
	Limnodrilus udekemianus	2989	a	P			1
	Naididae SSC immat.	5230	a		18	5	24
	Potamothrix moldaviensis	2987	a			10	12
	Uncinais uncinata	3002	a	S		1	

 $ASC = avec \ soies \ capillaires / SSC = sans \ soies \ capillaires$

Glob (5) Centre Lat 1 Lat 2 Nombre de taxons = $R^{(3)}$ 7 10 8 8 100 100 Nombre d'oligochètes comptés 100 Eléments utilisés pour le 1320 474 Nombre d'oligochètes récoltés calcul de l'IOBL 0.128 Surface échantillonnée (m²) 0.114 0.128 Densité en oligochètes (pour 0,1 m²) = D 1158 370 2053 1194 Indice IOBL (4) 16,2 15,7 19.9 17,0 Indicateurs 9 % Espèces sensibles 11 7,7

⁴ Pour le calcul de l'IOBL selon la norme, R désigne le nombre de taxons comptés. Parmi les espèces indicatrices, Lafont a dénommé R les espèces indicatrices d'un réchauffement climatique. Attention au risque de confusion.

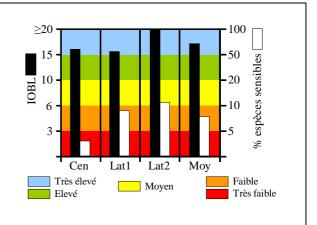
3.3.2 Liste faunistique des invertebres benthiques

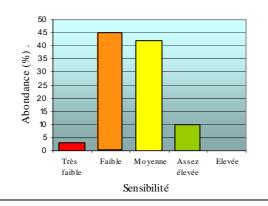
Stade d'identification selon protocole Mazzella et Argilier, 2009.

Tableau 13 : liste faunistique macroinvertébrés

Groupe	Taxons	Code Sandre	Sensibilité	nb ind / m ²		
		Code Sandie	(1)	Centre	Lat 1	Lat 2
Chironomides	Ablabesmyia	2781	4			1
	Chironomus	817	3	2690		81
	Cladotanytarsus	2862	4,5		343	68
	Conchapelopia gr. (2)	809	7			1
	Cryptochironomus	2835	Е		2	1
	Cryptotendipes	2837	5,5		2	1
	Dicrotendipes	2839	4			41
	Micropsectra	2864	Е	1		1
	Microtendipes	2849	5			2
	Parachironomus	2851	3,5			1
	Parakiefferiella	2820	7			1
	Paratanytarsus	2865	Е			68
	Paratendipes	2853	4,5			1
	Polypedilum	2856	3,5		30	1
	Procladius	2788	Е	3743	202	473
	Stempellinella	2868	6		1	68
	Tanytarsus	2869	Е	1	465	311
Crustacés	Asellidae	880	5		2	78
Diptères autres	Ceratopogonidae	819	Е	1		109
Ephéméroptères	Caenis	457	4,5			23
Insectes divers	Sialis	704	5,5	1	1	55
Invertébrés autres	Bryozoa	1087	Е	P		P
	Hydracarina	906	Е	P	P	P
	Hydrozoa	3168	Е		P	
ı	Nemathelmintha	3111	Е	P		
	Spongillidae	3106	Е	P	P	
Mollusques	Dreissena	1046	4	88	102	1727
	Pisidium	1043	Е	1079	367	719
	Sphaerium	1044	5	1		
	Valvata	972	5,5			23
Oligochètes	Aulodrilus japonicus	20747	3,5	1	519	486
	Aulodrilus pluriseta	19316	3,5			1
	Dero digitata	19306	3,5	2		1
	Ilyodrilus templetoni	2995	3		2	2
	Limnodrilus hoffmeisteri	2991	2	468		365
	Limnodrilus udekemianus	2989	3			1
	Naididae ASC immat.	5231	Е	7251	1481	5347
	Naididae SSC immat.	5230	E	2222	185	4010
	Piguetiella blanci	3011	5		185	
	Potamothrix hammoniensis	9795	3	1404	741	1337
	Potamothrix moldaviensis	2987	3		370	1944
	Psammoryctides barbatus	2988	5	1		
	Spirosperma velutinus	19323	7,5	2	111	1823
	Tubifex ignotus	2986	3	1		
	Tubifex tubifex	946	Е			1
	Uncinais uncinata	3002	5,5		1	

⁽¹⁾ Optimum de sensibilité par rapport à la charge trophique du plan d'eau. Varie de 1 à 9 avec des correspondances qui peuvent être exprimées en terme de niveau de sensibilité (1 = très faible, 3 = faible, 5 = moyenne, 7 = assez élevée et 9 = élevée) ou de charge trophique préférentielle (1 = hypertrophe, 3 = eutrophe, 5 = mésotrophe, 7 = oligotrophe et 9 = ultraoligotrophe). E = sensibilité non prise en compte car courbe multimodale dont les modes extrêmes sont très éloignés (concerne généralement les taxons plurispécifiques où les optima varient fortement d'une espèce à l'autre). En rouge, les valeurs associées à des taxons dont le niveau de détermination est plus fin que celui indiqué dans le tableau. Dans le cas présent, cela concerne Polypedilum (note donnée pour l'espèce P.bicrenatum).


3.4 Interpretation des resultats


Oligochètes: le potentiel métabolique est très élevé (IOBL global = 17). Cependant, le pourcentage des espèces sensibles est faible, ce qui suggère une altération de la qualité des sédiments profonds (hauteur d'eau > 11m) mais pas d'impasse trophique. Le taxon le plus abondant est indicateur de pollutions (*Potamothrix hammoniensis*).

Le point central (hauteur d'eau maximale) diffère des deux points latéraux par un % d'espèces sensibles plus faible.

L'IOBL reflète un plan d'eau de meilleure qualité que les retenues situées en aval.

Macroinvertébrés: Le peuplement est dominé par les taxons dont la sensibilité est faible (tels que *Chironomus, Ilyodrilus templetoni, Potamothrix hammoniensis* ou *Potamothrix moldaviensis*), associés à un milieu eutrophe, suivis de près par les taxons dont la sensibilité est moyenne (tels que *Cladotanytarsus, Caenis, Sialis, Valvata* ou *Piguetiella blanci*), associés à un milieu mésotrophe. Les taxons dont la sensibilité est assez élevée représentent 10% de l'abondance. Cette analyse révèle un plan d'eau méso- eutrophe.

4 HYDROMORPHOLOGIE

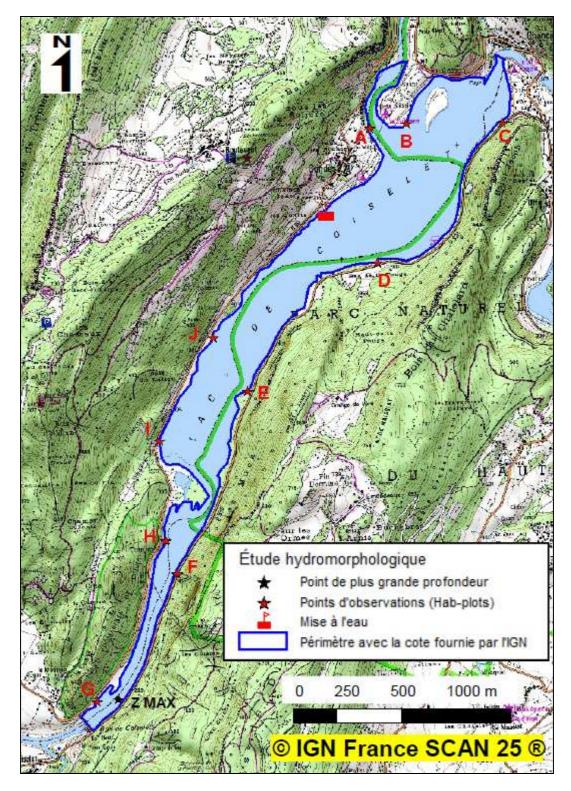
4.1 DEROULEMENT DES INVESTIGATIONS

La retenue de Coiselet est artificielle, formée par le barrage de Coiselet sur l'Ain. Sa superficie pour la cote maximale d'exploitation est de 302 ha. La reconnaissance hydromorphologique a été réalisée le 28 juillet 2010. Le plan d'eau ne présentait pas de marnage le jour de l'étude.

La méthode utilisée est le Lake Habitat Survey (LHS) qui aboutit au calcul de deux indices :

✓ LHMS : évaluation de l'altération du milieu ;

✓···· LHQA : évaluation de la qualité des habitats du lac.


La localisation des points d'observation sur le plan d'eau est présentée sur la carte suivante.

Les vues sur les 10 points d'observation sont fournies dans la suite du document.

photo 2 : vue prise lors de la reconnaissance hydromorphologique (vue sur le barrage)

4.2 CARTOGRAPHIE ET PHOTOGRAPHIE DES POINTS D'OBSERVATIONS

carte 3 : localisation des points LHS sur la retenue de Coiselet (échelle 1 / 25 000e)

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Coiselet (39) В A \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} G H I \mathbf{J}

Figure 9 : photos des 10 points d'observation sur la retenue de Coiselet

4.3 RESULTATS: INDICES DE QUALITE DES HABITATS ET D'ALTERATION MORPHOLOGIQUE

Cette retenue de Coiselet subit de nombreuses pressions d'origine anthropique. Le barrage forme un infranchissable pour la faune et le transport solide. La gestion hydroélectrique induit des variations de la cote d'eau. De plus, de nombreuses activités sont pratiquées sur le plan d'eau (pêche, motonautisme,...). Les rives sont recouvertes d'une forêt de feuillus sur plus de 60 % et de zones modifiées pour le reste (route, camping, habitations, aménagements touristiques, jardins). La route construite en rive droite est proche du plan d'eau. L'espèce invasive Elodée de Nuttall colonise toute la retenue. L'indice LHMS indique une altération forte du milieu aquatique avec un score de 32/42.

La zone rivulaire est peu attractive car peu diversifiée (forêt et roselières). Les aménagements diffus (route, parc,...) sur les rives du plan d'eau induisent une fragmentation de l'habitat naturel. Les zones de grèves sont également peu attractives. La zone littorale est quant à elle plus intéressante et diversifiée. L'indice LHQA est médiocre avec un score de 53/112, beaucoup plus faible que sur les retenues situées en aval.

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Coiselet (39) LAKE HABITAT SURVEY SUMMARY REPORT LAKE INFORMATION LAKE ID Name of lake: Coiselet Country: GB Lakes code WBID 0 Date surveyed: 28-juil-10 Hab-Plots: 10 HP Principle use: IMP Water Body Type Lake surface area (km2) 3,02 Lake perimeter (m) 18,15 Catchment area (km2) 1910 Maximum depth (m 21 Lake attitude (m) 304 Lake Perimeter Bank Construction Pressures and Land Uses % (whole numbers) Impoundments: Coniferous logging: Litter, dump, landfill: Hard open: 1 Imp grassland: 6 Quarrying or mining: 0 4 Tilled land: 0 9 Hard closed: Roads or railways: Soft Engineering: Orchard: 0 Parks and gardens: 4 0 Docks, marinas, jetties 1 **Erosion:** Recreational beaches: 0 Commercial activities: 0 Residential: Coniferous plantations: 0 Soil poaching: Educational recreation: 0 Camping and caravans: 8 Lake Site Activities/Pressures (presence) Bridges Angling Non Litter ✓ Introduced species Causeways ✓ Angling from boat ■ Wildfowling ✓ Macrophyte control ☐ Surface films ☐ Fish cages ✓ Angling from shore Powerlines □ Commercial Fishing Non-motor boat activities □ Liming ✓ Non-boat recreation/swimmin Navigation ✓ Motorboat activities Dumping ■ Military activities Dredging Other pressures (specify): Fish stocking Wetland and Other Habitats % (whole numbers) Geomorphology Emergent reed-bed: 10 Rough grassland: 0 Vegetated islands (non-deltaic): 0 Wet Woodland: Other: 0 Unvegetated islands (non-deltaic): 0 Bog: Broadleaf/mixed woodlan 48 Aggrading vegetated deltaic deposit: 1 Fen or marsh: 0 Coniferous woodland: 0 Stable vegetated islands (deltaic): 0 Moorland/heath: Floating veg mats: 0 Deltaic unvegetated gravel bars: 0 0 0 Open water: Rock, scree or dunes: Deltaic unvegetated fines bars: 0 LHMS **LHQA LHMS Score LHQA** 32 53 Shore zone modification Riparian score 10 0 Shore zone intensive use 8 6 Shore score 25 In-lake pressures 8 Littoral score Hydrology 8 Whole lake score 12 Sediment regime 4 Introduced species

5 MACROPHYTES

5.1 METHODOLOGIE ADAPTEE AUX PLANS D'EAU MARNANTS

Le plan d'eau étudié ici présente une variation annuelle de niveau d'eau supérieure à 2 m. La méthode pour l'étude des peuplements de macrophytes a donc été adaptée conformément aux prescriptions du CEMAGREF pour ce type de plan d'eau. Ces hydrosystèmes sont considérés comme instables, les peuplements observés ne permettent pas de définir un état écologique, mais l'étude des zones propices au développement d'hydrophytes et d'hélophytes permet d'évaluer un certain potentiel.

Il s'agit donc d'étudier certains secteurs où les conditions sont plus favorables (faible pente, influence d'un cours d'eau,...) :

- ✓ Oueues de retenue :
- ✓ Zones de contact entre affluents et plan d'eau ;
- ✓ Zones aménagées : port, mise à l'eau, base nautique.

Ces zones sont étudiées de la manière suivante :

- ✓ Un profil perpendiculaire unique sur une zone colonisée, en appliquant la méthodologie du CEMAGREF pour les plans d'eau non marnants ;
- ✓ Un relevé de rive sur 100 m.

Le repérage des secteurs propices se fait par observation sur le terrain, et à partir de la cartographie. La méthode de Jensen n'est pas appliquée pour les plans d'eau marnants. Ces éléments sont reportés dans le fichier de saisie du CEMAGREF.

Le plan d'eau a été parcouru dans son intégralité en bateau lors de la campagne estivale. Les secteurs propices au développement de végétation aquatique ont été observés, et des prélèvements au râteau et au grappin ont été réalisés pour confirmer les observations et procéder à la détermination des macrophytes présents.

5.2 VEGETATION AQUATIQUE IDENTIFIEE

Le plan d'eau est bordé par des falaises, des forêts, des prairies et pelouses sèches et des secteurs urbanisés (routes, ville). Le recouvrement global de macrophytes sur la retenue est assez important. Il est évalué à 15%. La retenue abrite une diversité moyenne d'espèces d'hydrophytes et d'hélophytes.

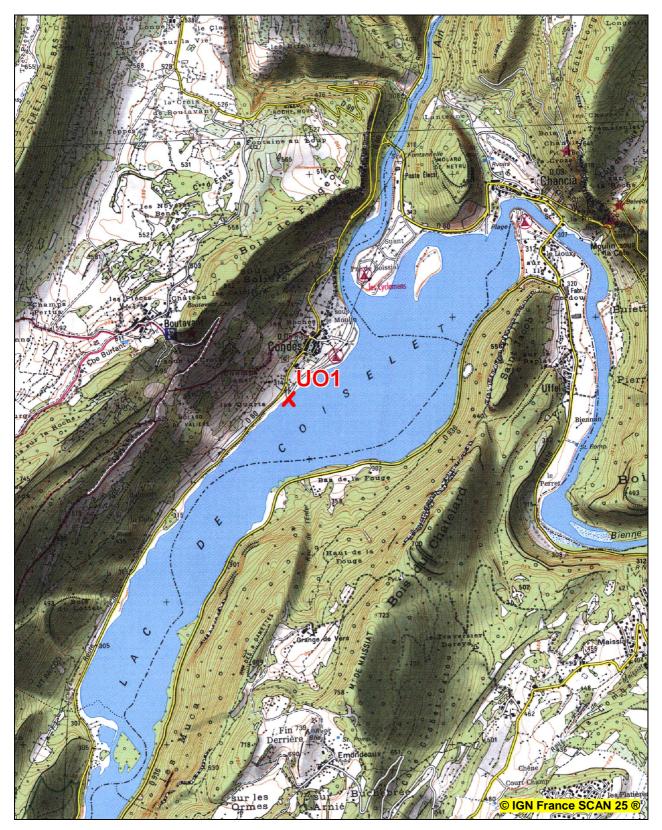
Une unité d'observation a été réalisée sur le plan d'eau.

5.2.1 Unite d'observation n°1

Photo 3 : vue sur l'UO 1 de la retenue de Coiselet

L'UO1 se situe au centre de la retenue, au sud-ouest du bourg de Condes en aval du camping. Elle est réalisée en bordure d'un parking.

Le transect d'une soixantaine de mètres de long abrite de nombreuses plantes aquatiques (hydrophytes) de la berge vers le chenal du plan d'eau.


On y observe notamment *Myriophyllum spicatum*, *Elodea canadensis*, *Elodea nuttallii*, *Potamogeton pusillus* (=*Potamogeton panormitanus*) ainsi que des characées (*Chara globularis* et *Chara contraria*). Les algues filamenteuses sont également très présentes sur le transect avec notamment *Spirogyra sp.*, *Cladophora sp.* et *Zygnema sp.*

Sur la berge, on observe de nombreuses plantes de roselières et de mégaphorbiaies telles que Lythrum salicaria, Epilobium hirsutum, Calystegia sepium, Phalaris arundinacea, etc.

Ailleurs sur la retenue, on retrouve sensiblement les mêmes espèces avec en plus *Scirpus lacustris* pour les hélophytes et *Oscillatoria sp.* et *Lyngbya sp.* pour les algues filamenteuses.

Les relevés de végétation de cette unité d'observation sont reportés dans le formulaire de saisie du CEMAGREF. Les données sont disponibles sur demande.

5.3 CARTOGRAPHIE DE L'UNITE D'OBSERVATION

carte 4 : localisation de l'unité d'observation des macrophytes sur la retenue de Coiselet (échelle : 1/25 000e)

5.4 LISTE DES ESPECES PROTEGEES ET DES ESPECES INVASIVES

Aucune espèce protégée n'a été observée sur le secteur.

L'Elodée de nuttall (*Elodea nuttallii*), espèce exotique envahissante, est très abondante sur le plan d'eau. Elle concurrence toutes les autres espèces (cf. photos ci-dessous).

photo 4 : *Elodea nuttallii* colonisée par des algues filamenteuses

photo 5 : *Elodea nuttallii* formant des peuplements monospécifiques denses (photographie subaquatique)

5.5 APPROCHE DU NIVEAU TROPHIQUE DU PLAN D'EAU

La retenue est caractérisée par des communautés assez diversifiées de plantes aquatiques mais tout de même moins diversifiées qu'au niveau de la retenue située juste en aval, à savoir Cize-Bolozon. Les espèces présentes indiquent un niveau trophique plus élevé avec la présence d'espèces à caractère eutrophe telles que *Potamogeton pectinatus*, *P. pusillus*, *Myriophyllum spicatum* et *Elodea nuttallii*

La forte présence d'algues filamenteuses caractérise une certaine eutrophisation du plan d'eau.

En conséquence, la retenue de Coiselet apparaît comme eutrophe avec un niveau trophique marqué.

Il est important de constater que *Elodea nuttallii* se développe sur la retenue de manière importante avec parfois l'installation de peuplements quasi monospécifiques sur l'ensemble de la colonne d'eau. Il semble qu'elle rentre en compétition avec les groupements de plantes aquatiques vasculaires notamment lorsque les profondeurs d'eau approchent le mètre et peut même dominer jusqu'à des profondeurs de 4 m en limite de beine.

Interpretation globale des resultats

Les résultats acquis durant le suivi annuel ont été interprétés en termes de potentiel écologique pour les plans d'eau d'origine anthropique et d'état chimique selon les critères et méthodes d'évaluation décrits dans l'arrêté du 25 janvier 2010.

Ces résultats ont également été traités en terme de niveau trophique à l'aide des outils de la diagnose rapide (Cemagref, 2003).

Les résultats de ces deux approches sont présentés dans le document complémentaire : Note synthétique d'interprétation des résultats.

✓ Critères d'applicabilité de la diagnose rapide

La diagnose rapide vise à évaluer l'état trophique des lacs et à mettre en évidence les phénomènes d'eutrophisation. Elle fait appel au principe fondamental du fonctionnement des lacs qui suppose qu'il existe un lien entre la composition physico-chimique à l'époque du mélange hivernal et les phénomènes qu'elle est susceptible d'engendrer dans les divers compartiments de l'écosystème au cours de la période de croissance végétale qui lui succède.

Cette méthode est donc adaptée aux plans d'eau qui stratifient durablement en été et exclut les plans d'eau au temps de séjour réduit (CEMAGREF, 1990, 2003) et les lacs dont la profondeur moyenne est inférieure à 3 m. Il convient également de noter que la diagnose rapide ne prend en compte que la biomasse phytoplanctonique sous l'aspect "production végétale" et n'intègre donc pas l'importance du recouvrement en macrophytes du plan d'eau".

La retenue de Coiselet est un plan d'eau artificiel (MEFM) d'une profondeur moyenne de 9 m. Le plan d'eau présente une stratification thermique uniquement durant l'été, mais non durable car soumis à des mouvements hydrauliques. Ainsi, en 2010, elle est observable de mai à début août.

Le temps de séjour est très court : il est évalué à 6 jours d'après les données disponibles.

Les périodes d'intervention pour les campagnes 2010 correspondent aux objectifs de la méthodologie sauf pour la dernière campagne, qui intervient après un phénomène de brassage lié aux débits importants de l'Ain à cette période.

La retenue de Coiselet ne répond pas aux exigences pour appliquer la diagnose rapide : fréquent renouvellement des eaux. Les indices constitutifs de la diagnose peuvent cependant être calculés, mais ces éléments doivent être pris en considération dans l'interprétation.

Agence de l'Eau Etu	ı Rhône - Méditerra de des plans d'eau d	née & Corse 1 programme de s	surveillance des l	bassins Rhône-Mé	diterranée et Corso	e – Retenue de Coiselet	: (3
		<u>=</u>	ANNE	XES -			
				_			

1. LISTE DES MICROPOLLUANTS ANALYSES SUR EAU

Code	Libel_param	Famille composés	Code SANDRE	libel param	Famille composés
		Famille composés		Libel_param Benzo (ghi) Pérylène	Famille composés
5474	4-n-nonylphénol	Alkylphénols	1118	Benzo (gni) Perylene Benzo (k) Fluoranthène	HAP
1957	Nonylphénols	Alkylphénols	1117		HAP
1920	p-(n-octyl)phénols	Alkylphénols	1476	Chrysène Dibenzo (ah) Anthracène	
1958	Para-nonylphénols ramifiés Para-tert-octylphénol	Alkylphénols	1621		HAP
1959		Alkylphénols	1191	Fluoranthène	HAP
1593	Chloroaniline-2	Anilines et Chloroanilines	1623	Fluorène	HAP HAP
1592	Chloroaniline-3 Chloroaniline-4	Anilines et Chloroanilines	1204 1619	Indéno (123c) Pyrène	HAP
1591	Dichloroaniline-2,4	Anilines et Chloroanilines		Méthyl-2-Fluoranthène	
1589 1114	Benzène	Anilines et Chloroanilines BTEX	1618 1517	Méthyl-2-naphtalène	HAP
1602	Chlorotoluène-2	BTEX		Naphtalène Phénanthrène	HAP
1602		BTEX	1524		HAP
	Chlorotoluène-3		1537	Pyrène	
1600	Chlorotoluène-4	BTEX	1370	Aluminium	Métaux
1497	Ethylbenzène	BTEX	1376	Antimoine	Métaux
1633	Isopropylbenzène	BTEX	1368	Argent	Métaux
1278	Toluène	BTEX	1369	Arsenic	Métaux
5431	Xylène (ortho+meta+para)	BTEX	1396	Baryum	Métaux
1292	Xylène-ortho	Chloroglassass	1377	Beryllium	Métaux
1955	Chloroalcanes C10-C13	Chloroalacanes	1362	Bore	Métaux
1467	Chlorobenzène (Mono)	Chlorobenzènes	1388	Cadmium	Métaux
1165	Dichlorobenzène-1,2	Chlorobenzènes	1389	Chrome	Métaux
1164	Dichlorobenzène-1,3	Chlorobenzènes	1379	Cobalt	Métaux
1166	Dichlorobenzène-1,4	Chlorobenzènes	1392	Cuivre	Métaux
1199	Hexachlorobenzène	Chlorobenzènes	1380	Etain	Métaux
1888	Pentachlorobenzène	Chlorobenzènes	1393	Fer	Métaux
1631	Tétrachlorobenzène-1,2,4,5	Chlorobenzènes	1394	Manganèse	Métaux
1630	Trichlorobenzène-1,2,3	Chlorobenzènes	1387	Mercure	Métaux
1283	Trichlorobenzène-1,2,4	Chlorobenzènes	1395	Molybdène	Métaux
1629	Trichlorobenzène-1,3,5	Chlorobenzènes	1386	Nickel	Métaux
1774	Trichlorobenzènes	Chlorobenzènes	1382	Plomb	Métaux
1469	Chloronitrobenzène-1,2	Chloronitrobenzènes	1385	Sélénium	Métaux
1468	Chloronitrobenzène-1,3	Chloronitrobenzènes	2559	Tellurium	Métaux
1470	Chloronitrobenzène-1,4	Chloronitrobenzènes	2555	Thallium	Métaux
1617	Dichloronitrobenzène-2,3	Chloronitrobenzènes	1373	Titane	Métaux
1615	Dichloronitrobenzène-2,5	Chloronitrobenzènes	1361	Uranium	Métaux
1614	Dichloronitrobenzène-3,4	Chloronitrobenzènes	1384	Vanadium	Métaux
2915	BDE100	Diphényléthers bromés	1383	Zinc	Métaux
2912	BDE153	Diphényléthers bromés	1135	Chloroforme (trichlorométhane)	OHV
2911	BDE154	Diphényléthers bromés	2611	Chloroprène	OHV
2920	BDE28	Diphényléthers bromés	2065	Chloropropène-3	OHV
2919	BDE47	Diphényléthers bromés	1160	Dichloréthane-1,1	OHV
2916	BDE99	Diphényléthers bromés	1161	Dichloréthane-1,2	OHV
1815	Décabromodiphényléther	Diphényléthers bromés	1162	Dichloréthylène-1,1	OHV
2609	Octabromodiphénylether	Diphényléthers bromés	1163	Dichloréthylène-1,2	OHV
1921	Pentabromodiphényléther	Diphényléthers bromés	1456	Dichloréthylène-1,2 cis	OHV
1465	Acide monochloroacétique	Divers	1727	Dichloréthylène-1,2 trans	OHV
1753	Chlorure de vinyle	Chlorure de vinyles	1168	Dichlorométhane	OHV
2826	Diéthylamine	Divers	1652	Hexachlorobutadiène	OHV
2773	Diméthylamine	Divers	1271	Tétrachloréthane-1,1,2,2	OHV
1494	Epichlorohydrine	Divers	1272	Tétrachloréthylène	OHV
1453	Acénaphtène	HAP	1276	Tétrachlorure de C	OHV
1622	Acénaphtylène	HAP	1284	Trichloréthane-1,1,1	OHV
1458	Anthracène	HAP	1285	Trichloréthane-1,1,2	OHV
1082	Benzo (a) Anthracène	HAP	1286	Trichloréthylène	OHV
1115	Benzo (a) Pyrène	HAP	1771	Dibutylétain	Organostanneux complets
1116	Benzo (b) Fluoranthène	HAP	1936	Tétrabutylétain	Organostanneux complets

Agence de l'Eau Rhône - Méditerranée & Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Coiselet (39)

	tude des plans d'éau du pl	rogramme de surveman		is Knone-Mediterranee et	Corse – Retenue de Coiseiei
Code SANDRE	Libel_param	Famille_composés	Code SANDRE	Libel_param	Famille composés
	Tributylétain-cation	Organostanneux complets	1187	Fénitrothion	Pesticides
	Triphénylétain	Organostanneux complets	1967	Fénoxycarbe	Pesticides
	PCB 101	PCB	2022	Fludioxonil	Pesticides
	PCB 118	PCB	1765	Fluroxypyr	Pesticides
	PCB 138	PCB	2547	Fluroxypyr-meptyl	Pesticides
	PCB 153	PCB	1194	Flusilazole	Pesticides
		PCB	4		
	PCB 169		1702	Formaldéhyde	Pesticides
	PCB 180	PCB	1506	Glyphosate	Pesticides
	PCB 28	PCB	1200	HCH alpha	Pesticides
	PCB 35	PCB	1201	HCH beta	Pesticides
	PCB 52	PCB	1202	HCH delta	Pesticides
	PCB 77	PCB	2046	HCH epsilon	Pesticides
	2 4 D	Pesticides	1203	HCH gamma	Pesticides
	2 4 MCPA	Pesticides	1405	Hexaconazole	Pesticides
1832	2-Hydroxy-atrazine	Pesticides	1877	Imidaclopride	Pesticides
1903	Acétochlore	Pesticides	1206	Iprodione	Pesticides
1688	Aclonifen	Pesticides	1207	Isodrine	Pesticides
1101	Alachlore	Pesticides	1208	Isoproturon	Pesticides
1103	Aldrine	Pesticides	1950	Kresoxim méthyl	Pesticides
1105	Aminotriazole	Pesticides	1094	Lambda Cyhalothrine	Pesticides
	AMPA	Pesticides	1209	Linuron	Pesticides
	Atrazine	Pesticides	1210	Malathion	Pesticides
	Atrazine déisopropyl	Pesticides	1214	Mécoprop	Pesticides
	Atrazine déséthyl	Pesticides	2987	Métalaxyl m = mefenoxam	Pesticides
	Azoxystrobine	Pesticides	1796	Métaldéhyde	Pesticides
	Bentazone	Pesticides	1215	Métamitrone	Pesticides
	Bromacil	Pesticides	1670	Métazachlore	Pesticides
	Bromoxynil	Pesticides	1216	Méthabenzthiazuron	Pesticides
	Bromoxynil octanoate	Pesticides	1227	Monolinuron	Pesticides
	Carbendazime	Pesticides	1519	Napropamide	Pesticides
	Carbofuran	Pesticides	1882	Nicosulfuron	Pesticides
	Chlorentinphos	Pesticides	1669	Norflurazon	Pesticides
	Chlorméphos	Pesticides	1667	Oxadiazon	Pesticides
	Chlorprophame	Pesticides	1666	Oxadixyl	Pesticides
	Chlorpyriphos éthyl	Pesticides	1231	Oxydéméton méthyl	Pesticides
	Chlorpyriphos méthyl	Pesticides	1234	Pendiméthaline	Pesticides
	Chlortoluron	Pesticides	1665	Phoxime	Pesticides
	Clomazone	Pesticides	1664	Procymidone	Pesticides
	Cyproconazole	Pesticides	1414	Propyzamide	Pesticides
	Cyprodinil	Pesticides	1432	Pyriméthanil	Pesticides
	DDD-o,p'	Pesticides	1892	Rimsulfuron	Pesticides
	DDD-p,p'	Pesticides	1263	Simazine	Pesticides
	DDE-o,p'	Pesticides	1662	Sulcotrione	Pesticides
1146	DDE-p,p'	Pesticides	1694	Tébuconazole	Pesticides
1147	DDT-o,p'	Pesticides	1661	Tébutame	Pesticides
1148	DDT-p,p'	Pesticides	1268	Terbuthylazine	Pesticides
	Déisopropyl-déséthyl-atrazine	Pesticides	2045	Terbuthylazine déséthyl	Pesticides
	Deltaméthrine	Pesticides	1954	Terbuthylazine hydroxy	Pesticides
	Dicamba	Pesticides	1269	Terbutryne	Pesticides
	Dichlorprop	Pesticides	1660	Tétraconazole	Pesticides
	Dichlorvos	Pesticides	1288	Trichlopyr	Pesticides
	Dieldrine	Pesticides	1289	Trifluraline	Pesticides
	Diflufénicanil	Pesticides	1636	Chlorométhylphénol-4,3	Phénols et chlorophénols
	Diméthénamide	Pesticides	1471	Chlorophénol-2	Phénois et chlorophénois
	Diméthomorphe	Pesticides	1651	Chlorophénol-3	Phénois et chlorophénois
	•			Chlorophénol-4	Phénois et chlorophénois
	Diuron Endoulfon alpha	Pesticides	1650		
	Endosulfan alpha	Pesticides	1486	Dichlorophénol-2,4	Phénois et chlorophénois
	Endosulfan beta	Pesticides	1235	Pentachlorophénol	Phénois et chlorophénois
	Endosulfan sulfate	Pesticides	1548	Trichlorophénol-2,4,5	Phénols et chlorophénols
	Endosulfan Total	Pesticides	1549	Trichlorophénol-2,4,6	Phénols et chlorophénols
	Endrine	Pesticides	1584	Biphényle	Semi volatils organiques divers
	Epoxiconazole	Pesticides	1461	DEPH	Semi volatils organiques divers
1184	Ethofumésate	Pesticides	1847	Tributylphosphate	Semi volatils organiques divers

2. LISTE DES MICROPOLLUANTS ANALYSES SUR SEDIMENTS

de_SANDRE	l ihel naram	Famille_composés	Code_SANDR	F I ihel naram	Famille_composés
5474	4-n-nonylphénol	Alkylphénols	1652	Hexachlorobutadiène	OHV
1957	Nonylphénols	Alkylphénols	1770	Dibutylétain (oxyde)	Organostanneux complets
1920	p-(n-octyl)phénols	Alkylphénols	1936	Tétrabutylétain	Organostanneux complets
1958	Para-nonylphénols ramifiés	Alkylphénols	2879	Tributylétain-cation	Organostanneux complets
1959	Para-tert-octylphénol	Alkylphénols	1779	Triphénylétain	Organostanneux complets
1602	Chlorotoluène-2	BTEX	1242	PCB 101	PCB
1601	Chlorotoluène-3	BTEX	1243	PCB 118	PCB
1600	Chlorotoluène-4	BTEX	1244	PCB 138	PCB
1497	Ethylbenzène	BTEX	1245	PCB 153	PCB
1633	Isopropylbenzène	BTEX	1090	PCB 169	PCB
5431	Xylène (ortho+meta+para)	BTEX	1246	PCB 180	PCB
1292		BTEX	1239		PCB
	Xylène-ortho			PCB 28	
1955	Chloroalcanes C10-C13	Chloroalacanes	1240	PCB 35	PCB
1165	Dichlorobenzène-1,2	Chlorobenzènes	1241	PCB 52	PCB
1164	Dichlorobenzène-1,3	Chlorobenzènes	1091	PCB 77	PCB
1166	Dichlorobenzène-1,4	Chlorobenzènes	1903	Acétochlore	Pesticides
1199	Hexachlorobenzène	Chlorobenzènes	1688	Aclonifen	Pesticides
1888	Pentachlorobenzène	Chlorobenzènes	1103	Aldrine	Pesticides
1631	Tétrachlorobenzène-1,2,4,5	Chlorobenzènes	1125	Bromoxynil	Pesticides
1630	Trichlorobenzène-1,2,3	Chlorobenzènes	1941	Bromoxynil octanoate	Pesticides
1283	Trichlorobenzène-1,2,4	Chlorobenzènes	1464	Chlorfenvinphos	Pesticides
1629	Trichlorobenzène-1,3,5	Chlorobenzènes	1134	Chlorméphos	Pesticides
1774	Trichlorobenzènes	Chlorobenzènes	1474	Chlorprophame	Pesticides
1617	Dichloronitrobenzène-2,3	Chloronitrobenzènes	1083	Chlorpyriphos éthyl	Pesticides
1615	Dichloronitrobenzène-2,5	Chloronitrobenzènes	1540	Chlorpyriphos méthyl	Pesticides
1614	Dichloronitrobenzène-3,4	Chloronitrobenzènes	1359	Cyprodinil	Pesticides
2915	BDE100	Diphényléthers bromés	1143	DDD-o,p'	Pesticides
2912	BDE153		1143		Pesticides
2912		Diphényléthers bromés	1144	DDD-p,p'	Pesticides
	BDE154	Diphényléthers bromés		DDE-o,p'	
2920	BDE28	Diphényléthers bromés	1146	DDE-p,p'	Pesticides
2919	BDE47	Diphényléthers bromés	1147	DDT-o,p'	Pesticides
2916	BDE99	Diphényléthers bromés	1148	DDT-p,p'	Pesticides
1815	Décabromodiphényléther	Diphényléthers bromés	1149	Deltaméthrine	Pesticides
2609	Octabromodiphénylether	Diphényléthers bromés	1169	Dichlorprop	Pesticides
1921	Pentabromodiphényléther	Diphényléthers bromés	1173	Dieldrine	Pesticides
1453	Acénaphtène	HAP	1814	Diflufénicanil	Pesticides
1622	Acénaphtylène	HAP	1178	Endosulfan alpha	Pesticides
1458	Anthracène	HAP	1179	Endosulfan beta	Pesticides
1082	Benzo (a) Anthracène	HAP	1742	Endosulfan sulfate	Pesticides
1115	Benzo (a) Pyrène	HAP	1743	Endosulfan Total	Pesticides
1116	Benzo (b) Fluoranthène	HAP	1181	Endrine	Pesticides
1118	Benzo (ghi) Pérylène	HAP	1744	Epoxiconazole	Pesticides
1117	Benzo (k) Fluoranthène	HAP	1187	Fénitrothion	Pesticides
1476	Chrysène	HAP	1967	Fénoxycarbe	Pesticides
1621	Dibenzo (ah) Anthracène	HAP	2022	Fludioxonil	Pesticides
1191	Fluoranthène	HAP	2547	Fluroxypyr-meptyl	Pesticides
1623	Fluorène	HAP	1194	Flusilazole	Pesticides
1204	Indéno (123c) Pyrène	HAP	1200	HCH alpha	Pesticides
1619	Méthyl-2-Fluoranthène	HAP	1201	HCH beta	Pesticides
1618	Méthyl-2-naphtalène	HAP	1202	HCH delta	Pesticides
1517	Naphtalène	HAP	2046	HCH epsilon	Pesticides
1524	Phénanthrène	HAP	1203	HCH gamma	Pesticides
1537	Pyrène	HAP	1405	Hexaconazole	Pesticides
1370	Aluminium	Métaux	1206	Iprodione	Pesticides
1376	Antimoine	Métaux	1207	Isodrine	Pesticides
1368	Argent	Métaux	1950	Kresoxim méthyl	Pesticides
1369	Arsenic	Métaux	1094	Lambda Cyhalothrine	Pesticides
1396	Baryum	Métaux	1209	Linuron	Pesticides
1377	Beryllium	Métaux	1519	Napropamide	Pesticides
1362	Bore	Métaux	1667	Oxadiazon	Pesticides
1388	Cadmium	Métaux	1234	Pendiméthaline	Pesticides
1389	Chrome	Métaux	1664	Procymidone	Pesticides
1379	Cobalt	Métaux	1414	Propyzamide	Pesticides
1392	Cuivre	Métaux	1694	Tébuconazole	Pesticides
1380	Etain	Métaux	1661	Tébutame	Pesticides
1393	Fer	Métaux	1268	Terbuthylazine	Pesticides
1394	Manganèse	Métaux	1269	Terbutryne	Pesticides
1387	Mercure	Métaux	1660	Tétraconazole	Pesticides
1395	Molybdène	Métaux	1289	Trifluraline	Pesticides
1386	Nickel	Métaux	1636	Chlorométhylphénol-4,3	Phénols et chlorophénols
1382	Plomb	Métaux	1486	Dichlorophénol-2,4	Phénols et chlorophénols
1385	Sélénium	Métaux	1235	Pentachlorophénol	Phénols et chlorophénols
2559	Tellurium	Métaux	1548	Trichlorophénol-2,4,5	Phénols et chlorophénols
2555	Thallium	Métaux	1549	Trichlorophénol-2,4,6	Phénols et chlorophénols
1373	Titane	Métaux	1584	Biphényle	Semi volatils organiques dive
1361	Uranium	Métaux	1461	DEPH	Semi volatils organiques dive
	1				
1384	Vanadium	Métaux	1847	Tributylphosphate	Semi volatils organiques dive

Age	nce o	de l'Eau Rhône - Etude des pl				es bassi	ns Rhône-Méditerranée	et Corse – Retenue de Coisele	t (39)
	<i>3</i> .	COMPTES	RENDUS	DES	CAMPAGNES	DE	PRELEVEMENTS	PHYSICOCHIMIQUES	ET
		PHYTOPLA	NCTONIQUI	ES SUR	L'ANNEE 2010				

Relevé phytoplanctonique et physico-chimique en plan d'eau

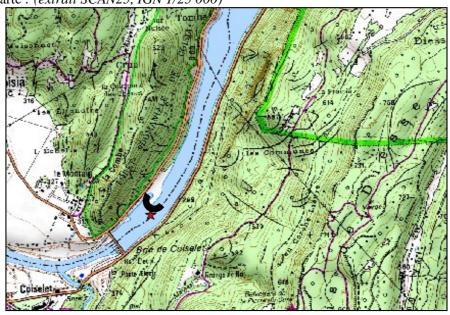
DONNEES GENERALES PLAN D'EAU - STATION

Plan d'eau : Date : 11/03/2010
Type (naturel, artificiel,...) : artificiel Code lac : V2--3003
Organisme / opérateur : E.Bertrand et N.Gibon Campagne 1 page 1/5

Organisme demandeur Agence de l'eau RM&C marché n° 08M082

LOCALISATION PLAN D'EAU

Commune : Samognat


Lac marnant : oui Type : A3

Temps de séjour 6 jours retenues de moyenne montagne, calcaire, profondes

Superficie du plan d'eau : 302 ha

Profondeur maximale: 21 m

Carte: (extrait SCAN25, IGN 1/25 000)

 \star

localisation du point de prélèvements

angle de prise de vue de la photographie

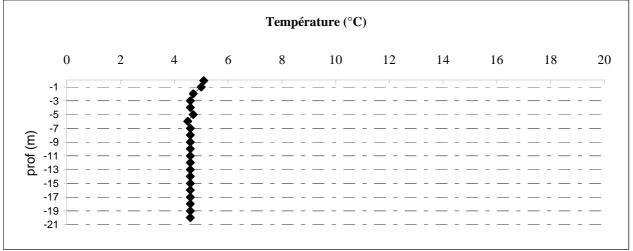
Photo du site:

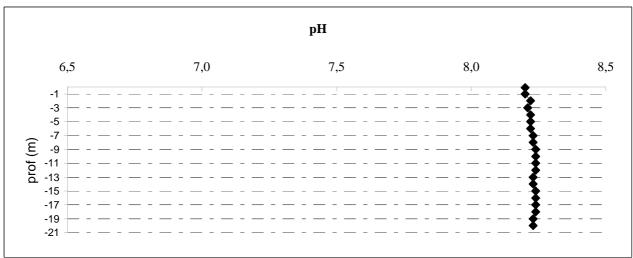
Relevé phytoplanctonique et p DONNEES GENERALES CA	* *	au				
Plan d'eau:	Coiselet (de)		Date: 11/03/2010			
Type (naturel, artificiel,):	artificiel		Code lac : V23003			
Organisme / opérateurs :	S.T.E.: <i>E.Bertrand et</i>	N.Gibon	Campagne 1 page 2/5			
Organisme demandeur	Agence de l'eau RM&C		marché n° 08M082			
STATION	11801100 00 1000 1000		001/1002			
Coordonnées de la station	relevées sur : GPS					
Lambert 93		Y: 6580575	alt.: 304 m			
WGS 84 (système international)		Y:	alt.: m			
Profondeur:	21,0 m					
Troionacur .	vent: nul					
	météo: très nuageux					
	increo. tres nuageux					
Conditions d'observation :	Surface de l'eau :	lisse				
	Hauteur des vagues :	- m P atm stand	ard: 977 hPa			
	Bloom algal: non	Pression atr	n.: 979 hPa			
Marnage:	non	Hauteur de la bande	e: - m			
PRELEVEMENTS Heure de début du relevé : Prélèvements pour analyses :	eau chlorophylle phytoplancton	Heure de fin du relevé : matériel employé : p	12:20 pompe			
~ .						
	: GEH Jura Bourgogne : hydroélectricité : M. F Cotteret - tél : 03 84 43 90 31 Agent de permanence - tél : 04 74 42 90 45					
Remarques, observations:	L'eau est d'aspect verdâtre. Les eaux de la retenue sont fréquemment renouvelées (temps de séjour réduit). La masse d'eau est homogène.					

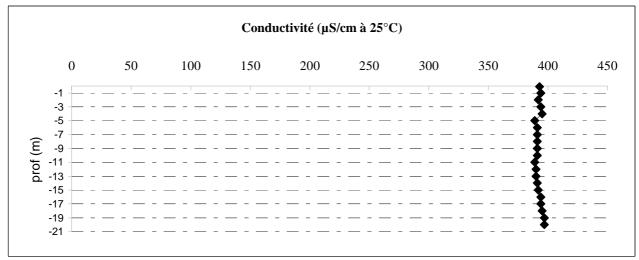
DONNEES PHYSICO-CHIMIQUES

Plan d'eau : Coiselet (de) Date : 11/03/2010

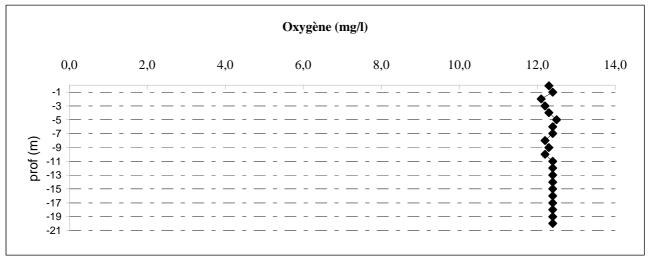
Type (naturel, artificiel,...) : artificiel Code lac : V2--3003


Organisme / opérateur : S.T.E. : E.Bertrand et N.Gibon Campagne 1 page 3/5


Organisme demandeur Agence de l'eau RM&C marché n° 08M082


TRANSPARENCE

Secchi en m:	Zone euphotique (2,5 x Secchi):				8,8 m		
PROFIL VERTICAL							
Moyen de mesure utilisé :		in-situ à ch	aque prof.		X	en surface da	ns un récipie
Volume prélevé (en litres) :	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
•	(m)	(°C)		(μS/cm 25°)	(mg/l)	(%)	
prélèvement intégré (1 L)	-0,1	5,1	8,20	393	12,3	100%	11:20
prélèvement intégré (1 L)	-1,0	5,0	8,20	394	12,4	101%	
prélèvement intégré (1 L)	-2,0	4,7	8,22	392	12,1	97%	
prélèvement intégré (1 L)	-3,0	4,6	8,21	394	12,2	98%	
prélèvement intégré (1 L)	-4,0	4,6	8,22	395	12,3	99%	
prélèvement intégré (1 L)	-5,0	4,7	8,22	389	12,5	101%	
prélèvement intégré (1 L)	-6,0	4,5	8,22	391	12,4	100%	
prélèvement intégré (1 L)	-7,0	4,6	8,23	391	12,4	100%	
prélèvement intégré (1 L)	-8,0	4,6	8,23	391	12,2	98%	
prélèvement intégré (1 L)	-9,0	4,6	8,24	391	12,3	99%	11:50
	-10,0	4,6	8,24	391	12,2	98%	
	-11,0	4,6	8,24	389	12,4	100%	
	-12,0	4,6	8,24	390	12,4	100%	
	-13,0	4,6	8,23	390	12,4	100%	
	-14,0	4,6	8,23	391	12,4	100%	
	-15,0	4,6	8,24	392	12,4	100%	
	-16,0	4,6	8,24	394	12,4	100%	
	-17,0	4,6	8,24	394	12,4	100%	
	-18,0	4,6	8,24	395	12,4	100%	
	-19,0	4,6	8,23	397	12,4	100%	
prélèvement de fond	-20,0	4,6	8,23	397	12,4	100%	12:20
F	20,0	1,0	0,23	371	12,1	10070	12.20
			-				


Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Coiselet (de) Date: 11/03/2010 Plan d'eau: Type (naturel, artificiel,...): artificiel Code lac: V2--3003 Organisme / opérateur : S.T.E. : E.Bertrand et N.Gibon Campagne 1 page 4/5 Agence de l'eau RM&C marché n° 08M082 Organisme demandeur

Relevé phytoplanctonique et physico-chimique en plan d'eau					
DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES					
Plan d'eau:	Coiselet (de)		Date: 11/03/2010		
Type (naturel, artificiel,):	artificiel		Code lac: V23003		
Organisme / opérateur :	S.T.E.: E.Bertrand et	N. Gibon	Campagne 1 page 5/5		
Organisme demandeur	Agence de l'eau RM&C		marché n° 08M082		

Prélèvement d'eau de fond, pour analyses physicochimiques :						
Distance au fond:	1,0 m	soit à Zf =	-20,0 m			
Remarques et observations :						
Remise des échantillons :						
Echantillons pour analyses phy	sicochimiques	(Laboratoire LDA	A26)			
échantillon intégré n°	1551188		Bon transport intégré :	EZ324959957FR		
échantillon de fond n°	1552490		Bon transport fond:	EZ324959965FR		
remise par S.T.E.:			le	à		
Au transporteur:	Chronopost	Oyonnax	le 11/03/10	à	17h00	
arrivée au laboratoire LDA 26 en mi-journée du : 12/03/10						
	!					
Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le 17/05/10						

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES GENERALES PLAN D'EAU - STATION

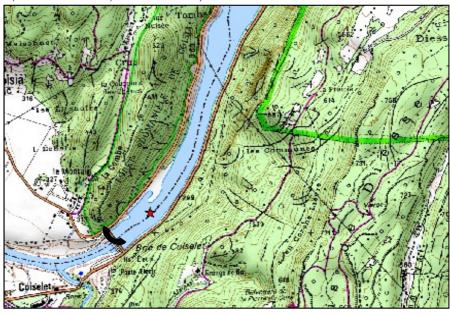
Plan d'eau : Coiselet (de) Date : 18/05/2010

Type (naturel, artificiel,...) : artificiel Code lac : V2--3003

Organisme / opérateur : B. Valdenaire et H.Coppin Campagne 2 page 1/5

Organisme demandeur Agence de l'eau RM&C marché n° 08M082

LOCALISATION PLAN D'EAU


Commune : Samognat

Lac marnant : oui Type : A3

Temps de séjour 6 jours Superficie du plan d'eau : 302 ha retenues de moyenne montagne, calcaire, profondes

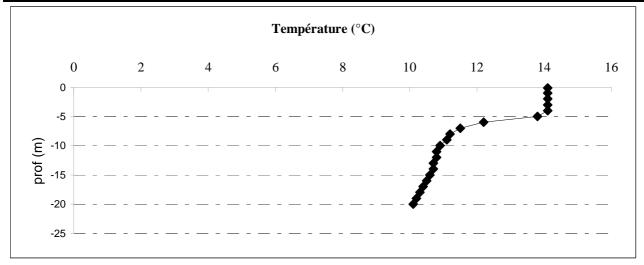
Profondeur maximale: 21 m

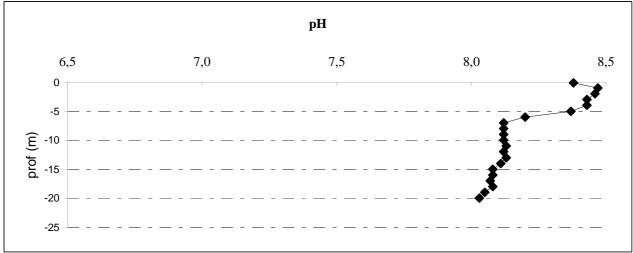
Carte: (extrait SCAN25, IGN 1/25 000)

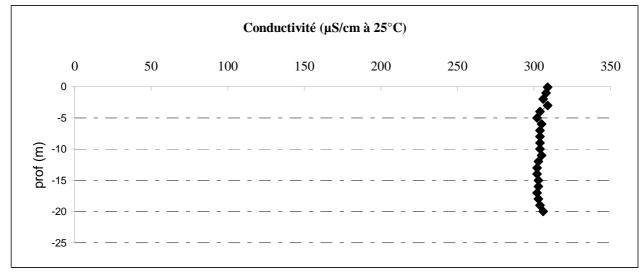
★localisation du point de prélèvements

angle de prise de vue de la photographie

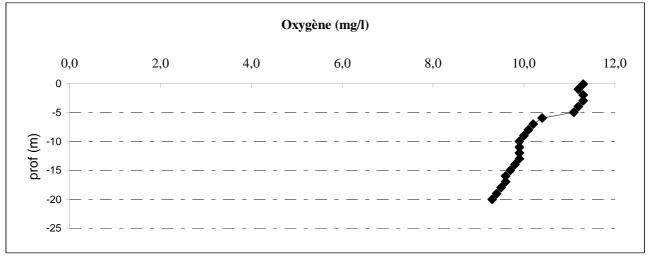
STATION

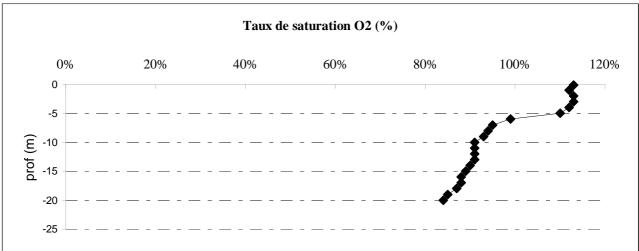

Photo du site:




Relevé phytoplanctonique et p DONNEES GENERALES CA	hysico-chimique en plan d'eau AMPAGNE				
Plan d'eau:	Coiselet (de) Date: 18/05/2010				
Type (naturel, artificiel,):	artificiel Code lac: V23003				
Organisme / opérateurs :	S.T.E.: B. Valdenaire et H.Coppin Campagne 2 page 2/5				
Organisme demandeur	Agence de l'eau RM&C marché n° 08M082				
STATION					
Coordonnées de la station	relevées sur : GPS				
Lambert 93	X: 899725 Y: 6580556 alt.: 304 m				
WGS 84 (système international)	GPS (en dms) X: Y: alt.: m				
Profondeur:	21,0 m				
Conditions d'observation :	vent : nul météo : soleil Surface de l'eau : lisse				
Conditions a observation.	Bulluce de l'edu . Hisse				
	Hauteur des vagues : - P atm standard : 977 hPa Bloom algal : non Pression atm : 992 hPa				
Marnaga	Treatment with the second with				
Marnage:	non Hauteur de la bande : - m				
Campagne:	2 campagne printanière de croissance du phytoplancton : mise en place de la thermocline				
PRELEVEMENTS	TT 1 (" 1 1 /				
Heure de début du relevé :	Heure de fin du relevé :				
Prélèvements réalisés :	eau chlorophylle matériel employé : pompe phytoplancton				
	GEH Jura Bourgogne : hydroélectricité M. F Cotteret - tél : 03 84 43 90 31 Agent de permanence - tél : 04 74 42 90 45				
Remarques, observations:	La stratification thermique est déjà bien marquée avec un réchauffement des 5 premiers mètres. L'activité biologique est bien entamée. On observe une sursaturation en oxygène sur les 5 premiers mètres alors que les couches inférieures sont légèrement désoxygénées.				

Relevé phytoplanctonique et p	hysico-chi	imique en p	olan d'eau				
DONNEES PHYSICO-CHIM	IIQUES						
Plan d'eau:	Coiselet (de)				Date :	18/05/2010
Type (naturel, artificiel,):	artificiel	ŕ				Code lac:	V23003
Organisme / opérateur :	S.T.E.: B. Valdenaire et H.Coppin						2 page 3/5
	Agence de l'eau RM&C				marché n°		
Organisme demandeur	Agence de	e reau Rivi	&C			marche n	U8IVIU82
TRANSPARENCE							
Secchi en m:	5,2		Zone eupho	tique (2,5 x Se	ecchi):	13,0	m
PROFIL VERTICAL							
Moyen de mesure utilisé :		in-situ à ch	naque prof.		X	en surface da	ns un récipient
Volume prélevé (en litres) :	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
volume prefeve (en nues).	(m)	(°C)		(μS/cm 25°)	(mg/l)	(%)	
prélèvement intégré (1 L)	-0,1	14,1	8,38	309	11,3	113%	9:30
prélèvement intégré (1 L)	-1,0	14,1	8,47	308	11,2	112%	
prélèvement intégré (1 L)	-2,0	14,1	8,46	306	11,3	113%	ļ
prélèvement intégré (1 L)	-3,0	14,1	8,43	309	11,3	113%	
prélèvement intégré (1 L)	-4,0	14,1	8,43	304	11,2	112%	
prélèvement intégré (1 L)	-5,0	13,8	8,37	302	11,1	110%	
prélèvement intégré (1 L)	-6,0	12,2	8,20	305	10,4	99%	
prélèvement intégré (1 L)	-7,0	11,5	8,12	304	10,2	95%	
prélèvement intégré (1 L)	-8,0	11,2	8,12	304	10,1	94%	
prélèvement intégré (1 L) prélèvement intégré (1 L)	-9,0 -10,0	11,1 10,9	8,12 8,12	304 304	10,0 9,9	93% 91%	
prélèvement intégré (1 L)	-10,0	10,9	8,13	305	9,9	91%	
prélèvement intégré (1 L)	-12,0	10,8	8,12	303	9,9	91%	
prélèvement intégré (1 L)	-13,0	10,7	8,13	302	9,9	91%	10:00
prese venient integre (1 2)	-14,0	10,7	8,11	302	9,8	90%	10.00
	-15,0	10,6	8,08	303	9,7	89%	
	-16,0	10,5	8,08	303	9,6	88%	
	-17,0	10,4	8,07	302	9,6	88%	
	-18,0	10,3	8,08	303	9,5	87%	
	-19,0	10,2	8,05	304	9,4	85%	
prélèvement de fond	-20,0	10,1	8,03	306	9,3	84%	10:20
						ļ	ļ
						-	
	-						
						1	1
		1				 	
		-				 	
	-	-				1	1
						ļ	ļ
						ļ	ļ
						-	
						ļ	ļ


Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Plan d'eau: Coiselet (de) Type (naturel, artificiel,...): Organisme / opérateur: Organisme demandeur Coiselet (de) artificiel Code lac: V2--3003 Campagne 2 page 4/5 Agence de l'eau RM&C marché n° 08M082



Relevé phytoplanctonique et physico-chimique en plan d'eau							
DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES							
Plan d'eau:	Coiselet (de)		Date: 18/05/2010				
Type (naturel, artificiel,):	artificiel		Code lac: V23003				
Organisme / opérateur :	S.T.E.: B. Valdenaire et	H.Coppin	Campagne 2 page 5/5				
Organisme demandeur	Agence de l'eau RM&C		marché n° 08M082				

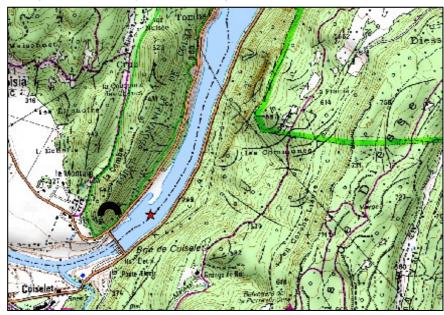
Distance au fond:	1,0 m	soit à Zf =	-20,0 m		
Remarques et observations :					
Remise des échantillons :					
Echantillons pour analyses phy	ysicochimiques	(Laboratoire L	DA26)		
échantillon intégré n°	1552490		Bon transport intégré	: EZ331184072	
échantillon de fond n°	1551188		Bon transport fond:	EZ965947331	
remise par S.T.E.:			le	à	
Au transporteur:	Chronopost		le 18/05/10) à	16h 00
-	arrivée au lab	oratoire LDA 2	6 en mi-journée du :	19/05/10	

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES GENERALES PLAN D'EAU - STATION

Plan d'eau: Coiselet (de) Date: 28/07/2010 Type (naturel, artificiel,...): artificiel Code lac: V2--3003 **S.T.E.**: Organisme / opérateur : A.Péricat et S.Meistermann Campagne 3 page 1/5 marché n° 08M082 Organisme demandeur Agence de l'eau RM&C

LOCALISATION PLAN D'EAU


Commune : Samognat

Lac marnant : oui Type: A3

Temps de séjour 6 jours retenues de moyenne montagne, calcaire, profondes Superficie du plan d'eau : 302 ha

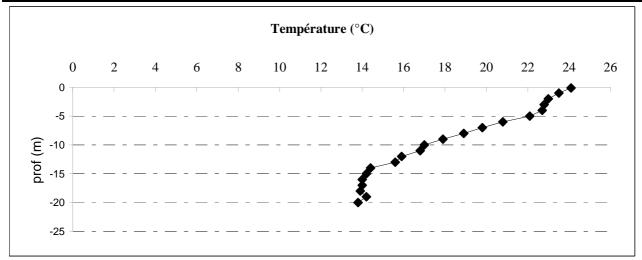
Profondeur maximale

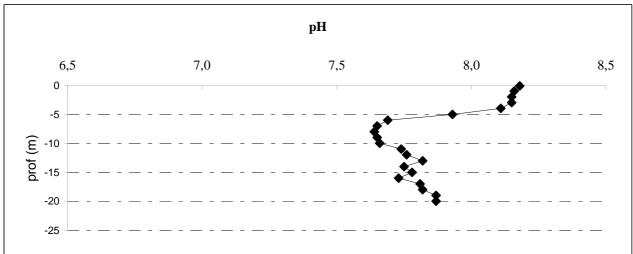
Carte: (extrait SCAN25, IGN 1/25 000)

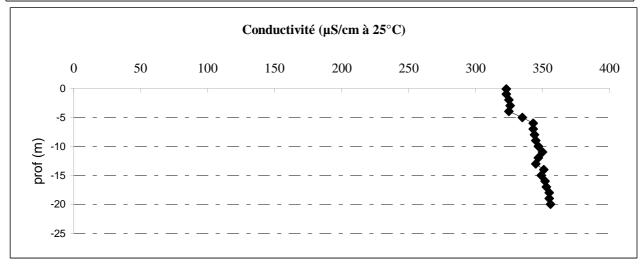
calisation du point de prélèvements

STATION

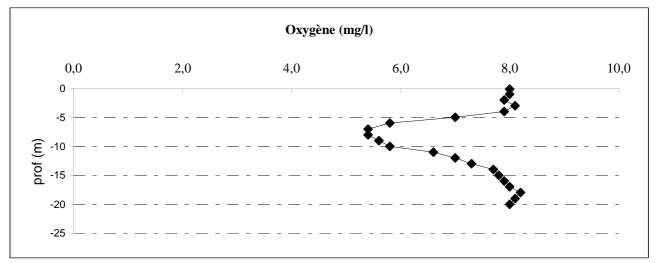
angle de prise de vue de la photographie

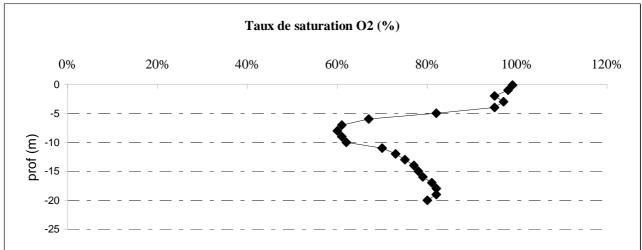

Photo du site:




Relevé phytoplanctonique et p DONNEES GENERALES CA	* *	l'eau	
Plan d'eau :	Coiselet (de)		Date: 28/07/2010
Type (naturel, artificiel,):	artificiel		Code lac: V23003
Organisme / opérateurs :	S.T.E.: <i>A.Péricat et</i>	S.Meistermann	Campagne 3 page 2/5
Organisme demandeur	Agence de l'eau RM&C		marché n° 08M082
STATION STATION	rigonoc de reda raviece		
Coordonnées de la station	relevées sur : GPS		
Lambert 93		Y: 6580556	alt.: 304 m
WGS 84 (système international)		Y:	alt.: m
Profondeur:			
Troionacui .	vent: faible + rafal	es	
	météo: très nuageux	10.5	
	meteo. Hes mageux		
Conditions d'observation :	Surface de l'eau :	faiblement agitée	
	Hauteur des vagues :	0,02 P atm stan	dard: 977 hPa
	Bloom algal: non	Pression at	m.: 984 hPa
Marnage:	non	Hauteur de la ban	de: - m
5.5.00			
Campagne : PRELEVEMENTS	3 campagne estivale : the du phytoplancton	hermocline bien installée,	2 ^{ème} phase de croissance
Heure de début du relevé :	14.10	Heure de fin du relevé :	15:10
Prélèvements réalisés :	eau chlorophylle phytoplancton macrophytes	matériel employé :	pompe
Gestion:	GEH Jura Bourgogne: hy	droélectricité	
	M. F Cotteret - tél: 03 84		
•	Agent de permanence - tél		
	Développement dense de v de profondeur : Elodée de	Nuttall	ifs jusqu'à 4m atre la surface et le fond

Relevé phytoplanctonique et p	•	imique en p	olan d'eau				
DONNEES PHYSICO-CHIM							
Plan d'eau :	Coiselet (de)				Date:	28/07/2010
Type (naturel, artificiel,):	artificiel					Code lac:	V23003
Organisme / opérateur :	S.T.E.: A.Péricat et S.Meistermann			Campagne	3 page 3/5		
Organisme demandeur	Agence de l'eau RM&C			marché n°			
TRANSPARENCE	112801100 0	1000 11111				111111 0110 11	00111002
Secchi en m :	1.0		Zono oveho	tiana (2.5 v.Ca	oobi) .	12.0	***
	4,8		Zone eupno	tique (2,5 x Se	ecciii):	12,0	111
PROFIL VERTICAL		1				2 1	
Moyen de mesure utilisé :		in-situ à ch			X		ans un récipient
Volume prélevé (en litres) :	Prof.	Temp.	pН	Cond. (µS/cm 25°)	O ₂ (mg/l)	O ₂ (%)	Heure
prélevement intégré (0,8 L)	-0,1	24,1	8,18	323	8,0	99%	14:10
prélevement intégré (0,8 L)	-1,0	23,5	8,16	323	8,0	98%	
prélevement intégré (0,8 L)	-2,0	23,0	8,15	325	7,9	95%	
prélevement intégré (0,8 L)	-3,0	22,8	8,15	326	8,1	97%	
prélevement intégré (0,8 L)	-4,0	22,7	8,11	325	7,9	95%	
prélevement intégré (0,8 L)	-5,0	22,1	7,93	335	7,0	82%	
prélevement intégré (0,8 L)	-6,0	20,8	7,69	343	5,8	67%	
prélevement intégré (0,8 L)	-7,0	19,8	7,65	343	5,4	61%	
prélevement intégré (0,8 L)	-8,0	18,9	7,64	344	5,4	60%	
prélevement intégré (0,8 L)	-9,0	17,9	7,65	345	5,6	61%	
prélevement intégré (0,8 L)	-10,0	17,0	7,66	347	5,8	62%	
prélevement intégré (0,8 L)	-11,0	16,8	7,74	350	6,6 7,0	70%	14.50
prélevement intégré (0,8 L)	-12,0	15,9	7,76	347 345		73%	14:50
	-13,0	15,6	7,82	 	7,3	75%	
	-14,0 -15,0	14,4 14,2	7,75 7,78	351 349	7,7	77% 78%	
	-15,0	14,2	7,73	352	7,8	79%	
	-17,0	14,0	7,73	353	8,0	81%	
	-18,0	13,9	7,82	355	8,2	82%	
	-19,0	14,2	7,87	355	8,1	82%	
prélèvement de fond	-20,0	13,8	7,87	356	8,0	80%	15:10
1			.,,				
	-						
	-						
	1						


Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Plan d'eau: Coiselet (de) Type (naturel, artificiel,...): Organisme / opérateur: Organisme demandeur Coiselet (de) Agence de l'eau RM&C Date: 28/07/2010 Code lac: V2--3003 Campagne 3 page 4/5 marché n° 08M082



Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Plan d'eau: Coiselet (de) Date: 28/07/2010 Type (naturel, artificiel,...): artificiel Code lac: V2--3003 Organisme / opérateur : S.T.E.: A.Péricat et Campagne 3 page 5/5 S.Meistermann marché n° 08M082 Organisme demandeur Agence de l'eau RM&C

Distance au fond:	1,0 m	soit à Zf =	-20,0 m			
Remarques et observations :						
Remise des échantillons:						
Echantillons pour analyses phy	ysicochimique	s (Laboratoire L	DA26)			
échantillon intégré n°	1552530		Bon transpo	ort intégré :	EE	338840674
échantillon de fond n°	1551209		Bon transpo	ort fond:	EE	338840736
remise par S.T.E.:			le		à	
Au transporteur:	Chronopost		le	28/07/10	à	17h
_	arrivée au lab	oratoire LDA 26	s en mi-journ	née du : 29/07/10		

Relevé phytoplanctonique et physico-chimique en plan d'eau

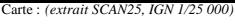
DONNEES GENERALES PLAN D'EAU - STATION

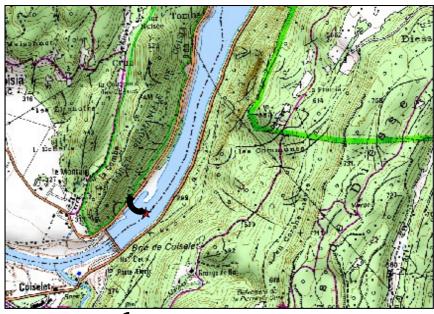
Coiselet (de) Plan d'eau: Date: 08/09/2010 Type (naturel, artificiel,...): artificiel Code lac: V2--3003 **S.T.E.** : Organisme / opérateur : A.Péricat et S.Meistermann Campagne 4 page 1/6

LOCALISATION PLAN D'EAU

Organisme demandeur

Commune : Samognat


Lac marnant : oui Type: A3


Agence de l'eau RM&C

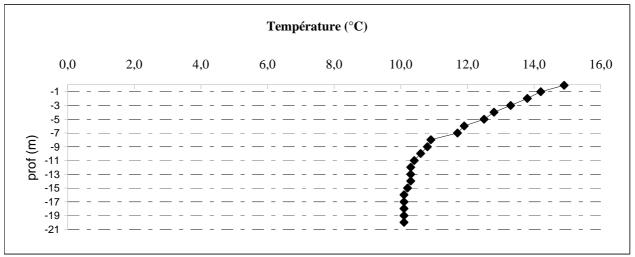
Temps de séjour 6 jours retenues de moyenne montagne, calcaire, profondes

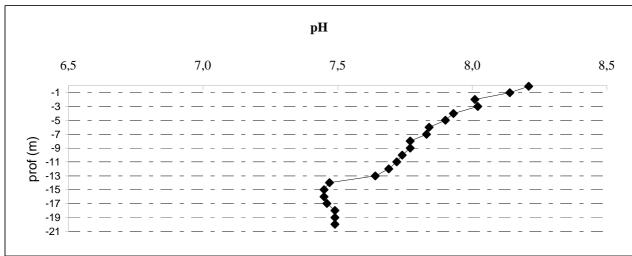
 $march\acute{e}~n^{\circ}~08M082$

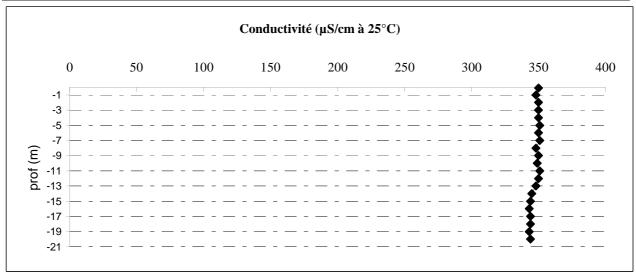
Superficie du plan d'eau: 302 ha Profondeur maximale:

★ localisation du point de prélèvements
STATION

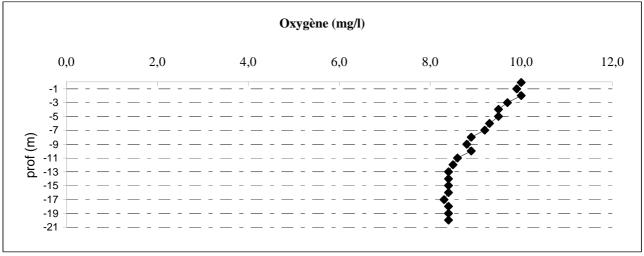
angle de prise de vue de la photographie

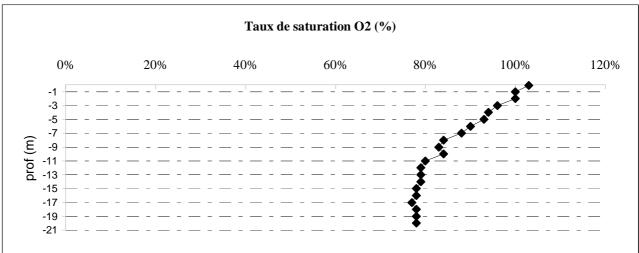

Photo du site:




Relevé phytoplanctonique et p DONNEES GENERALES CA	•	l'eau	
Plan d'eau:	Coiselet (de)		Date: 08/09/2010
Type (naturel, artificiel,):	artificiel		Code lac: V23003
Organisme / opérateurs :	S.T.E.: A.Péricat et	C Maiataumann	
		S.Meistermann	Campagne 4 page 2/6 marché n° 08M082
Organisme demandeur	Agence de l'eau RM&C		marche n° 08M082
STATION	1 / CDC		
Coordonnées de la station	relevées sur : GPS		
Lambert 93		Y: 6580556	
WGS 84 (système international)		Y:	alt.: m
Profondeur :	20,8 m		
	vent : moyen météo : très nuageux		
Conditions d'observation :	Surface de l'eau :	faiblement agitée	
	Hauteur des vagues :	0,05 m P atm stan	dard: 977 hPa
	Bloom algal: non	Pression at	tm.: hPa
Marnage:	non	Hauteur de la band	de: 0 m
8			
Campagne : PRELEVEMENTS	4 campagne de fin d'été température	: fin de stratification estiv	ale, avant baisse de la
	1	II	
Heure de début du relevé :		Heure de fin du relevé :	
Prélèvements réalisés :	eau chlorophylle phytoplancton sédiments	matériel employé :	pompe benne Ekmann
Contact préalable :	GEH Jura Bourgogne : hyd M. F Cotteret - tél : 03 84 Agent de permanence - tél Eau d'aspect sombre assez La gestion hydroélectrique de la retenue de Vouglans.	43 90 31 : 04 74 42 90 45 c fraiche. e engendre un déstockage	des eaux du fond
	de la retenue de vougians.		

Relevé phytoplanctonique et p	hysico-chi	miaue en n	lan d'eau				
DONNEES PHYSICO-CHIMI	•	тичис ен р	ian a caa				
Plan d'eau :	Coiselet (de)				Date :	08/09/2010
	artificiel	uc)				Code lac:	V23003
		4 D/ :		G 14			
Organisme / opérateur :	S.T.E.: A.Péricat et S.Meistermann				4 page 3/6		
Organisme demandeur	Agence de	e l'eau RM&	&С			marché n°	08M082
TRANSPARENCE							
Secchi en m :	5,2		Zone euphor	tique (2,5 x Sec	echi):	13,0	m
PROFIL VERTICAL		1					
Moyen de mesure utilisé :		in-situ à ch	aque prof.		X	en surface d	ans un récipient
Volume prélevé (en litres) :	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
volume preserve (en nices):	(m)	(°C)		(μS/cm 25°)	(mg/l)	(%)	
prélèvement intégré (1 L)	-0,1	14,9	8,21	350	10,0	103%	14:30
prélèvement intégré (1 L)	-1,0	14,2	8,14	348	9,9	100%	
prélèvement intégré (1 L)	-2,0	13,8	8,01	350	10,0	100%	
prélèvement intégré (1 L)	-3,0	13,3	8,02	350	9,7	96%	
prélèvement intégré (1 L)	-4,0	12,8	7,93	350	9,5	94%	
prélèvement intégré (1 L)	-5,0	12,5	7,90	351	9,5	93%	
prélèvement intégré (1 L)	-6,0	11,9	7,84	350	9,3	90%	
prélèvement intégré (1 L)	-7,0	11,7	7,83	351	9,2	88%	
prélèvement intégré (1 L)	-8,0	10,9	7,77	348	8,9	84%	
prélèvement intégré (1 L)	-9,0	10,8	7,77	350	8,8	83%	
prélèvement intégré (1 L)	-10,0	10,6	7,74	349	8,9	84%	
prélèvement intégré (1 L)	-11,0	10,4	7,72	351	8,6	80%	
prélèvement intégré (1 L)	-12,0	10,3	7,69	350	8,5	79%	
prélèvement intégré (1 L)	-13,0	10,3	7,64	348	8,4	79%	15:00
	-14,0	10,3	7,47	345	8,4	79%	
	-15,0	10,2	7,45	344	8,4	78%	
	-16,0	10,1	7,45	343	8,4	78%	
	-17,0	10,1	7,46	344	8,3	77%	
	-18,0	10,1	7,49	344	8,4	78%	
	-19,0	10,1	7,49	343	8,4	78%	
prélèvement de fond	-20,0	10,1	7,49	344	8,4	78%	15:20
			<u></u>				


Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Coiselet (de) Date: 08/09/2010 Plan d'eau: artificiel Code lac: V2--3003 Type (naturel, artificiel,...): Organisme / opérateur : Campagne 4 page 4/6 S.T.E. : A.Péricat et S.Meistermann Organisme demandeur Agence de l'eau RM&C marché n° 08M082



Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Date: 08/09/2010 Plan d'eau: Coiselet (de) Type (naturel, artificiel,...): artificiel Code lac: V2--3003 Organisme / opérateur : S.T.E.: A.Péricat et Campagne 4 page 5/6 S.Meistermann marché n° 08M082 Organisme demandeur Agence de l'eau RM&C

Distance au fond:	0,8 m	soit à Zf =	-20,0 m		
Remarques et observations :					
Remise des échantillons :					
Echantillons pour analyses phy	sicochimiques	(Laboratoire LD	A26)		
échantillon intégré n°	1552598		Bon transport intégré :	EE338651772	
échantillon de fond n°	1551230		Bon transport fond:	EE338651786	
remise par S.T.E.:			le	à	
Au transporteur:	Chronopost		le 08/09/10	à	17h 00
_	arrivée au lab	oratoire LDA 26	en mi-journée du :	09/09/10	

Prélèvements de sédiments	pour analyses p	hysico-chimic	ques				
DONNEES GENERALES	PLAN D'EAU -	PRELEVEM	ENT DE SEI	DIMENTS			
Plan d'eau :	Coiselet				Date : 08/	/09/2010	
Type (naturel, artificiel,)	artificiel			(Code lac: V2	3003	
Organisme / opérateur :	S.T.E.		A.Péricat et S.Meistermann heure: 1			are: 15:30	
Organisme demandeur :	Agence de l'eau	ı RM&C		r	narché n° 081	M082	
<i>-</i>					pag	ge 6/6	
Conditions de milieu					1		
chaud, ensoleillé	période estimée	favorable à :		déh	its des affluer	nts	
,			·				
couvert X	mort et sédimer			X			
pluie, neige	sédimentation de MES de toute nature				turbidité aff	luents NON	
Vent					Secchi (m)	6,4	
Matériel							
	11 \ '		1 57	1 .		T	
drague fond plat	pelle à main		benne X	piège	car	rottier	
Localisation générale de la	a zone de prélè	vements (en r	particulier. X	Y Lambert	93)		
9	•	` •	ŕ	1 Lumber	,,,,,		
Point de plus grande profond	deur (cf campagı	ne 4) X :	899725	Y:	6580556		
D (1)		1	2	3	4	5	
Prélèvements		1		_	4	3	
profondeur (en m)		20,8	20,3	19,8			
épaisseur échantillonnée							
récents (<2cm)		X	X	X			
anciens (>2cm)							
indéterminé	indéterminé						
épaisseur, en cn	1:	2	2	2			
granulométrie dominante							
graviers							
sables							
limons							
vases		X	X	X			
argile							
aspect du sédiment							
homogène		X	X	X			
hétérogène							
couleur		marron clair	marron clair	marron clair			
odeur		non	non	non			
présence de débris végétx	non décomp	non	non	oui			
présence d'hydrocarbures		non	non	non			
présence d'autres débris		non	non	non			
_				-	•	_	
Remarques générales :							
Cádimant mamon ionnêtus d	a tautuma adlatin	h	a Mandanaur	a h:	-másamts		
Sédiment marron jaunâtre de	e texture gelatin	euse nomogen	e. Momoreux	conronomes p	nesents		
Remise des échantillons :							
Echantillons pour analyses p	hysicochimique	s (Laboratoire	LDA26)				
	ns n° eau interst		561575	sédimen	nt: 1553	018	
remise par S.T		le		à			
Au transport			08/09/2010		17h 00		
		laboratoire LI	OA 26 en mi-	journée du :	09/09/2010	\mathcal{C}	
	•						