

ÉTUDE DES PLANS D'EAU DU PROGRAMME DE SURVEILLANCE DES BASSINS RHONE-MEDITERRANEE ET CORSE — LOT N°2 CENTRE RAPPORT DE DONNEES BRUTES ET INTERPRETATION LAC DE NANTUA

SUIVI ANNUEL 2022

Rapport n° 20-8342 - Nantua – Juin 2023

Sciences et Techniques de l'Environnement (S.T.E.)
Savoie Technolac – BP90374 –
17 allée du Lac d'Aiguebelette
73372 Le Bourget-du-Lac cedex
Tel : 04-79-25-08-06 – site internet : ste-eau.com

Fiche qualité du document

Agence de l'Eau Rhône Méditerranée Corse (AERMC)

DCP- Service Données Techniques

2-4, Allée de Lodz

Maître d'ouvrage 69363 Lyon Cedex 07

Interlocuteur: Mr IMBERT Loïc

Coordonnées : loic.imbert@eaurmc.fr

Titre du projet Etude des plans d'eau du programme de surveillance des bassins Rhône-

Méditerranée et Corse – Rapport de données brutes et interprétation – Lac de

Nantua.

Référence du document Rapport n°20-8342 Rapport Nantua 2022

Date Juin 2023

Auteur(s) S.T.E. Sciences et Techniques de l'Environnement

Contrôle qualité

Version	Rédigée par	Date	Visée par	Date
VO	Marthe Moiron, Maria Cellamare (phytoplancton), Mathilde Reich (macrophytes), ECOMA (Phytobenthos)	13/06/2023	Audrey Péricat	18/07/23
VF	Marthe Moiron	16/10/2023	Suite aux remarques A 30/08/2023	ERMC, courriel LI du

Thématique

Mots-clés	Géographiques : Bassin Rhône-Méditerranée et Corse – Ain (01) – Lac de Nantua
Wiots-cies	Thématiques : Réseaux de surveillance – Etat trophique – Plan d'eau
Résumé	Le rapport rend compte de l'ensemble des données collectées sur le lac de Nantua lors des campagnes de suivi 2022. Une présentation du plan d'eau et du cadre d'intervention est menée puis les résultats des investigations sont développés dans la suite du document.

Diffusion

Nom	Organisme	Date	Format(s)	
Loïc IMBERT	AERMC	18/07/23	Informatique	

Sommaire

1	Cadre	e du programme de suivi	9
2	Déro	ulement des investigations	. 11
	2.1	Présentation du plan d'eau et localisation	. 11
	2.2	Contenu du suivi 2022	. 12
	2.3	Planning de réalisation	. 12
	2.4	Étapes de la vie lacustres	. 13
	2.5	Bilan climatique de l'année 2022	. 14
3	Rapp	el méthodologique	. 16
	3.1	Investigations physicochimiques	. 16
	3.1.1	Méthodologie	. 16
	3.1.2	Programme analytique	. 18
	3.2	Investigations hydrobiologiques	. 18
	3.2.1	Étude des peuplement phytoplanctoniques	. 19
	3.2.2	Étude des peuplements de macrophytes	. 20
	3.2.3	Étude des peuplements de phytobenthos	. 23
	3.2.4	Etude des peuplements invertébrés benthiques	. 24
4	Résul	tats des investigations	. 27
	4.1	Investigations physicochimiques	. 27
	4.1.1	Profils verticaux et évolutions saisonnières	. 27
	4.1.2	Analyses physico-chimiques sur l'eau	. 31
	4.1.3	Analyses des sédiments	. 36
	4.2	Phytoplancton	. 39
	4.2.1	Prélèvements intégrés	. 39
	4.2.2	Listes Floristiques	. 40
	4.2.3	Evolutions saisonnières des groupements phytoplanctoniques	. 42
	4.2.4	Indice Phytoplanctonique IPLAC	. 44
	4.2.5	Comparaison avec les inventaires antérieurs	. 45
	4.2.6	Bibliographie	. 45
	4.3	Macrophytes	. 46
	4.3.1	Choix des unités d'observation	. 46
	4.3.2	Carte de localisation des unités d'observation	. 47
	4.3.3	Végétation aquatique identifiée	. 49
	4.3.4	Liste des espèces protégées et espèces invasives	. 51
	4.3.5	Indice IBML et niveau trophique du plan d'eau	. 51

	4.3.6	Comparaison avec les suivis antérieurs	. 52
4	1.4	Phytobenthos – méthode IBDLacs	. 52
	4.4.1	Déroulement des prélèvements	. 52
	4.4.2	Inventaire diatomées : liste floristique	. 53
	4.4.3	Interprétation des résultats	. 53
	4.4.4	Conclusions	. 53
4	1.5	Macroinvertébrés lacustres	. 54
	4.5.1	Echantillonnage	. 54
	4.5.2	Listes faunistiques	. 56
	4.5.3	Interprétation et indices	. 57
	4.5.4	Comparaison avec les données antérieures	. 58
5	Appré	ciation globale de la qualité du plan d'eau	. 59
6	Anne	(es	. 61

Tables des illustrations

Carte 1: Localisation du lac de Nantua (Ain)	11
Carte 2 : Présentation du point de prélèvement	12
Carte 3 : Localisation des unités d'observation pour l'étude des macrophytes sur le lac de Nantua	48
Carte 4 : Localisation des points de prélèvements IML sur le lac de Nantua	55
Tableau 1 : Synoptique générique des investigations menées sur une année de suivi d'un plan d'eau	9
Tableau 2 : Liste des plans d'eau suivis sur le centre du bassin Rhône-Méditerranée	10
Tableau 3 : Synoptique des interventions de terrain et de laboratoire sur le plan d'eau	13
Tableau 4 : Seuils de classes d'état définies pour l'IBML	
Tableau 5 : Résultats des paramètres de minéralisation	31
Tableau 6 : Résultats des paramètres de physico-chimie classique sur eaueau	32
Tableau 7 : Résultats d'analyses de métaux sur eau	33
Tableau 8 : Résultats d'analyses de micropolluants organiques présents sur eau	34
Tableau 9 : Synthèse granulométrique sur le sédiment du point de plus grande profondeur	36
Tableau 10 : Analyse de sédiments	36
Tableau 11 : Résultats d'analyses de micropolluants minéraux sur sédiment	37
Tableau 12 : Résultats d'analyses de micropolluants organiques présents sur sédiment	38
Tableau 13 : Analyse de la chlorophylle a	39
Tableau 14: Liste taxonomique du phytoplancton (en nombre de cellules/ml)	40
Tableau 15: Liste taxonomique du phytoplancton (en mm³/l)	41
Tableau 16 : Évolution des Indices IPLAC depuis 2010	45
Tableau 17 : Synthèse des résultats des profils IBML de l'UO1 sur le lac de Nantua	49
Tableau 18 : Synthèse des résultats des profils IBML de l'UO2 sur le lac de Nantua	50
Tableau 19 : Synthèse des résultats des profils IBML de l'UO3 sur le lac de Nantua	51
Tableau 20 : Liste des échantillons IBDlac pour le lac de Nantua en 2022	52
Tableau 21 : Recouvrements des substrats sur le lac de Nantua	54
Tableau 22 : Indices relatifs à l'IML sur le lac de Nantua	57
Figure 1 : Moyennes mensuelles de température à la station de Saint-Etienne-du-Bois (Info-climat)	
Figure 2 : Cumuls mensuels de précipitations à la station de Saint-Etienne-du-Bois (site Info-climat)	
Figure 3 : Représentation schématique des différentes stratégies de comptage	
Figure 4 : Seuils des classes d'état définis pour chaque métrique et pour l'IPLAC	
Figure 5 : Représentation schématique d'une unité d'observation	
Figure 6 : Echantillonnage IML sur la zone littorale d'un plan d'eau	
Figure 7 : Profils verticaux de température au point de plus grande profondeur	
Figure 8 : Profils verticaux de conductivité au point de plus grande profondeur	28
Figure 9 : Profils verticaux de pH au point de plus grande profondeur	
Figure 10 : Profils verticaux d'oxygène (mg/L) au point de plus grande profondeur	29
Figure 11 : Profils verticaux d'oxygène (% sat.) au point de plus grande profondeur	29
Figure 12 : Profils verticaux de la chlorophylle a au point de plus grande profondeur	
Figure 13 : Evolution de la transparence et de la zone euphotique lors des 4 campagnes	
Figure 14: Répartition du phytoplancton sur le lac de Nantua à partir des abondances (cellules/ml)	
Figure 15 : Évolution saisonnière des biovolumes des principaux groupes algaux de phytoplancton (mm	³ /l)
Figure 16 : Vue d'un point de prélèvement sur le lac de Nantua	
Figure 17 : A gauche : capsule céphalique de <i>Psectrocladius</i> (x400), à droite : crustacé <i>Asellidae</i> (x20)	57

1 Cadre du programme de suivi

Dans le cadre de la mise en œuvre de la Directive Cadre européenne sur l'Eau (DCE), adoptée le 23 octobre 2000 et transposée en droit français le 21 avril 2004, un programme de surveillance a été mis en place au niveau national afin de suivre l'état écologique et l'état chimique des eaux douces de surface (cours d'eau et plans d'eau).

L'Agence de l'Eau Rhône Méditerranée Corse a en charge le suivi des plans d'eau faisant partie du programme de surveillance sur les bassins Rhône-Méditerranée et Corse.

Le suivi comprend la réalisation de prélèvements d'eau et de sédiments répartis sur quatre campagnes dans l'année pour analyse des paramètres physico-chimiques et des micropolluants. Différents compartiments biologiques sont étudiés (phytoplancton, macrophytes, diatomées, faune benthique). Le Tableau 1 synthétise les différentes mesures qui sont réalisées dans le cadre du suivi type (selon la nature des plans d'eau et les éléments déjà suivis antérieurement, le contenu du suivi n'englobera pas nécessairement l'ensemble des éléments listés dans le Tableau 1). Un suivi du peuplement piscicole doit également être réalisé dans le cadre du programme de surveillance sur certains types de plans d'eau.

Tableau 1 : Synoptique générique des investigations menées sur une année de suivi d'un plan d'eau

			Paramètres	Type de prélèvements/ Mesures	HIVER	PRINTEMPS	ЕТЕ	AUTOMNE
Mesures in situ		Mesures in situ	O2 dis. (mg/l, %sat.), pH, COND (25°C), T°, Matières organiques dissoutes fluorescentes, transparence	Profils verticaux	×	×	x	х
			PO4, Ptot, NH4, NKJ, NO3, NO2, Corg, MEST, Turbidité, Si dissoute, Matières minérales en suspension	Intégré Ponctuel de fond		X	X	x
	Physico-chimie classique et micropolluants		Micropolluants sur eau*	Intégré Ponctuel de fond	X	X	X	X
			Chlorophylle a + phéopigments	Intégré Ponctuel de fond	Х	Х	Х	Х
	Paramètres de Minéralisation		Ca ²⁺ , Na ⁺ , Mg ²⁺ , K ⁺ , dureté, TAC, SO ₄ ²⁻ , Cl ⁻ , HCO ₃ ⁻	Intégré Ponctuel de fond				
s	σ Eau interst.: Physico-chimie		PO4, Ptot, NH4					
Sur SEDIMENTS			Corg., Ptot, Norg, Granulomètrie, perte au feu	Prélèvement au point de plus grande profondeur				х
Š	ดี Micropolluants		Micropolluants sur sédiments*					
			Phytoplancton	Intégré - Norme XP T90-719 Protocole IRSTEA/Utermöhl	Х	Х	Х	Х
	-	IYDROBIOLOGIE et DROMORPHOLOGIE	Invertébrés	Protocole Test - Université de Franche- Comté (Dedieu, Verneaux)		Х		
1			Diatomées	Protocole IRSTEA			Χ	
L			Macrophytes	Norme XP T 90-328			Х	

se référer à l'arrêté modificatif "Surveillance" du 17 octobre 2018 :

RCS: un passage par plan de gestion pour le suivi complet (soit une fois tous les six ans / tous les trois ans pour le phytoplacton)

CO : un passage tous les trois ans

Poissons et hydromorphologie en charge de l'OFB (un passage tous les 6 ans)

Différents réseaux constituent le programme de surveillance. Parmi ceux-ci, deux réseaux sont actuellement mis en œuvre sur les plans d'eau :

Le réseau de contrôle de surveillance (RCS) vise à donner une image globale de la qualité des eaux. Tous les plans d'eau naturels de superficie supérieure à 50 ha ont été pris en compte sur les bassins Rhône-Méditerranée et Corse. Pour les plans d'eau d'origine anthropique, une sélection a été opérée parmi les plans d'eau de superficie supérieure à 50 ha, afin de couvrir au mieux les différents types présents sur les bassins Rhône-Méditerranée et Corse (grandes retenues, plans d'eau de digue, plans d'eau de creusement).

Le contrôle opérationnel (CO) vise à suivre spécifiquement les plans d'eau (naturels ou anthropiques) de superficie supérieure à 50 ha qui risquent de ne pas atteindre leurs objectifs environnementaux (le bon état ou le bon potentiel).

Au total, 74 plans d'eau sont suivis sur les bassins Rhône-Méditerranée et Corse dans le cadre de ces deux réseaux.

La liste des plans d'eau suivis en 2022 pour le centre du bassin Rhône-Méditerranée, précisant pour chaque plan d'eau le réseau qui le concerne, est fournie dans le Tableau 2.

Tableau 2 : Liste des plans d'eau suivis sur le centre du bassin Rhône-Méditerranée

Code_lac	Libellé	Origine	Dept	Réseaux	Type de suivi réalisé
V1235003	Annecy	Naturel	74	RCS/CO	Classique
V1335003	Bourget	Naturel	73	RCS/CO	Classique
W2715003	Chambon	MEFM	38	RCS	Phytoplancton
W0005083	Chevril	MEFM	73	RCS	Classique
V3005063	Eaux bleues ¹	MEA	69	RCS/CO	Classique
V03-4003	Léman	Naturel	74	RCS/CO	Classique
Y6705023	Mont-cenis	MEFM	73	RCS	Phytoplancton
V2515003	Nantua	Naturel	1	RCS/CO	Classique
W2405023	Pierre-châtel ²	Naturel	38	RCS/CO	Classique
W0435023	Roselend	MEFM	73	RCS	Phytoplancton

¹ échantillonnages diatomées et invertébrés réalisés par la DREAL Auvergne-Rhône-Alpes

MEFM: masses d'eau fortement modifiée

MEA : masses d'eau artificielle

RCS: réseau de contrôle de surveillance

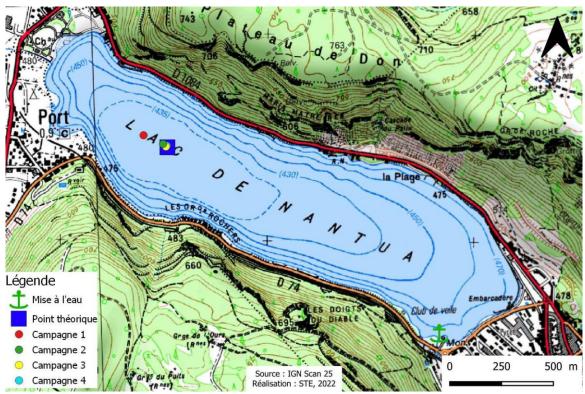
CO : contrôle opérationnel REF : plan d'eau de référence

échantillonnages diatomées réalisés par la DREAL Auvergne-Rhône-Alpes

2 Déroulement des investigations

2.1 Présentation du plan d'eau et localisation

Le lac de Nantua (Carte 1) est un lac naturel d'origine glaciaire situé dans le département de l'Ain (01) sur les communes de Nantua et de Port, à une altitude de 475 m. Ce plan d'eau présente une forme allongée, il est orienté Sud-Est/Nord-Ouest et s'étend sur une superficie de 133 ha. Il est alimenté par les cours d'eau le Merloz et la Doye, ainsi que par plusieurs sources dont "les Grands Rochers". Le Bras du Lac, affluent de l'Oignin, forme l'exutoire du lac. Des pertes sous-lacustres sont également détectées, dont l'une qui rejoint le lac des Hôpitaux. Le temps de séjour sur le plan d'eau est assez long, il est estimé à 251 jours.



Carte 1: Localisation du lac de Nantua (Ain)

La gestion du lac est assurée par la commune de Nantua. Les berges du lac, côté Nantua, sont aménagées à des fins touristiques avec une base nautique, une place, un port et des zones de détente dont une plage. Un port est aménagé à l'autre extrémité du plan d'eau. Le lac permet la pratique de multiples activités nautiques non motorisées (canoë, voile, pêche...). Quelques embarcations ont la possibilité de naviguer avec un moteur thermique (autorisation municipale).

Historiquement, la qualité des eaux a été fortement détériorée par les rejets multiples dans le lac, maintenant maîtrisés. Des procédés d'oxygénation hypolimnique ont d'ailleurs été mis en œuvre antérieurement pour restaurer le fonctionnement de l'hydrosystème.

La zone de plus grande profondeur se situe au milieu du plan d'eau. La plus grande profondeur atteint 43 m pour cette année 2022 (Carte 2) comme lors des suivis précédents. Il n'a pas été enregistré de marnage en 2022.

Carte 2 : Présentation du point de prélèvement

Le lac présente un fonctionnement monomictique, avec une seule phase de stratification annuelle en été.

2.2 Contenu du suivi 2022

Le lac de Nantua est suivi au titre des Réseaux de Contrôle de Surveillance (RCS) et du Contrôle Opérationnel (CO). Les précédents suivis ont eu lieu en 2013, 2016 et 2019.

Le plan d'eau présente les pressions suivantes à l'origine de non atteinte du bon état fixé par la DCE :

- ✓ Pollution par les nutriments urbains et industriels ;
- ✓ Altération de la continuité écologique ;
- ✓ Altération de la morphologie.

Les compartiments biologiques ont été suivis à travers le peuplement phytoplanctonique (IPLAC), l'étude de la végétation aquatique (IBML), l'étude du phytobenthos (IBDLacs), et l'étude de la faune invertébrée lacustre (IML).

2.3 Planning de réalisation

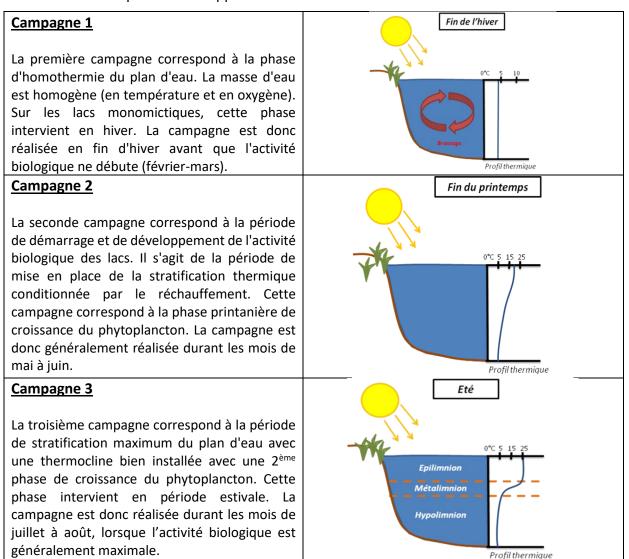
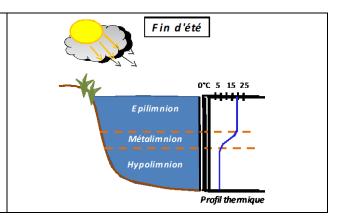

Le tableau ci-dessous indique la répartition des missions aussi bien en phase terrain qu'en phase laboratoire/détermination. S.T.E. a, en outre, eu en charge de coordonner la mission et de collecter l'ensemble des données pour établir les rapports et mener l'exploitation des données.

Tableau 3 : Synoptique des interventions de terrain et de laboratoire sur le plan d'eau

Lac de Nantua	Phase terrain					Laboratoire - détermination
Campagne	C1	C2	C3	Biologie	C4	
Date	14/03/2022	01/06/2022	19/08/2022	26 & 27/07/2022	17/10/2022	Automne/hiver 2022-2023
Physicochimie des eaux	S.T.E.	S.T.E.	S.T.E.		S.T.E.	CARSO
Physicochimie des sédiments					S.T.E.	LDA 26
Phytoplancton	S.T.E.	S.T.E.	S.T.E.		S.T.E.	PHYTO-QUALITY : Maria Cellamare
Indice biologique macrophytique en lac (IBML)				S.T.E / MOSAIQUE		Mosaïque Environnement : M Reich
Indice biologique Diatomées en lac (IBDLacs)				S.T.E.		Phytobenthos : ECOMA
Indice macroinvertébrés lacustres (IML)		S.T.E. (13/04/22)				S.T.E. (faune) / ECOMA (<i>Chironomidae</i>)


2.4 <u>Étapes de la vie lacustres</u>

Les investigations physicochimiques ont été réalisées lors de quatre campagnes qui correspondent aux différentes étapes de développement de la vie lacustre.

Campagne 4

La quatrième campagne correspond à la fin de la stratification estivale du plan d'eau. Elle intervient avant la baisse de la température et la disparition de la thermocline. L'épilimnion présente alors son épaisseur maximale. Cette phase intervient en fin d'été : la campagne est donc réalisée durant le mois de septembre voire début octobre selon l'altitude du plan d'eau et le climat de l'année.

2.5 <u>Bilan climatique de l'année 2022</u>

Les conditions climatiques de l'année 2022 pour le lac de Nantua sont analysées à partir de la station météorologique de Saint-Etienne du Bois (à 243 m d'altitude), située à 30 km à l'ouest du plan d'eau. Cette station dispose d'enregistrements depuis 1973.

L'année 2022 a été exceptionnellement chaude par rapport aux moyennes de saison (Figure 1)¹ avec une température moyenne de 13,6°C, contre 11°C sur la période 1981-2010, soit +2,6°C. En 2022, les températures sont globalement plus élevées (sauf en janvier (-0,6°C)). Elles sont particulièrement importantes en octobre (+5,3°C) et juin (+3,8°C), par rapport à la période 1981-2010.

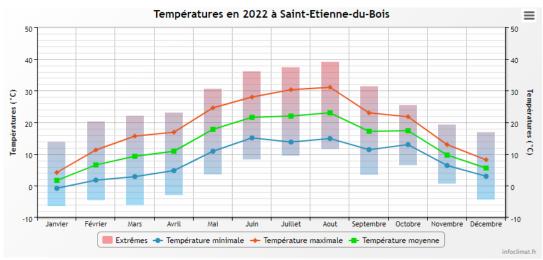


Figure 1 : Moyennes mensuelles de température à la station de Saint-Etienne-du-Bois (Info-climat)

Le cumul de précipitations en 2022 est inférieur à la normale (880 mm en 2022 contre 1178 mm mesuré en moyenne sur la période 1981-2010), soit -25% de pluviométrie. Ces données sont présentées sur la Figure 2. Malgré une longue chronique de la station, il n'y a pas de normales saisonnières. Un graphique a été fait avec les moyennes mensuelles de 1981 à 2010 afin de pouvoir les comparer aux données de 2022.

¹ Pour les figures 1 et 2, les moyennes saisonnières n'apparaissent pas sur les graphiques, elles ne sont pas fournies sur Info-climat.

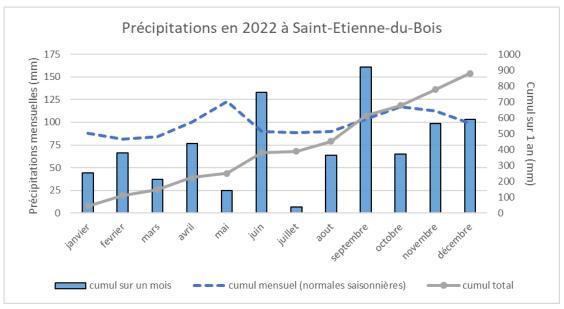


Figure 2 : Cumuls mensuels de précipitations à la station de Saint-Etienne-du-Bois (site Info-climat)

Il ressort les éléments suivants :

- ✓ déficits importants en mars, mai et juillet (cumul <-50% par rapport à la période 1981-2010) ;
- ✓ déficits moyens en janvier, février, avril, août, octobre et novembre (cumul ≥ -50% par rapport à la période 1981-2010);
- ✓ précipitations très importantes en septembre 2022 (+56% par rapport à la période 1981-2010);
- ✓ précipitations importantes en juin 2022 (+47% par rapport à la période 1981-2010);

L'année 2022 a connu un hiver doux et sec. D'avril à aout, cette période est déficitaire, sauf en juin (133 mm de précipitations). Juillet et mai sont en déficits très importants (cumul ≤ -80%), par rapport aux normales saisonnières de 1981-2010. Les températures sont élevées durant cette période, et c'est en octobre que l'augmentation est la plus forte (+ 5,3°C par rapport à la moyenne). Des précipitations importantes seront recensées en septembre (161 mm). Puis en hiver, le mois d'octobre sera en déficit de 45%. Le mois de novembre est en déficit de 13% et le mois de décembre en excédent de 4%.

Globalement, l'année 2022 a été très chaude avec des épisodes de sècheresse marqué pendant l'hiver et l'été.

3 Rappel méthodologique

3.1 Investigations physicochimiques

3.1.1 METHODOLOGIE

Le contenu des investigations physicochimiques est similaire sur les quatre campagnes réalisées.

Le profil vertical et les prélèvements sont réalisés dans le secteur de plus grande profondeur que l'on recherche à partir des données collectées au préalable (fiche station fournie par l'Agence de l'Eau, bathymétrie, étude, communication avec les gestionnaires). Dans le cas des retenues, cette zone se situe en général à proximité du barrage dans le chenal central. Sur le terrain, la recherche du point de plus grande profondeur est menée à l'aide d'un échosondeur.

Au point de plus grande profondeur, sont effectués, dans l'ordre :

- a) une mesure de transparence au disque de Secchi, avec lecture côté "ombre" du bateau pour une parfaite acuité visuelle. Chacun des deux opérateurs fait la lecture en aveugle (1ère lecture non indiquée au 2ème lecteur).
- b) un profil vertical de température (°C), conductivité (μS/cm à 25°C), pH (u. pH) et oxygène dissous (% sat. et mg/l). Il est réalisé à l'aide de 2 sondes multiparamètres OTT MS5 et EXO qui peuvent effectuer des mesures jusqu'à 200 m de profondeur : les sondes MS1 et MS2 disposant d'une mémoire interne pouvant être programmée pour enregistrer les données à une fréquence de temps définie préalablement (5 secondes). Les sondes sont équipées d'un capteur de pression permettant d'enregistrer la profondeur de la mesure. Les deux sondes sont descendues en parallèle sur la colonne d'eau pour le recueil du profil vertical.

Un profil vertical du paramètre Chlorophylle a est également mené lors de toutes les campagnes à l'aide d'une sonde EXO.

c) trois prélèvements pour analyses physicochimiques :

- l'échantillon intégré est en général constitué de prélèvements ponctuels tous les mètres² sur la zone euphotique (soit 2,5 fois la transparence) ; ces prélèvements unitaires, de même volume, sont réalisés à l'aide d'une bouteille Kemmerer 1,2 L (téflon) et disposés, pour conditionner les échantillons dans une cuve en inox de 25 L équipée d'un robinet inox. Pour les analyses physicochimiques (uniquement micropolluants minéraux et organiques), 10 litres sont nécessaires. Une fois l'échantillon finalisé, le conditionnement est réalisé en respectant l'ensemble des prescriptions du laboratoire ;
- l'échantillon ponctuel de fond est prélevé à environ 2 m du fond, pour éviter la mise en suspension des sédiments. Les prélèvements sont réalisés à l'aide d'une bouteille Niskin X General Oceanics téflonnée (5,2 L) et disposés dans une cuve en inox de 25 litres et équipée d'un robinet inox pour conditionner les échantillons. Pour les analyses physicochimiques (physico-chimie classique, micropolluants minéraux et organiques), 15 litres sont nécessaires. Une fois l'échantillon finalisé, le conditionnement est réalisé en respectant l'ensemble des prescriptions du laboratoire.

² Compte tenu de la transparence Tr. de certains plans d'eau, exprimable en plusieurs mètres, la règle du Tr. x 2,5 a parfois conduit à une valeur calculée supérieure à la profondeur du plan d'eau. Dans ces cas, le prélèvement a été arrêté à 1 m du fond, pour éviter le prélèvement d'eau de contact avec le sédiment, qui peut, selon les cas, présenter des caractéristiques spécifiques. Inversement, lorsque la transparence est très faible, amenant à une épaisseur de zone euphotique d'à peine quelques mètres, les prélèvements peuvent être resserrés à un pas moindre que 1 m (par exemple : tous les 50 cm).

Pour chaque échantillon, le laboratoire CARSO fournit une glacière avec les flaconnages préalablement étiquetés adaptés aux analyses demandées par l'Agence de l'Eau RM&C.

Les échantillons sont conservés dans une enceinte isolée au contact de blocs réfrigérants, puis envoyés par transporteur TNT pour un acheminement au laboratoire CARSO dans un délai de 24h, sauf cas particuliers.

d) un prélèvement intégré destiné à l'analyse du phytoplancton et de la chlorophylle et aux analyses de physico-chimie classique :

Les prélèvements doivent être obligatoirement intégrateurs de la colonne d'eau correspondant à la zone euphotique. Pour les analyses, 7 litres sont nécessaires. Ainsi, selon la profondeur de la zone euphotique, plusieurs matériels peuvent être utilisés, l'objectif étant de limiter les aliquotes, et donc les manipulations afin que l'échantillon soit le plus homogène possible :

✓ le tuyau intégrateur (système décrit dans le protocole de l'IRSTEA) est adaptable pour toute profondeur, le volume échantillonné dépend du diamètre du tuyau. S.T.E. a mis au point 2 tuyaux : l'un de 5 ou 9 m de diamètre élevé (Ø18 mm) pour les zones euphotiques réduites, et l'autre de 30 m (Ø14 mm) pour les transparences élevées.

A partir de 2022, la filtration de la chlorophylle n'est plus effectuée sur le terrain par S.T.E. Un flacon de 1L blanc opaque est envoyé au laboratoire d'analyses qui réalise la filtration directement au laboratoire.

Pour l'analyse du phytoplancton, 2 échantillons sont réalisés dans des flacons blancs opaques en PP de 250 ml dûment étiquetés (nom du lac, date, préleveur, campagne). Un volume connu de lugol (3 à 5 ml) est ajouté pour fixation. Les échantillons sont conservés au réfrigérateur. Un des deux échantillons est ensuite transmis au bureau d'études Phyto Quality en charge de la détermination et du comptage du phytoplancton. L'autre échantillon est conservé dans les locaux de S.T.E. dans le cadre du contrôle qualité.

Pour les analyses de physico-chimie classique, le laboratoire CARSO fournit une glacière avec les flaconnages préalablement étiquetés adaptés aux analyses demandées par l'Agence de l'Eau RM&C.

Les échantillons sont conservés dans une enceinte isolée au contact de blocs réfrigérants, puis envoyés par transporteur TNT pour un acheminement au laboratoire CARSO dans un délai de 24h, sauf cas particuliers.

e) un prélèvement de sédiment :

Ce type de prélèvement n'est réalisé que lors d'une seule campagne, celle de fin d'été (septembre), susceptible de représenter la phase la plus critique pour ce compartiment. Le prélèvement de sédiments est réalisé impérativement **après** les prélèvements d'eau afin d'éviter tout risque de mise en suspension de particules du sédiment lors de son échantillonnage, et donc de contamination du prélèvement d'eau (surtout celui du fond).

Il est réalisé par une série de prélèvements à la benne Ekman. Au vu de sa taille et de la fraction ramenée par ce type de benne (en forme de secteur angulaire), de 2 à 5 prélèvements sont réalisés pour ramener une surface de l'ordre de 1/10 m². La structure du sédiment est observée sur chacun des échantillons dans le double but de :

- ✓ description (couleur, odeur, aspect, granulométrie...);
- ✓ sélection de la seule tranche superficielle (environ 2-3 premiers cm) destinée à l'analyse.

Pour chaque échantillon, le laboratoire LDA26 fournit une glacière avec le flaconnage adapté aux analyses demandées par l'Agence de l'Eau RM&C. Les échantillons sont conservés dans une enceinte

isolée au contact de blocs réfrigérants, puis envoyés par transporteur Chronopost pour un acheminement au Laboratoire de la Drôme (LDA26) dans un délai de 24h, sauf cas particuliers.

3.1.2 PROGRAMME ANALYTIQUE

Concernant les analyses, les paramètres suivants sont mesurés :

- ✓ sur le prélèvement intégré destiné aux analyses de physico-chimie classique et de la chlorophylle :
 - o turbidité, MES, COD, DBO₅, DCO, PO₄³⁻, Ptot, NH₄⁺, NKJ, NO₃⁻, NO₂⁻, silicates;
 - o chlorophylle a et indice phéopigments ;
 - o dureté, TAC, HCO₃-, Ca⁺⁺, Mg⁺⁺, Na⁺, K⁺, Cl⁻, SO₄--, F⁻;
- ✓ sur le prélèvement intégré destiné aux analyses de micropolluants minéraux et organiques :
 - o micropolluants minéraux et organiques : liste des substances fournie en annexe I.
- ✓ sur le prélèvement de fond :
 - o turbidité, MES, COD, DBO₅, DCO, PO₄³⁻, Ptot, NH₄⁺, NKJ, NO₃⁻, NO₂⁻, silicates;
 - o micropolluants minéraux et organiques : liste des substances fournie en annexe I.

Les paramètres analysés sur les sédiments prélevés lors de la 4ème campagne sont les suivants :

- ✓ sur la phase solide (fraction < 2 mm):
 </p>
 - granulométrie;
 - o matières sèches minérales, perte au feu, matières sèches totales ;
 - carbone organique;
 - phosphore total;
 - azote Kjeldahl;
 - o micropolluants minéraux et organiques : liste des substances fournie en annexe II.
- ✓ Sur l'eau interstitielle :
 - orthophosphates;
 - phosphore total;
 - o ammonium.

3.2 <u>Investigations hydrobiologiques</u>

Les investigations hydrobiologiques menées en 2022 comprennent :

- √ l'étude des peuplements phytoplanctoniques à partir de la norme XP T 90-719, « Échantillonnage du phytoplancton dans les eaux intérieures » pour la phase d'échantillonnage. Pour la partie détermination, on se réfère à la Norme guide pour le dénombrement du phytoplancton par microscopie inversée (norme NF EN 15204, décembre 2006), correspondant à la méthode d'Utermöhl, et suivant les spécifications particulières décrites au chapitre 5 du « Protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan pour la mise en œuvre de la DCE » Version 3.3.1, septembre 2009 ;
- √ l'étude des peuplements de macrophytes sur le lac s'appuie sur la méthode mise au point par l'IRSTEA et décrite au sein de la norme AFNOR XP T90-328 : « Échantillonnage des communautés de macrophytes en plans d'eau », Avril 2022 ;

- ✓ l'étude des peuplements de phytobenthos à partir du protocole d'échantillonnage des communautés de phytobenthos en plans d'eau (IRSTEA ; version 1.2 de février 2013) ;
- √ l'étude du peuplement invertébré à partir du protocole mis au point par l'Université de Franche-Comté (N. Dedieu – V. Verneaux, Mars 2022) : « Indice Macroinvertébrés Lacustres (IML), GUIDE TECHNIQUE, Notice d'application et de calcul ».

3.2.1 ÉTUDE DES PEUPLEMENT PHYTOPLANCTONIQUES

Les prélèvements ont été effectués par S.T.E. lors des campagnes de prélèvements pour analyses physico-chimiques. La détermination a été réalisée par Maria Cellamare du bureau d'études Phyto-Quality, spécialiste en systématique et écologie des algues d'eau douce.

3.2.1.1 Prélèvement des échantillons

Les prélèvements ont été réalisés selon la méthodologie présentée au point d) du §3.1.1 « Méthodologie » du présent chapitre « Rappel méthodologique ».

3.2.1.2 Détermination des taxons

La détermination est faite au microscope inversé, à l'espèce dans la mesure du possible.

À noter : la systématique du phytoplancton est en perpétuelle évolution, les références bibliographiques se confortent ou se complètent, mais s'opposent quelquefois. Il est donc important de rappeler qu'il vaut mieux une bonne détermination à un niveau taxonomique moindre qu'une mauvaise à un niveau supérieur (Laplace-Treyture et al., 2009).

L'analyse quantitative implique l'identification et le dénombrement des taxons observés dans une surface connue de la chambre de comptage. Selon la concentration en algues décroissante, le comptage peut être réalisé de trois manières différentes (Figure 3).

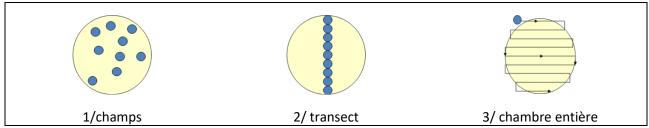


Figure 3 : Représentation schématique des différentes stratégies de comptage

Le comptage est réalisé en balayant des champs strictement aléatoires, ou des transects, ou la chambre entière jusqu'à atteindre 400 individus algaux. La stratégie de comptage utilisée est fonction de la concentration des algues.

Différentes règles de comptage sont appliquées, en respect des échanges inter-opérateurs issus des réunions d'harmonisation phytoplancton INRA 2015-2016. Il est entendu que :

- ✓ tout filament, colonie, ou cœnobe, compte pour un individu algal à X cellules. Le nombre de cellules présentes dans le champ et par individu est dénombré (cellules/individus algaux) ;
- ✓ seules les cellules contenant un plaste (excepté pour les cyanobactéries et chrysophycées à logettes) sont comptées. Les cellules vides des colonies, des cœnobes, des filaments ou des diatomées ne sont pas dénombrées ;
- ✓ les logettes des chrysophycées (ex : *Dinobryon, Kephyrion,...*) sont dénombrées même si elles sont vides, les cellules de flagellés isolées ne sont pas dénombrées ;

✓ pour les diatomées, en cas de difficulté d'identification et de fortes abondances (supérieures à 20% de l'abondance totale), une préparation entre lame et lamelle selon le mode préparatoire décrit par la norme NF T 90-354 (AFNOR) est effectuée.

3.2.1.3 Traitement des données

Les résultats sont exprimés en nombre de cellules par millilitre. Ils sont également exprimés en biovolume (mm³/l), ce qui reflète l'occupation des différentes espèces. En effet, les espèces de petite taille n'occupent pas un même volume que les espèces de grandes tailles. Les biovolumes sont obtenus de trois manières :

- √ grâce aux données proposées par le logiciel Phytobs (version 3.1.3), d'aide au dénombrement;
- ✓ si les données sont absentes, les mesures sur 30 individus lors de l'observation au microscope sont employées pour calculer un biovolume robuste ;
- ✓ si l'ensemble des dimensions utiles au calcul n'est pas observé, les données complémentaires issues de la bibliographie sont employées.

Le comptage terminé, la liste bancarisée dans l'outil de comptage PHYTOBS est exportée au format .xls ou .csv. Cet outil permet de présenter des résultats complets.

Le calcul de l'indice Phytoplancton lacustre ou IPLAC est réalisé à l'aide du Système d'Évaluation de l'État des Eaux (SEEE). Il s'appuie sur 2 métriques :

- ✓ la Métrique de biomasse algale ou MBA est basée sur la concentration moyenne de la chlorophylle a sur la période de végétation ;
- ✓ la Métrique de Composition Spécifique ou MCS exprime une note en fonction de la présence (exprimée en biovolume) de taxons indicateurs, figurant dans une liste de référence de 165 taxons (SEEE 1.1.0). À chaque taxon correspond une cote spécifique et une note de sténoécie, représentant l'amplitude écologique du taxon. La note finale est obtenue en mesurant l'écart avec la valeur prédite en condition de référence.

La note IPLAC résulte de l'agrégation par somme pondérée de ces deux métriques.

Figure 4 : Seuils des classes d'état définis pour chaque métrique et pour l'IPLAC

L'interprétation des caractéristiques écologiques du peuplement permet d'établir si une dégradation de la note indicielle peut être expliquée par la présence de taxons polluotolérants ou favorisés par une abondance de nutriments liée à l'eutrophisation du milieu, ou être liée au fonctionnement du milieu (stratification, anoxie,...).

L'utilisation de la bibliographie et des groupes morpho-fonctionnels permet d'affiner notre analyse et d'évaluer la robustesse de la note IPLAC obtenue.

3.2.2 ÉTUDE DES PEUPLEMENTS DE MACROPHYTES

La méthodologie s'appuie sur la norme AFNOR XP T90-328 « échantillonnage des communautés de macrophytes en plans d'eau », décembre 2010.

L'étude des peuplements de macrophytes a été réalisée par Mathilde Reich ou Éric Boucard du bureau d'études Mosaïque Environnement assisté par un technicien de S.T.E.

3.2.2.1 Choix des unités d'observation

Le positionnement des unités d'observation (UO) est basé sur la méthode de Jensen. À l'issue de cette première phase, le nombre de points-pivots d'investigations est ainsi déterminé et les points pivots sont localisés. Intervient alors une deuxième phase qui permet d'effectuer un choix parmi ces points désormais qualifiables de potentiels.

Les linéaires de rives du plan d'eau sont classés selon les formations végétales et les aménagements de rive, en référence à la typologie des rives de la norme XP T 90-328 :

- ✓ type 1 : zones humides caractéristiques ;
- √ type 2 : avec végétation arbustive/arborescente non humide ;
- ✓ type 3 : sans végétation arbustive/arborescente non humide ;
- √ type 4 : zones artificialisées, avec pressions anthropiques.

La norme AFNOR XP T90-328 indique le nombre d'unités d'observation à réaliser en fonction de la superficie du plan d'eau : au moins 3 UO pour un plan d'eau inférieur à 250 ha, au moins 6 UO pour un plan d'eau de 250 à 1000 ha et au moins 8 UO pour un plan d'eau supérieur à 1000 ha.

Finalement, les unités d'observation sont choisies parmi les points contacts définis par la méthode de Jensen, avec comme objectif de représenter tous les types de rives dont le linéaire est égal ou supérieur à 10% du total du linéaire du plan d'eau.

Les unités d'observation ont été reprises du suivi antérieur pour les plans d'eau ayant déjà fait l'objet d'une étude macrophytes afin d'assurer la continuité des suivis de végétation.

3.2.2.2 Description d'une unité d'observation

Schématiquement, chaque unité d'observation comporte :

- ✓ un relevé de la zone littorale L, de part et d'autre du point central, sur une longueur maximale de 100 m;
- ✓ profils P1 à P3, perpendiculaires à la rive (= 3 relevés), espacés au maximum de 50 m et au minimum de 10 m sur lesquels on effectue les observations.

La zone littorale s'étend jusqu'à 1 m de profondeur, la prospection vise à détecter l'ensemble des espèces présentes et leur abondance relative.

Sur chacun des 3 transects perpendiculaires à la rive, 30 points contacts sont répartis de manière homogène, l'échantillonnage est mené à l'aide d'un râteau télescopique ou d'un grappin.

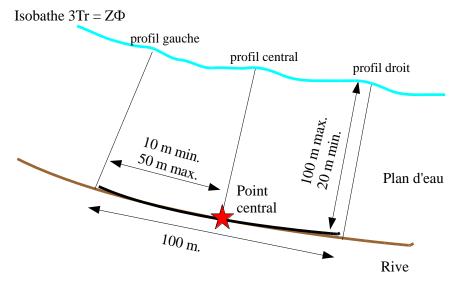


Figure 5 : Représentation schématique d'une unité d'observation

Les espèces déterminables sur place sont déterminées à l'aide d'une loupe de terrain (x10 et x20). L'observation au bathyscope permet de bien contrôler le prélèvement au râteau. Les échantillons sont ensuite prélevés (sauf espèces protégées), numérotés, conservés, puis déterminés au bureau à l'aide d'une loupe binoculaire et/ou d'un microscope (ex : cas des algues et bryophytes).

3.2.2.3 Traitement des données/bancarisation

Toutes les informations descriptives de terrain demandées par la norme, et les listes floristiques par UO/transect et points contacts, ont été saisies dans les formulaires Excel mis à disposition par l'IRSTEA.

Pour toutes précisions sur les modalités de calcul de l'indice, il convient de se reporter à la note de calcul de l'indice établie par l'IRSTEA³.

Une typologie de plans d'eau a été constituée à partir des critères environnementaux disponibles lors du développement de l'indice, critères correspondant à ceux utilisés dans les groupes européens d'intercalibration, c'est à dire l'altitude et l'alcalinité. Les types IBML se déclinent en 4 catégories, et les calculs EQR (Ecological Quality Ratio = écart à la référence) sont présentés dans le tableau suivant.

Types IBML	Calcul EQR
B-Aci : plans d'eau de basse altitude (< à 300 m) et à	EQR _{B-Aci} = 1.404*(IBML/13.20) - 0.532
caractère acide (inférieur à1 mEq.l-1)	EQR B-Aci = 1.404 (IBIVIL/15.20) - 0.552
B-Alc: plans d'eau de basse altitude (< à 300 m) et à	EQR _{B-Alc} = 1.543*(IBML/10.51) - 0.734
caractère alcalin (supérieur à 1 mEq.l-1)	EQR B-Alc - 1.345 (IBIVIL/10.31) - 0.734
H-Aci : plans d'eau de moyenne et haute altitude (> à	EQR _{H-Aci} = 1.399*(IBML/14.16) - 0.492
300 m) et à caractère acide (inférieur à 1 mEq.l ⁻¹)	EQK H-Aci = 1.399 (IBIVIL/14.16) - 0.492
H-Alc: plans d'eau de moyenne et haute (> à 300 m) et	EOD =1 407*/IDM/ /11 93\ 0.633
à caractère alcalin (supérieur à 1 mEq.l-1)	EQR _{H-Alc} =1.497*(IBML/11.83) - 0.633

Pour chaque type IBML, les seuils de référence sont donnés par la médiane des notes d'IBML obtenues sur les plans d'eau dits « de référence » du type concerné. La limite de classe « Très bon/Bon » est donnée par le 75e percentile déterminé sur les données des sites de référence. Les seuils des classes d'état de l'indice IBML, exprimé en EQR, sont donnés dans le Tableau 4.

³ S. Boutry, V. Bertrin, A. Dutartre. 2015. Indice Biologique Macrophytique Lac (IBML), Notice de calcul. Rapport technique, IRSTEA. 30p.

Tableau 4 : Seuils de classes d'état définies pour l'IBML

	Valeurs de limite	Classe
Γ	[1 - 0.8]	Très bon
1]0.8 - 0.6]	Bon
1]0.6 - 0.4]	Moyen
1]0.4 - 0.2]	Médiocre
L]0.2 - 0]	Mauvais

L'indice IBML est calculé à partir du SEEE version utilisateur V1.0.1. Cet indice n'est constitué pour l'instant que d'une seule métrique : la note de trophie. Il renseigne sur le niveau de dégradation globale du peuplement macrophytique.

3.2.3 ÉTUDE DES PEUPLEMENTS DE PHYTOBENTHOS

Les diatomées benthiques, présentes sur les macrophytes (la base immergée des hélophytes) ou sur des supports inertes durs dans les plans d'eau, sont prélevées afin de produire des échantillons représentatifs du peuplement diatomique en place, considéré comme un indicateur de la qualité de l'eau.

La méthode s'appuie sur le document suivant : l'étude des peuplements de phytobenthos à partir du protocole d'échantillonnage des communautés de phytobenthos en plans d'eau (IRSTEA ; version 1.2 de février 2013).

Les prélèvements ont été effectués simultanément aux prélèvements de macrophytes par un préleveur S.T.E. Les déterminations ont été réalisées par ECOMA.

3.2.3.1 Prélèvements IBDlacs

Les prélèvements de diatomées benthiques sont réalisés en période estivale sur les unités d'observation choisies pour l'étude des communautés de macrophytes, telles qu'elles sont décrites dans la norme XP T90-328 (décembre 2010).

L'échantillonnage doit se faire si possible sur 2 types de substrat :

- √ échantillonnage sur substrat minéral dur : l'échantillonnage se fait de préférence sur des éléments granulométriques de grande taille tels que des blocs rocheux ou des galets. Un minimum de 5 supports doit être prélevé, équivalant à une surface finale de 100 cm², pris au hasard. Les supports choisis doivent être immergés à une profondeur comprise dans la zone euphotique et ne doivent pas être prélevés à plus de 50 cm de profondeur;
- ✓ échantillonnage sur les tiges de macrophytes (hélophytes): l'échantillonnage se fait sur des macrophytes dont au moins la base est immergée de manière permanente, si possible sur hélophytes (notamment *Phragmites australis*). Pour un plan d'eau donné, l'échantillonnage est fait sur des macrophytes du même type biologique, et, si possible, sur le même taxon. 5 tiges minimum (jeunes pousses avec recouvrement algues filamenteuses <75%) sont prélevées.

Les tiges recouvertes par plus de 75% d'algues filamenteuses ne sont pas prélevées. Les échantillons sont conservés à l'alcool à 90°.

3.2.3.2 Phase de détermination et d'interprétation

Le traitement des diatomées benthiques est réalisé selon la norme française NF T 90-354 d'avril 2016 et la norme européenne NF EN 14407 d'avril 2014.

Les diatomées sont identifiées au microscope optique équipé du contraste de phase au grossissement x1000 à immersion. Entre 400 et 430 valves sont comptées afin d'établir une liste floristique diatomées. Si les 400 unités ne sont pas atteintes à l'issue de la première lame, une seconde peut être analysée.

La saisie des listes floristiques est réalisée, sous forme de code à 4 lettres, à l'aide d'OMNIDIA 6.1.2.

Actuellement, l'indice diatomées spécifique des plans d'eau n'est pas disponible. Les deux principaux indices utilisés en France, l'Indice de Polluosensibilité Spécifique, l'IPS (Cemagref, 1982) et l'Indice Biologique Diatomées, l'IBD (Lenoir & Coste, 1996), sont adaptés aux cours d'eau et ne peuvent être utilisés pour les communautés de diatomées benthiques des plans d'eau.

L'interprétation porte donc sur la composition du peuplement en termes de taxons dominants avec un commentaire sur leur écologie. Les classifications de Van Dam et al. (1994) ou d'Hofmann (1994) ainsi que les données bibliographiques des espèces sont utilisées afin de définir les caractéristiques écologiques des communautés de diatomées, notamment l'affinité vis-à-vis de la matière organique (saprobie) et le degré de trophie. Des commentaires sur les affinités écologiques des taxons dominants sont réalisés et permettent d'appréhender les éventuelles pollutions présentes ou dégradations constatées.

3.2.4 ETUDE DES PEUPLEMENTS INVERTEBRES BENTHIQUES

Le peuplement invertébré fait l'objet d'un protocole d'échantillonnage mis au point par l'Université de Franche-Comté (N. Dedieu – V. Verneaux, Mars 2022) : « Indice Macroinvertébrés Lacustres (IML), GUIDE TECHNIQUE, Notice d'application et de calcul ».

Ce protocole doit permettre d'étudier les pressions physiques et chimiques subies par les populations invertébrées peuplant les littoraux. Un indice de qualité est calculé : l'Indice Macroinvertébrés Lacustres (IML).

Afin de récolter le maximum de taxons, la période d'échantillonnage est celle qui précède les émergences des imagos d'insectes, c'est-à-dire avant le réchauffement printanier des eaux. Cette période est à adapter à la situation géographique des hydrosystèmes et aux conditions climatiques. Elle peut donc s'étaler de fin mars à début juillet. Pour les plans d'eau marnants, il faut combiner cette période à celle où le plan d'eau atteint une cote stabilisée depuis au moins 15 jours.

L'étude des peuplements invertébrés a été réalisée par S.T.E. pour la partie prélèvements et conjointement avec le laboratoire ECOMA pour la partie analyse-détermination des chironomes.

3.2.4.1 Sélection des points d'échantillonnages

15 points sont à échantillonner pour la réalisation du protocole IML. La sélection des points se base sur le travail de description des habitats réalisés par l'OFB lors de l'étude menée sur les conditions morphologiques du plan d'eau (protocole CHARLI : Caractérisation des Habitats des Rives et du Littoral des plans d'eau). Une base de données « CHARLI » intègre ces informations et est disponible auprès de l'INRAE – pôle ECLA.

Les recouvrements des substrats littoraux sont connus et peuvent donc servir à établir un plan d'échantillonnage pour les prélèvements IML. Seuls les substrats dont le recouvrement dépasse 5% sont pris en compte. Les pourcentages de recouvrement des substrats sélectionnés sont ramenés à 100%. Enfin le nombre d'échantillons à prélever sur chaque substrat est défini par la formule suivante :

$$n = \frac{\% \text{rec}}{100} \times 15$$

avec n = nombre d'échantillon à prélever sur le substrat

%rec = pourcentage de recouvrement des substrats sélectionnés (>5%)

Les 15 points sont ensuite placés sur une carte selon les règles du protocole : par exemple les zones de baignade ou de travaux sont évitées et les zones les plus représentatives pour chaque substrat sont privilégiées afin d'obtenir un échantillon homogène. Les coordonnées des points ainsi placés sont exportées sur la fiche terrain ou directement sur le GPS terrain pour s'orienter rapidement une fois sur le lac.

3.2.4.2 Phase de prélèvements

Les prélèvements s'effectuent à l'aide d'une embarcation et d'un troubleau équipé d'un filet de maille 300 µm. Les opérateurs se repèrent sur le lac grâce à un GPS de terrain et la carte de localisation des points d'échantillonnages préalablement établie.

Seule la zone littorale située hors de l'influence du batillage est visée. Les prélèvements doivent donc être effectués dans une bande d'une largeur limitée à 10 m de la berge et à des profondeurs comprises entre 50 cm et 1 m (Figure 6). La méthode consiste à ramener par des mouvements de va et vient une partie du substrat dans le filet. L'opérateur peut rester dans l'embarcation ou en descendre pour plus de stabilité selon la configuration du littoral. Au moins 3 balayages sont réalisés sur chaque point sur une longueur de 40 cm afin d'atteindre une surface de prélèvement de $0.1m^2$ (largeur troubleau= 25cm x longueur balayage 40 cm). Le premier passage met en suspension la faune et les suivants permettent de la récolter. Il est demandé de prélever un volume maximum de 1L.

Figure 6 : Echantillonnage IML sur la zone littorale d'un plan d'eau

Une fois la faune et le substrat collectés, les opérateurs nettoient et retirent les éléments les plus grossiers afin de préserver l'échantillon pendant le transport et la conservation (risque d'endommagement des invertébrés). Chaque échantillon est ensuite conditionné séparément dans un flacon identifié de manière non équivoque et conservé à l'alcool 95%.

Une fiche terrain est renseignée avec les substrats effectivement prélevés, leur profondeur, les coordonnées précises des points d'échantillonnages et toutes les informations nécessaires à l'interprétation des résultats (conditions hydrologiques, problèmes rencontrés, ...).

3.2.4.3 Phase laboratoire

Le traitement des échantillons au laboratoire s'apparente à celui préconisé par la norme NF T 90-388 destinée aux échantillons d'invertébrés prélevés en rivières. Il s'agit de séparer la faune du substrat (tri) et d'identifier au niveau taxonomique requis les larves et imagos collectés (détermination) à l'aide de tamis, pinces, loupe et stéréomicroscope.

A la différence de la norme NF T 90-388, certains taxons comme les oligochètes et hydracariens ne sont pas pris en compte. La détermination des larves de *Chironomidae* est également plus poussée : le niveau requis pour la norme en rivières est la famille alors que le protocole mis en œuvre en plan d'eau va jusqu'au genre. Cette détermination générique étant basée essentiellement sur l'observation des caractéristiques de la capsule céphalique des chironomes, elle requiert l'utilisation d'un microscope avec montage de chaque individu entre lame et lamelle après un pré-traitement des larves à la potasse (KOH 10%) et à l'acide (HCl 10%).

3.2.4.4 Traitement des données

Toutes les données récoltées (cotes journalières et taxons) sont envoyées et traitées à l'Université de Franche-Comté (V. Verneaux). La liste des taxons identifiés est saisie dans un tableur ainsi que les caractéristiques du lac étudié (altitude, conductivité, géologie, cotes journalières, ...). Les données mésologiques sont issues du guide technique relatif à l'Indice Macroinvertébrés Lacustres – IML (version de février 2022) établi par l'Université de Franche-Comté (N. Dedieu – V. Verneaux, Mars 2022) : « Indice Macroinvertébrés Lacustres (IML), GUIDE TECHNIQUE, Notice d'application et de calcul ».

Il existe deux versions de l'IML:

- √ L'IML_{E-PE}: Indice d'évaluation de l'Etat écologique de tous les lacs naturels et indice d'évaluation du Potentiel Ecologique des lacs artificiels faiblement marnant (marnage max. ≤2m).
- ✓ L'**IML**_{PE}: Indice d'évaluation du Potentiel Ecologique pour les lacs artificiels dont le marnage maximum dépasse 2m.

Ces indices comportent chacun trois sous-indices (chimie, habitat et marnage) utiles à la compréhension de la qualité finale.

Les seuils de classes d'état des indices et sous-indices de l'IML (E-PE et PE) sont donnés dans le tableau ci-après :

Limites de classe	1 ≤ IML ≤ 0,8	0,8 < IML ≤ 0,6	0,6 < IML ≤ 0,4	0,4 < IML ≤ 0,2	0,2 < IML ≤ 0
Classe d'état	Très bon	Bon	Moyen	Médiocre	Mauvais

Les résultats de l'indice sont donnés à titre indicatif, celui-ci n'étant pas encore intégré aux règles officielles d'évaluation de l'état des plans d'eau (arrêté du 27/07/2018 modifiant l'arrêté « Evaluation » du 25 janvier 2010). De plus, la valeur doit être considérée avec précaution puisque non issue de l'outil national officiel de calcul des indicateurs à considérer dans l'évaluation de l'état des eaux (SEEE).

Des indices de diversité et d'équitabilité sont également calculés (indice de Shannon et de Piélou) afin d'étudier la variété et la répartition des taxons au sein du peuplement.

4 Résultats des investigations

4.1 <u>Investigations physicochimiques</u>

Les comptes rendus des campagnes de prélèvements physicochimiques et phytoplanctoniques sont présentés en Annexe III.

4.1.1 Profils verticaux et evolutions saisonnières

Le suivi prévoit la réalisation de profils verticaux sur la colonne d'eau à chaque campagne. Cinq paramètres sont mesurés : la température, la conductivité, l'oxygène (en concentration et en % saturation), le pH et la chlorophylle a. Les graphiques regroupant ces résultats pour chaque paramètre lors des 4 campagnes, sont affichés dans ce chapitre.

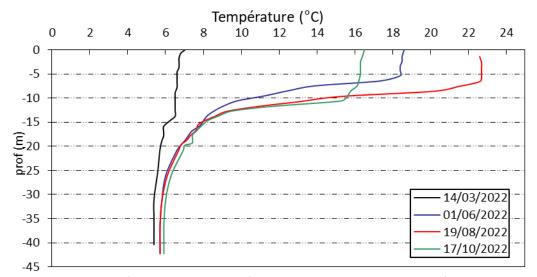


Figure 7 : Profils verticaux de température au point de plus grande profondeur

Lors de la 1^{ère} campagne, la température est quasiment homogène sur la colonne d'eau (5 à 7 °C). Les conditions météorologiques favorables de début mars ont néanmoins permis le réchauffement précoce des eaux de surface (7.0°C).

Au printemps, la stratification thermique s'installe : la thermocline se situe entre 5 et 15 m de profondeur. La température de l'eau est de 18.6°C en surface et de 5.7°C au fond.

Lors de la campagne 3, la température atteint 22.6°C en surface. L'épilimnion s'étend jusqu'à 7 m de profondeur. La thermocline, située entre -7 m et -15 m, présente une forte amplitude, les eaux du fond demeurant proches de 6°C.

Lors de la quatrième campagne, on observe un refroidissement de l'épilimnion qui est homogène à environ 16.5°C et un léger enfoncement de la thermocline qui se situe alors entre 10 et 15 m de profondeur.

Les profils thermiques sont très proches de ceux de 2019 et 2016 ; ils confirment une stratification thermique marquée et stable du lac de Nantua.

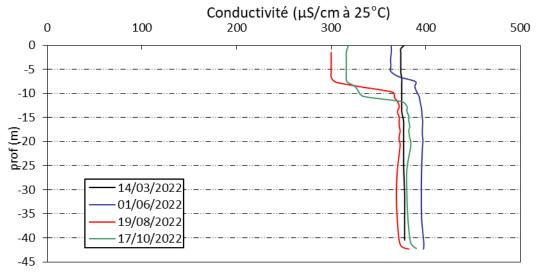


Figure 8 : Profils verticaux de conductivité au point de plus grande profondeur

La conductivité indique une eau bien minéralisée, typiquement en lien avec la nature calcaire des substrats. Elle est comprise entre 300 et 395 μ S/cm à 25°C.

Elle reste homogène à 377 μ S/cm lors de la campagne de fin d'hiver. Elle diminue progressivement dans l'épilimnion durant les 3 campagnes suivantes en lien avec la consommation des minéraux pour l'activité biologique. La conductivité est minimale dans l'épilimnion en campagne 3 (300 μ S/cm). Au fond, elle est plus importante (370 à 395 μ S/cm à 25°C), en lien avec la minéralisation de la matière organique.

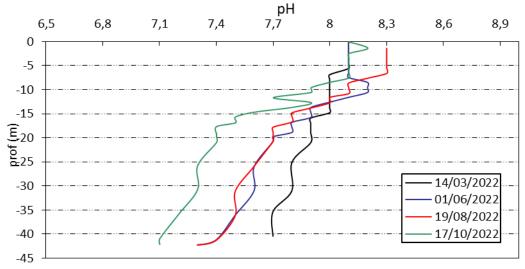


Figure 9 : Profils verticaux de pH au point de plus grande profondeur

Le pH est alcalin dans les eaux de Nantua, il est compris entre 7.1 et 8.3.

Les profils des campagnes 2 et 3 et 4 suivent la même courbe :

- ✓ le pH est un peu plus élevé dans l'épilimnion (8.1 à 8.3 jusqu'à -7 m), où l'activité photosynthétique est à l'origine de cette augmentation ;
- ✓ il est plus faible dans l'hypolimnion (7.8 et jusqu'à 7.1 au fond) où les processus de respiration et de décomposition entraînent cette acidification.

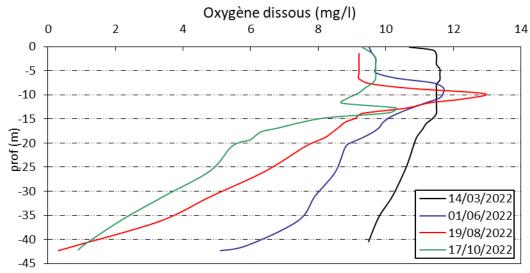


Figure 10 : Profils verticaux d'oxygène (mg/L) au point de plus grande profondeur

En fin d'hiver, l'oxygène dissous n'est pas totalement homogène sur la colonne d'eau. On observe un gradient surface/fond d'amplitude modérée (98% de saturation en surface et 79% au fond), et donc un léger déficit en oxygène dans la couche profonde. Ce qui signifie que le brassage hivernal n'a pas été complet.

Les profils des campagnes 2, 3 et 4 sont assez similaires. Une sursaturation significative a été enregistrée dans la couche de surface en troisième campagne (136 %sat à 10 m de profondeur), signe d'une intense activité photosynthétique. L'épilimnion reste oxygéné de façon optimale pour le reste des campagnes.

En parallèle, la consommation en oxygène s'intensifie dans l'hypolimnion, en lien avec les processus de dégradation de la matière organique :

- √ à 15 m de profondeur : 84% en C2, 80% en C3 puis 70% en C4;
- ✓ au fond: 41% de saturation en campagne 2, puis anoxie lors des campagnes 3 et 4.

Ces profils mettent en évidence une forte demande en oxygène pour dégrader la matière organique dans l'hypolimnion.

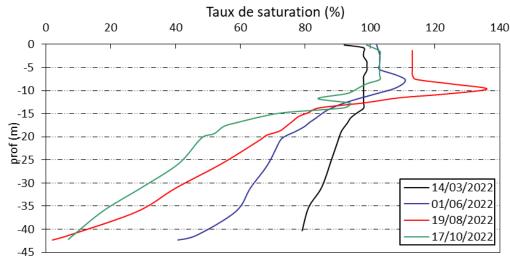


Figure 11 : Profils verticaux d'oxygène (% sat.) au point de plus grande profondeur

La chlorophylle a, est étudiée à l'aide d'une sonde EXO équipée d'un capteur spécifique qui mesure la concentration en chlorophylle a en μ g/l. Les profils des quatre campagnes sont présentés sur la Figure 12.

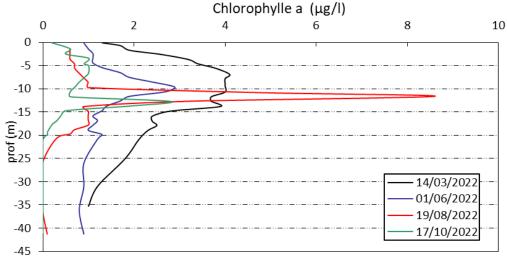


Figure 12 : Profils verticaux de la chlorophylle a au point de plus grande profondeur

Sur le lac de Nantua, les profils montrent des teneurs en chlorophylle allant jusqu'à plus de $8 \mu g/l$ en plein été. En effet, un pic significatif est observé à 11 m de profondeur, concordant avec le pic d'oxygène observé à la même date.

Lors des autres campagnes, la concentration en chlorophylle reste faible à modérée en zone euphotique. Elle atteint 4 µg/l en mars, près de 3 µg/l en juin et octobre.

4.1.2 ANALYSES PHYSICO-CHIMIQUES SUR L'EAU

Les échantillons du 19/08/22 ont été livrés le 22/08/22 au laboratoire CARSO. Le délai de mise en analyses n'a pas été respecté, les résultats sont donc à analyser avec prudence.

4.1.2.1 Paramètres de constitution et typologie du lac

N.B. pour tous les tableaux suivants : LQ = limite de quantification.

Les résultats des paramètres de minéralisation des campagnes 2022 sont présentés dans le Tableau 5.

Tableau 5 : Résultats des p	paramètres de minéralisation
-----------------------------	------------------------------

Lac de Nantua (01)		Unité	Code	10	14/03	/2022	01/06	/2022	19/08	/2022	17/10	/2022
Code plan	Code plan d'eau: V2515003		sandre	LQ	intégré	fond	intégré	fond	intégré	fond	intégré	fond
	Bicarbonates	mg(HCO3)/L	1327	6,1	217,0	238,0	197,0	218,0	168,0	233,0	198,0	224,0
	Dureté	°F	1345	0,5	17,5	18	16,6	18,5	13,7	18,1	17,2	18,6
<u> </u>	TAC	°F	1347	0,5	17,8	19,5	16,2	17,9	13,8	19,1	16,2	18,4
atio	Calcium	mg(Ca)/L	1374	0,1	63,1	64,9	59,3	67	47,8	65,8	61,3	67,4
ralis	Chlorures	mg(CI)/L	1337	0,1	12	12	13	12	13	12	12	12
Minéralisation	Magnésium	mg(Mg)/L	1372	0,05	4,10	4,20	4,40	4,30	4,20	4,00	4,60	4,20
≥	Potassium	mg(K)/L	1367	0,1	0,6	0,7	0,6	1	0,7	0,7	0,7	0,6
	Sodium	mg(Na)/L	1375	0,2	7,1	7,5	7,8	7,5	7,2	6,8	7,2	7,2
	Sulfates	mg(SO4)/L	1338	0,2	5,4	5,8	5	5,3	5,3	4,2	5,9	4,9

Les résultats indiquent une eau très carbonatée (168 à 238 mg/l d'hydrogénocarbonates), de dureté moyenne (13.7 à 18.6°F). Le lac de Nantua se trouve sur des terrains calcaires, ce qui explique la concentration importante observée en hydrogénocarbonates et en calcium. Les teneurs en sodium et en chlorures ne sont pas négligeables.

4.1.2.2 Analyses physicochimiques des eaux (hors micropolluants)

La charge en matières en suspension et la turbidité sont plutôt faibles sur le lac de Nantua, hormis dans le fond lors des campagnes 3 et 4 (13 NFU et 5 mg/l de MES en C3). La concentration en carbone organique dissous est faible sur les 4 campagnes : elle est comprise entre 1.7 et 2.4 mg/l. La DBO₅ est quantifiée dans tous les échantillons à des faibles teneurs. Les autres paramètres organiques (azote Kjeldahl, DCO) sont sous les seuils de quantification. L'ammonium est quantifié lors des trois dernières campagnes ; la concentration de 0.29 mg/l mesurée en juin, a été qualifiée d'incertaine par l'Agence de l'Eau lors de la validation annuelle des résultats.

Tableau 6 : Résultats des paramètres de physico-chimie classique sur eau

Lac de Nantua (01)		Unité	Code		14/03	/2022	01/06	/2022	19/08	/2022	17/10	/2022
Code pl	Code plan d'eau: V2515003		sandre	sandre LQ		fond	intégré	fond	intégré	fond	intégré	fond
	Carbone organique	mg(C)/L	1841	0,2	1,8	2	2	1,8	2,4	1,7	2	1,9
	DBO	mg(O2)/L	1313	0,5	2,0	0,5	1,1	0,8	0,7	0,8	0,7	1,1
	DCO	mg(O2)/L	1314	20	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Azote Kjeldahl	mg(N)/L	1319	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Ammonium	mg(NH4)/L	1335	0,01	<lq< td=""><td><lq< td=""><td><u>0,29</u></td><td>0,01</td><td>0,02</td><td>0,2</td><td><lq< td=""><td>0,29</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><u>0,29</u></td><td>0,01</td><td>0,02</td><td>0,2</td><td><lq< td=""><td>0,29</td></lq<></td></lq<>	<u>0,29</u>	0,01	0,02	0,2	<lq< td=""><td>0,29</td></lq<>	0,29
PC eau	Nitrates	mg(NO3)/L	1340	0,5	2,9	2,8	2,3	2,5	1,8	<lq< th=""><th>2,7</th><th><lq< th=""></lq<></th></lq<>	2,7	<lq< th=""></lq<>
PC eau	Nitrites	mg(NO2)/L	1339	0,01	<lq< td=""><td><lq< td=""><td>0,01</td><td>0,03</td><td>0,02</td><td>0,04</td><td>0,01</td><td>0,03</td></lq<></td></lq<>	<lq< td=""><td>0,01</td><td>0,03</td><td>0,02</td><td>0,04</td><td>0,01</td><td>0,03</td></lq<>	0,01	0,03	0,02	0,04	0,01	0,03
	Phosphates	mg(PO4)/L	1433	0,01	<lq< td=""><td>0,01</td><td><lq< td=""><td>0,02</td><td><lq< td=""><td>0,02</td><td><lq< td=""><td>0,09</td></lq<></td></lq<></td></lq<></td></lq<>	0,01	<lq< td=""><td>0,02</td><td><lq< td=""><td>0,02</td><td><lq< td=""><td>0,09</td></lq<></td></lq<></td></lq<>	0,02	<lq< td=""><td>0,02</td><td><lq< td=""><td>0,09</td></lq<></td></lq<>	0,02	<lq< td=""><td>0,09</td></lq<>	0,09
	Phosphore total	mg(P)/L	1350	0,01	<lq< td=""><td>0,006</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,034</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,006	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,034</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,034</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,034</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,034</td></lq<></td></lq<>	<lq< td=""><td>0,034</td></lq<>	0,034
	Silicates	mg(SiO2)/L	1342	0,05	2,80	3,40	1,80	4,60	1,60	7,60	2,50	7,40
	MeS	mg/L	1305	1	<lq< td=""><td><lq< td=""><td>2,5</td><td><lq< td=""><td>3,1</td><td>5,1</td><td><lq< td=""><td>2,9</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,5</td><td><lq< td=""><td>3,1</td><td>5,1</td><td><lq< td=""><td>2,9</td></lq<></td></lq<></td></lq<>	2,5	<lq< td=""><td>3,1</td><td>5,1</td><td><lq< td=""><td>2,9</td></lq<></td></lq<>	3,1	5,1	<lq< td=""><td>2,9</td></lq<>	2,9
	Turbidité	NFU	1295	0,1	1,9	1,5	3,7	1,7	4,2	13,0	1,8	13,0

Résultat incertain

Les analyses des fractions dissoutes ont été réalisées sur eau filtrée (COD, NH4, NO3, NO2, PO4, Si).

Globalement, les concentrations en nutriments disponibles sont moyennes pour l'azote et faibles pour les orthophosphates, particulièrement en fin d'hiver ([NO₃-]= 2.9 mg/l et [PO₄³-] \leq 0,01 mg/l). Le rapport N/P⁴ est donc très élevé (> 100) : le phosphore est limitant par rapport à l'azote. Les nitrates sont disponibles toute l'année en zone euphotique (1.8 à 2.9 mg/l). Les phosphates ne sont pas mesurés en zone trophogène, présents en quantité limitée et assimilés par la biomasse végétale. Les matières phosphorées sont quantifiées dans le fond lors des 4 campagnes : 10 à 90 µg/l de PO₄³- et 6 à 34 µg/l de Ptot (C1 et C4 uniquement). Ces valeurs restent modérées, mais suggèrent un phénomène de relargage depuis les sédiments (C4).

Les concentrations en nitrites restent faibles, mais tout de même comprises entre 30 et 40 μ g/l dans les échantillons de fond des trois dernières campagnes, à relier également aux conditions anoxiques au fond du lac de Nantua.

La concentration en silicates est moyenne en fin d'hiver sur l'ensemble de la colonne d'eau (2.8 à 3.4 mg/l). Elle évolue ensuite significativement avec une diminution en zone euphotique car les silicates sont consommés par les diatomées (1.6 à 2.5 mg/l) et une augmentation au fond en rapport avec la dégradation des frustules de diatomées qui décantent dans le fond du lac (4.6 à 7.6 mg/l).

⁴ le rapport N/P est calculé à partir de [Nminéral]/ [P-PO₄³⁻] avec N minéral = [N-NO₃-]+[N-NO₂-]+[N-NH₄+] sur la campagne de fin d'hiver.

4.1.2.3 Micropolluants minéraux

Tableau 7 : Résultats d'analyses de métaux sur eau

La	Lac de Nantua (01)		Code	1,0	14/03	/2022	01/06	/2022	19/08	/2022	17/10/2022	
Code p	lan d'eau: V2515003	Unité	sandre	LQ	intégré	fond	intégré	fond	intégré	fond	intégré	fond
	Aluminium	μg(Al)/L	1370	2	7,4	<lq< th=""><th><lq< th=""><th><lq< th=""><th>41,5</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>41,5</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>41,5</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	41,5	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Antimoine	μg(Sb)/L	1376	0,5	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Argent	μg(Ag)/L	1368	0,01	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Arsenic	μg(As)/L	1369	0,05	0,24	0,21	0,23	0,18	0,31	0,24	0,23	0,27
	Baryum	μg(Ba)/L	1396	0,5	5,2	4,5	4,5	4,9	6,2	4,9	5,1	4,5
	Beryllium	μg(Be)/L	1377	0,01	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Bore	μg(B)/L	1362	10	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Cadmium	μg(Cd)/L	1388	0,01	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Chrome	μg(Cr)/L	1389	0,5	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Cobalt	μg(Co)/L	1379	0,05	0,05	<lq< th=""><th><lq< th=""><th>0,08</th><th><lq< th=""><th>0,08</th><th><lq< th=""><th>0,24</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,08</th><th><lq< th=""><th>0,08</th><th><lq< th=""><th>0,24</th></lq<></th></lq<></th></lq<>	0,08	<lq< th=""><th>0,08</th><th><lq< th=""><th>0,24</th></lq<></th></lq<>	0,08	<lq< th=""><th>0,24</th></lq<>	0,24
	Cuivre	μg(Cu)/L	1392	0,1	0,36	0,35	0,33	1,20	0,35	0,18	0,30	0,16
	Etain	μg(Sn)/L	1380	0,5	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Métaux	Fer	μg(Fe)/L	1393	1	23,5	4,3	3,7	6,5	34,1	27,3	3,5	63,3
Mét	Lithium	μg(Li)/L	1364	0,5	0,9	0,9	0,9	0,8	1,0	0,9	1,0	0,8
	Manganèse	μg(Mn)/L	1394	0,5	0,9	0,9	<lq< th=""><th>42</th><th>1,3</th><th>70,7</th><th><lq< th=""><th>122</th></lq<></th></lq<>	42	1,3	70,7	<lq< th=""><th>122</th></lq<>	122
	Mercure	μg(Hg)/L	1387	0,01	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Molybdène	μg(Mo)/L	1395	1	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Nickel	μg(Ni)/L	1386	0,5	<lq< th=""><th>0,6</th><th><lq< th=""><th>0,7</th><th><lq< th=""><th>0,6</th><th><lq< th=""><th>0,6</th></lq<></th></lq<></th></lq<></th></lq<>	0,6	<lq< th=""><th>0,7</th><th><lq< th=""><th>0,6</th><th><lq< th=""><th>0,6</th></lq<></th></lq<></th></lq<>	0,7	<lq< th=""><th>0,6</th><th><lq< th=""><th>0,6</th></lq<></th></lq<>	0,6	<lq< th=""><th>0,6</th></lq<>	0,6
	Plomb	μg(Pb)/L	1382	0,05	0,08	<lq< th=""><th><lq< th=""><th>0,13</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,13</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	0,13	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Sélénium	μg(Se)/L	1385	0,1	0,25	0,23	0,23	0,14	0,1	<lq< th=""><th>0,17</th><th>0,13</th></lq<>	0,17	0,13
	Tellure	μg(Te)/L	2559	0,5	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Thallium	μg(TI)/L	2555	0,01	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Titane	μg(Ti)/L	1373	0,5	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,6</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,6</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,6</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,6</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	0,6	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Uranium	μg(U)/L	1361	0,05	0,23	0,21	0,24	0,2	0,26	0,22	0,25	0,21
	Vanadium	μg(V)/L	1384	0,1	0,21	0,14	0,2	0,15	0,30	<lq< th=""><th>0,16</th><th><lq< th=""></lq<></th></lq<>	0,16	<lq< th=""></lq<>
	Zinc	μg(Zn)/L	1383	1	1,13	<lq< th=""><th><lq< th=""><th>1,23</th><th>1,74</th><th>1,00</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>1,23</th><th>1,74</th><th>1,00</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	1,23	1,74	1,00	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>

Les eaux de Nantua sont légèrement plus riches en micropolluants minéraux, par rapport à 2019 et 2016 :

- ✓ le baryum, l'uranium et le vanadium sont présents à des teneurs généralement faibles ;
- √ l'aluminium, le cobalt et le nickel sont ponctuellement quantifiés.

Les concentrations en fer et manganèse augmentent significativement dans les échantillons de fond des campagnes 3 et 4 : 27.3 et 63.3 μ g/l de fer et 70.7 et 122 μ g/l de manganèse. Cette charge en Fe et Mn atteste ainsi de conditions de désoxygénation entraînant un relargage de ces éléments depuis les sédiments.

Parmi les métaux lourds, on note la présence :

- ✓ d'arsenic dans les 8 échantillons, à des concentrations faibles (0.18 à 0.31 µg/l) ;
- ✓ de cuivre dans les 8 échantillons, à des concentrations faibles à modérées (0.2 à 1.2 µg/l) ;
- ✓ de zinc dans les échantillons des campagnes 1, 2 et 3 (1 à 2 µg/l).

Ces concentrations ne suggèrent pas de pollution particulière.

4.1.2.4 Micropolluants organiques

Le Tableau 8 indique les micropolluants organiques qui ont été quantifiés lors des campagnes de prélèvements. La liste de l'ensemble des substances analysées est fournie en Annexe I.

Tableau 8 : Résultats d'analyses de micropolluants organiques présents sur eau

Lac	de Nantua (01)		Code			/2022		/2022		3/2022	17/10	/2022
	n d'eau: V2515003	Unité	sandre	LQ	intégré	fond	intégré	fond	intégré	fond	intégré	fond
Antioxydant	4-tert-butylphénol	μg/L	2610	0,01	<lq< td=""><td>0,011</td><td><lq< td=""><td><lq< td=""><td><lq (0,02)<="" td=""><td><lq (0,02)<="" td=""><td><lq< td=""><td>0,016</td></lq<></td></lq></td></lq></td></lq<></td></lq<></td></lq<>	0,011	<lq< td=""><td><lq< td=""><td><lq (0,02)<="" td=""><td><lq (0,02)<="" td=""><td><lq< td=""><td>0,016</td></lq<></td></lq></td></lq></td></lq<></td></lq<>	<lq< td=""><td><lq (0,02)<="" td=""><td><lq (0,02)<="" td=""><td><lq< td=""><td>0,016</td></lq<></td></lq></td></lq></td></lq<>	<lq (0,02)<="" td=""><td><lq (0,02)<="" td=""><td><lq< td=""><td>0,016</td></lq<></td></lq></td></lq>	<lq (0,02)<="" td=""><td><lq< td=""><td>0,016</td></lq<></td></lq>	<lq< td=""><td>0,016</td></lq<>	0,016
Dérivé benzenique	N- Butylbenzenesulfonamide	μg/L	5299	0,1	<lq< td=""><td>0,137</td><td><lq< td=""><td>0,212</td><td><lq< td=""><td>0,377</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,137	<lq< td=""><td>0,212</td><td><lq< td=""><td>0,377</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	0,212	<lq< td=""><td>0,377</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	0,377	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Divers	Cyanures libres	μg(CN)/L	1084	0,2	0,38	0,32	0,33	0,22	0,47	0,50	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Fongicide	Propiconazole	μg/L	1257	0,01	0,005	0,009	<lq< td=""><td><lq< td=""><td>0,005</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,005</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	0,005	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
HAP	Naphtalène	μg/L	1517	0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,005</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,005</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,005</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,005</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	0,005	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Inhibiteur de corrosion	Tolyltriazole	μg/L	6660	0,01	0,029	0,019	0,025	0,029	0,009	0,017	0,016	0,021
Médicament	Acide salicylique	μg/L	5355	0,05	<lq< td=""><td><lq< td=""><td>0,09</td><td>0,09</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,09</td><td>0,09</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,09	0,09	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Médicament	Diclofenac	μg/L	5349	0,01	0,053	0,006	<lq (0,015)<="" td=""><td><lq (0,025)<="" td=""><td><lq< td=""><td><lq< td=""><td>0,006</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq></td></lq>	<lq (0,025)<="" td=""><td><lq< td=""><td><lq< td=""><td>0,006</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq>	<lq< td=""><td><lq< td=""><td>0,006</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,006</td><td><lq< td=""></lq<></td></lq<>	0,006	<lq< td=""></lq<>
Médicament	Irbesartan	μg/L	6535	0,01	<lq< td=""><td><lq< td=""><td>0,008</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,008</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,008	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Médicament	Metformine	μg/L	6755	0,01	0,128	0,122	0,087	0,078	0,069	0,052	0,058	0,047
Médicament	Paracetamol	μg/L	5354	0,03	0,247	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Médicament	Primidone	μg/L	7961	0,02	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,041</td><td>0,037</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,041</td><td>0,037</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,041</td><td>0,037</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,041</td><td>0,037</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,041</td><td>0,037</td></lq<></td></lq<>	<lq< td=""><td>0,041</td><td>0,037</td></lq<>	0,041	0,037
Médicament	Trimethoprime	μg/L	5357	0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,006</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,006</td></lq<></td></lq<>	<lq< td=""><td>0,006</td></lq<>	0,006
Musc synthétique pour parfums	Galaxolide	μg/L	6618	0,03	<lq< td=""><td><lq (0,05)<="" td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,028</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq></td></lq<>	<lq (0,05)<="" td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,028</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,028</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,028</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,028</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	0,028	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Organostannique	Monobuthylétain cation	μg/L	2542	0	0,013	<lq< td=""><td>0,063</td><td>0,068</td><td>0,100</td><td>0,210</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	0,063	0,068	0,100	0,210	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Organostannique	Tétraphénylétain	μg/L	5249	0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,013</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,013</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,013</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,013</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,013</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,013</td></lq<></td></lq<>	<lq< td=""><td>0,013</td></lq<>	0,013
Organostannique	Tributyletain cation	μg/L	2879	0	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,00025</td><td>0,0002</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,00025</td><td>0,0002</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,00025</td><td>0,0002</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,00025</td><td>0,0002</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,00025</td><td>0,0002</td></lq<></td></lq<>	<lq< td=""><td>0,00025</td><td>0,0002</td></lq<>	0,00025	0,0002
Organostannique	Dibutyletain cation	μg/L	7074	0	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,00040</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,00040</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,00040</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,00040</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	0,00040	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Organostannique	Dioctyletain cation	μg/L	7494	0	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,00330</td><td>0,00180</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,00330</td><td>0,00180</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,00330</td><td>0,00180</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,00330</td><td>0,00180</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,00330</td><td>0,00180</td></lq<></td></lq<>	<lq< td=""><td>0,00330</td><td>0,00180</td></lq<>	0,00330	0,00180
Plastifiant	Bisphenol S	μg/L	7594	0,02	0,07	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Plastifiant	Bisphénol-A	μg/L	2766	0,02	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,03</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,03</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,03</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,03</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	0,03	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Plastifiant	DEHP	μg/L	6616	0,2	0,54	<lq< td=""><td><lq< td=""><td>0,23</td><td><u>6,59</u></td><td>0,51</td><td>1,38</td><td><lq (0,4)<="" td=""></lq></td></lq<></td></lq<>	<lq< td=""><td>0,23</td><td><u>6,59</u></td><td>0,51</td><td>1,38</td><td><lq (0,4)<="" td=""></lq></td></lq<>	0,23	<u>6,59</u>	0,51	1,38	<lq (0,4)<="" td=""></lq>
Plastifiant	n-Butyl Phtalate	μg/L	1462	0,05	<lq (0,125)<="" td=""><td><lq< td=""><td>0,06</td><td>0,06</td><td><lq< td=""><td><lq< td=""><td>0,18</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq>	<lq< td=""><td>0,06</td><td>0,06</td><td><lq< td=""><td><lq< td=""><td>0,18</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	0,06	0,06	<lq< td=""><td><lq< td=""><td>0,18</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,18</td><td><lq< td=""></lq<></td></lq<>	0,18	<lq< td=""></lq<>
Sels	Perchlorate	μg/L	6219	0,1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,2</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,2</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,2</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,2</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	0,2	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Stimulant	1,7-Dimethylxanthine	μg/L	6751	0,02	0,106	0,022	<lq (0,045)<="" td=""><td><lq (0,044)<="" td=""><td>0,093</td><td><lq< td=""><td>0,074</td><td>0,093</td></lq<></td></lq></td></lq>	<lq (0,044)<="" td=""><td>0,093</td><td><lq< td=""><td>0,074</td><td>0,093</td></lq<></td></lq>	0,093	<lq< td=""><td>0,074</td><td>0,093</td></lq<>	0,074	0,093
Stimulants	Cafeine	μg/L	6519	0,01	<lq (0,171)<="" td=""><td><lq (0,157)<="" td=""><td><lq (0,1)<="" td=""><td><lq (0,08)<="" td=""><td>0,271</td><td><lq (0,045)<="" td=""><td><lq (0,085)<="" td=""><td>0,105</td></lq></td></lq></td></lq></td></lq></td></lq></td></lq>	<lq (0,157)<="" td=""><td><lq (0,1)<="" td=""><td><lq (0,08)<="" td=""><td>0,271</td><td><lq (0,045)<="" td=""><td><lq (0,085)<="" td=""><td>0,105</td></lq></td></lq></td></lq></td></lq></td></lq>	<lq (0,1)<="" td=""><td><lq (0,08)<="" td=""><td>0,271</td><td><lq (0,045)<="" td=""><td><lq (0,085)<="" td=""><td>0,105</td></lq></td></lq></td></lq></td></lq>	<lq (0,08)<="" td=""><td>0,271</td><td><lq (0,045)<="" td=""><td><lq (0,085)<="" td=""><td>0,105</td></lq></td></lq></td></lq>	0,271	<lq (0,045)<="" td=""><td><lq (0,085)<="" td=""><td>0,105</td></lq></td></lq>	<lq (0,085)<="" td=""><td>0,105</td></lq>	0,105
Stimulants	Cotinine	μg/L	6520	0,01	0,008	<lq< td=""><td>0,007</td><td>0,018</td><td>0,074</td><td>0,005</td><td>0,006</td><td>0,007</td></lq<>	0,007	0,018	0,074	0,005	0,006	0,007
Stimulants	Nicotine	μg/L	5657	0,02	0,069	<lq< td=""><td>0,062</td><td>0,882</td><td>0,738</td><td><lq< td=""><td>0,136</td><td>0,081</td></lq<></td></lq<>	0,062	0,882	0,738	<lq< td=""><td>0,136</td><td>0,081</td></lq<>	0,136	0,081

Réhausse temporaire de la LQ de certains paramètres, suite à un problème analytique

Pour plusieurs paramètres, la limite de quantification varie de manière importante entre les différentes campagnes réalisées en 2022. Le laboratoire a rencontré des problèmes analytiques (interférences environnementales, pollution temporaire pour certains des paramètres), ce qui l'a conduit à **augmenter** les limites de quantification d'un certain nombre de composés.

28 micropolluants organiques ont été détectés dans les eaux du lac de Nantua en 2022. Parmi eux, on recense plusieurs substances de manière récurrente :

- ✓ la Metformine est mesurée dans tous les échantillons à des concentrations comprises entre 0.047 et 0.128 µg/l. Il s'agit d'une substance médicamenteuse, analysée dans les eaux depuis 2018. C'est un antidiabétique oral appartenant à la famille des biguanides qui a été retrouvé dans de nombreux plans d'eau des bassins RMC ;
- ✓ le Tolyltriazole, un inhibiteur de corrosion, est retrouvé dans tous les échantillons entre 9 et
 29 ng/l;
- ✓ Trois stimulants d'origine naturelle végétale (traceurs de pollutions domestiques): la caféine, la cotinine (métabolite de la nicotine) et la nicotine. Ils sont mesurés à faible teneur dans tous les échantillons (en fonction des limites de quantifications réhaussées ou non). Les résultats obtenus en caféine et nicotine sont globalement à considérer avec précaution ; de

récents travaux scientifiques⁵ mettent en évidence un fort risque de contamination des échantillons pour ces paramètres.

Quatre composés plastifiants sont également retrouvés :

- ✓ le Bisphénol A et le Bisphénol S, qui sont des perturbateurs endocriniens retrouvés dans les emballages alimentaires ou non alimentaires. Ils sont quantifiés dans les échantillons intégrés, respectivement en C3 (0.03 μg/l) et C1 (0.07 μg/l).
- ✓ le Di(2-ethylhexyl)phtalate (DEHP) substance permettant d'augmenter la flexibilité des plastiques, est quantifié dans la quasi-totalité des campagnes (0.2 à 1.4 μg/l). Un résultat a cependant été qualifié d'incertain par l'Agence de l'Eau, à la suite de la validation annuelle des résultats (6.59 μg/l en zone euphotique de C3). Une pollution temporaire de DEHP a touché le laboratoire d'analyses au cours de l'année 2022 et a entraîné une réhausse de LQ pour ce paramètre sur certaines campagnes. Les valeurs mesurées en DEHP en 2022 sont donc globalement à considérer avec précaution ;
- le n-butylPhtalate dans 3 échantillons (C2 intégré et fond, C4 intégré) à faible teneur (0.06 à 0.18 μg/l).

On rappelle que le lac de Nantua se situe au cœur du secteur de plasturgie d'Oyonnax (la « Plastics Valley »). L'origine de ces composés est très probablement à relier à ces activités industrielles utilisant des plastifiants.

Les cyanures libres sont quantifiés lors des trois premières campagnes (entre 0.2 et 0.5 μg/l).

S.T.E. - juin 23- Page 35 sur 78

⁵ N. GUIGUES, B. LEPOT – Bassin Rhône Méditerranée : Evaluation de l'incertitude de mesure, incluant la contribution de l'échantillonnage, et influence de la température et du délai de transport de l'échantillon sur l'incertitude de mesure – Rapport Aquaref 2022 – 51 pages.

4.1.3 ANALYSES DES SEDIMENTS

4.1.3.1 Analyses physicochimiques des sédiments (hors micropolluants)

Le Tableau 9 fournit la synthèse de l'analyse granulométrique menée sur les sédiments prélevés.

Tableau 9 : Synthèse granulométrique sur le sédiment du point de plus grande profondeur

Lac de Nantua (01)	Unité	Code	17/10/2022
Code plan d'eau: V03-4003	Office	sandre	17/10/2022
< 20 μm	% MS	6228	66,3
20 à 63 μm	% MS	3054	25,6
63 à 150 μm	% MS	7042	6,6
150 à 200 μm	% MS	7043	1,3
> 200 µm	% MS	7044	0,2

Il s'agit de sédiments très fins, de nature limono-vaseuse avec 98.5% de particules comprises entre de 0 à 150 μ m. Quelques débris grossiers sont observés.

Les analyses de physico-chimie classique menées sur la fraction solide et sur l'eau interstitielle du sédiment sont rapportées au Tableau 10.

Tableau 10 : Analyse de sédiments

rableau 10 : Allalyse de sedifficits										
Physico-chimie du sédiment										
Lac de Nantua (01)	Unité	Code	LQ	17/10/2022						
Code plan d'eau: V03-4003	Office	sandre	LQ	17/10/2022						
Matière sèche à 105°C	%	1307	0,1	49						
Matière Sèche Minérale (M.S.M)	% MS	5539		92						
Perte au feu à 550°C	% MS	6578	0,1	8,0						
Carbone organique	mg/(kg MS)	1841	1000	29100						
Azote Kjeldahl	mg/(kg MS)	1319	200	3513						
Phosphore total	mg/(kg MS)	1350	2	513						
Physico-chim	ie du sédiment	: Eau intersti	tielle							
Ammonium	mg(NH4)/L	1335	0,5	1,6						
Phosphates	mg(PO4)/L	1433	1,5	<lq< td=""></lq<>						
Phosphore total	mg(P)/L	1350	0,1	0,48						

Dans les sédiments, la teneur en matière organique est moyenne avec 8.0 % de perte au feu. La concentration en azote organique est également moyenne (environ 3.51 g/kg). Le rapport C/N est de 8.3 : il indique une prédominance de matière algale récemment déposée dont une fraction sera recyclée en tant qu'azote minéral. La concentration en phosphore est considérée comme faible à moyenne, proche de 0.51 g/kg MS.

L'eau interstitielle contient les minéraux facilement mobilisables dans les sédiments. La concentration en ammonium (1.6 mg/l) reste assez faible. En revanche, le phosphore total affiche des teneurs moyennes dans l'eau interstitielle (0.48 mg/l). Cela suggère un relargage de cet élément à l'interface eau/sédiment du fait des conditions anoxiques régnant en profondeur. Cette hypothèse est confirmée par les analyses physico-chimiques des eaux du fond (charge en P, Mn et Fe).

4.1.3.2 Micropolluants minéraux

Ils ont été dosés sur la fraction solide du sédiment.

Tableau 11 : Résultats d'analyses de micropolluants minéraux sur sédiment

Sédiment : micropolluants minéraux								
Lac de Nantua (01) Code plan d'eau: V03-4003	Unité	Code sandre	LQ	17/10/2022				
Aluminium	mg(AI)/kg MS	1370	5	11800				
Antimoine	mg(Sb)/kg MS	1376	0,2	1				
Argent	mg(Ag)/kg MS	1368	0,1	0,1				
Arsenic	mg(As)/kg MS	1369	0,2	6,1				
Baryum	mg(Ba)/kg MS	1396	0,4	19,4				
Beryllium	mg(Be)/kg MS	1377	0,2	0,7				
Bore	mg(B)/kg MS	1362	1	32,4				
Cadmium	mg(Cd)/kg MS	1388	0,1	0,4				
Chrome	mg(Cr)/kg MS	1389	0,2	43,3				
Cobalt	mg(Co)/kg MS	1379	0,2	3,7				
Cuivre	mg(Cu)/kg MS	1392	0,2	16,1				
Etain	mg(Sn)/kg MS	1380	0,2	3,2				
Fer	mg(Fe)/kg MS	1393	5	12600				
Lithium	mg(Li)/kg MS	1364	0,2	19,6				
Manganèse	mg(Mn)/kg MS	1394	0,4	148				
Mercure	mg(Hg)/kg MS	1387	0,01	0,07				
Molybdène	mg(Mo)/kg MS	1395	0,2	1				
Nickel	mg(Ni)/kg MS	1386	0,2	18,9				
Plomb	mg(Pb)/kg MS	1382	0,2	20,4				
Sélénium	mg(Se)/kg MS	1385	0,2	1,6				
Tellure	mg(Te)/kg MS	2559	0,2	<lq< td=""></lq<>				
Thallium	mg(Th)/kg MS	2555	0,2	0,3				
Titane	mg(Ti)/kg MS	1373	1	1120				
Uranium	mg(U)/kg MS	1361	0,2	1,2				
Vanadium	mg(V)/kg MS	1384	0,2	52,1				
Zinc	mg(Zn)/kg MS	1383	0,4	127,00				

Les concentrations en micropolluants minéraux sont faibles dans les sédiments du lac de Nantua et ne suggèrent donc pas de pollution particulière de ce compartiment. Parmi les métaux lourds, la concentration observée en zinc est toutefois non négligeable.

4.1.3.3 Micropolluants organiques

Le Tableau 12 indique les micropolluants organiques qui ont été quantifiés dans les sédiments lors de la campagne de prélèvements. La liste de l'ensemble des substances analysées est fournie en Annexe II.

Tableau 12 : Résultats d'analyses de micropolluants organiques présents sur sédiment

Sédiment : micropolluants organiques mis en évidence								
Lac de Nantua (01)	1 lm : 4 4	Code	10	47/40/2022				
Code plan d'eau: V03-4003	Unité	sandre	LQ	17/10/2022				
Acénaphtylène	μg/(kg MS)	1622	10	24				
Anthanthrene	μg/(kg MS)	7102	10	27,1				
Anthracène	μg/(kg MS)	1458	10	28				
Anthraquinone	μg/(kg MS)	2013	4	21				
BDE209	μg/(kg MS)	1815	5	5				
Benzo (a) Anthracène	μg/(kg MS)	1082	10	67				
Benzo (a) Pyrène	μg/(kg MS)	1115	10	96				
Benzo (b) Fluoranthène	μg/(kg MS)	1116	10	134				
Benzo (ghi) Pérylène	μg/(kg MS)	1118	10	93				
Benzo (k) Fluoranthène	μg/(kg MS)	1117	10	53				
Benzo(e)pyrène	μg/(kg MS)	1460	10	88,3				
Chrysène	μg/(kg MS)	1476	10	70				
DEHP	μg/(kg MS)	6616	50	322				
Dibenzo (ah) Anthracène	μg/(kg MS)	1621	10	13				
Dibenzo(a,c)anthracene	μg/(kg MS)	7105	10	12,6				
Fluoranthène	μg/(kg MS)	1191	10	133				
Indéno(1,2,3-cd)pyrène	μg/(kg MS)	1204	10	74				
Méthyl-2-Fluoranthène	μg/(kg MS)	1619	10	18				
Octocrylene	μg/(kg MS)	6686	5	12				
PCB 101	μg/(kg MS)	1242	1	1				
PCB 118	μg/(kg MS)	1243	1	1				
PCB 138	μg/(kg MS)	1244	1	1				
PCB 149	μg/(kg MS)	1885	1	1				
PCB 153	μg/(kg MS)	1245	1	1				
PCB 180	μg/(kg MS)	1246	1	1				
Pérylène	μg/(kg MS)	1620	10	76,1				
Phénanthrène	μg/(kg MS)	1524	10	52				
Pyrène	μg/(kg MS)	1537	10	118				
Triphenylene	μg/(kg MS)	7124	10	21,7				

Divers hydrocarbures et plusieurs PCB ont été quantifiés dans les sédiments du lac de Nantua :

- ✓ 20 hydrocarbures aromatiques polycycliques (HAP) ont été recensés pour une concentration totale moyenne de 1220 µg/kg MS;
- √ 6 substances appartenant aux PCB (polychlorobiphényles) ont été quantifiées pour une concentration totale, faible, de 6 μg/kg.

Ces concentrations sont comparables à celles mesurées lors du précédent suivi de 2019, ainsi que celui de 2016.

On retrouve également d'autres molécules dans les sédiments, dont :

- ✓ le DEHP, un indicateur plastifiant, à la concentration modérée de 322 μg/kg (similaire à 2019);
- ✓ des traces de BDE209, un composé de la famille des polybromodiphényléthers.

4.2 Phytoplancton

4.2.1 PRELEVEMENTS INTEGRES

Sur le lac de Nantua, la zone euphotique et la transparence mesurées sont représentées par le graphique de la Figure 13. La transparence est plus faible lors des deux campagnes estivales (3.1 et 4.5 m). Elle est de 6.5 m et 8.8 m, respectivement en mars et octobre.

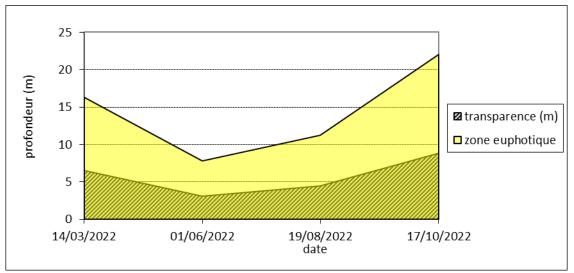


Figure 13: Evolution de la transparence et de la zone euphotique lors des 4 campagnes

Les échantillons destinés à la détermination du phytoplancton et de la chlorophylle *a,* sont constitués d'un prélèvement intégré sur la zone euphotique (équivalant à 2,5 fois la transparence lors de la campagne). Les échantillons de zone euphotique concernent une colonne d'eau qui augmente au fil de la saison entre 7.8 m en juin et 22 m en octobre. Les concentrations en chlorophylle *a* et en phéopigments sont présentées dans le tableau suivant.

Tableau 13 : Analyse de la chlorophylle a

Lac de Nantua (01)		l laitá	Codo candro	10	14/03/2022	01/06/2022	19/08/2022	17/10/2022
Code plan d'eau: V2515003		Unité Code sandre LQ		LQ	intégré	intégré	intégré	intégré
	Chlorophylle a	μg/L	1439	1	1	2	1	2
indices chlorophylliens	Phéopigments	μg/L	1436	1	<lq< td=""><td>1</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	1	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Transparence	m	1332		6,5	3,1	4,5	8,8

Les concentrations en pigments chlorophylliens sont faibles dans le lac de Nantua (1 à 2 μ g/l). Cela traduit une faible production primaire dans le plan d'eau. La moyenne estivale de concentration en chlorophylle a est évaluée à 1.7 μ g/l. La concentration en phéopigments reste faible toute l'année, elle est \leq 1 μ g/l. L'activité biologique est réduite dans ce plan d'eau.

Les profils de chlorophylle réalisés à l'aide de la sonde indiquait des teneurs en chlorophylle a un peu plus élevées. On notera que le pic de chlorophylle enregistré le 19/08 (à -12 m) n'est pas inclut dans l'échantillon intégré (0 à 11.25 m).

4.2.2 LISTES FLORISTIQUES

Tableau 14: Liste taxonomique du phytoplancton (en nombre de cellules/ml)

	eau 14 : Liste taxonomique du phy	Code					
Embranchement	Nom taxon	Sandre	Cf.	14-mars	01-juin	19-août	17-oct
	Asterionella formosa	4860		6,7		41,0	39,0
	Diatomées centriques ind < 10 μm	6598					2,4
	Diatomées centriques ind > 10 μm	6598		6,8	11,2	2,3	
BACILLARIOPHYTA	Pantocsekiella costei	42844			283,3	173,1	
	Fragilaria	9533		7,6			
	Ulnaria	9549		1,4			
	Fragilaria crotonensis	6666					12,4
CHAROPHYTA	Elakatothrix gelatinosa	5664			3,7	18,2	
	Cosmarium abbreviatum	5317		0,5	7,5		
	Chlamydomonas 10 - 20 μm	6016				54,7	
	Chlorella vulgaris	5933	-			77,4	
	Coenochloris pyrenoidosa	5620	<u> </u>			45,6	29,3
	Mychonastes homosphaera	64252				0.4	29,3
CHLOROPHYTA	Lanceola spatulifera	5720	<u> </u>	4225.2		9,1	9,8
	Choricystis minor	10245		4325,3			
	Choricystis	20074	Cf.		3,7	40.0	
	Lemmermannia triangularis	46583				18,2	
	Crucigeniella irregularis	5637					39,0
	Chlorococcales ind	4746	1				29,3
	Cryptomonas	6269		6,8		22.0	2,4
	Cryptomonas marssonii	6273	1	6,8	3,7	22,8	39,0
CRYPTOPHYTA	Cryptomonas ovata	6274	1	88,8	3,7	27,3	58,6
	Plagioselmis nannoplanctica	9634	1	505,6	160,3	309,8	302,6
	Cryptomonas curvata	6270	C.	20,5			0,5
	Plagioselmis lacustris	9633	Cf.	34,2	42254.0	10000	
	Aphanocapsa holsatica	6312			12254,8	1066,0	205.0
	Anathece minutissima	39076		7.0		136,7	205,0
CVANIODACTERIA	Aphanizomenon	1103	1	7,6			7,2
	Planktothrix agardhii	6430 40176		241,4	260.0		8043,5
CYANOBACTERIA	Anathece clathrata	6313			260,9		48,8 109,8
	Aphanocapsa incerta	-					
	Microcystis smithii Eucapsis starmachii	9661 33635	Cf.				102,5 2196,3
	Anathece bachmannii	40174	Ci.				1264,1
EUGLENOZOA	Trachelomonas	6527					2,4
НАРТОРНУТА	Chrysochromulina parva	31903		478,3	26,1		205,0
HALIOTHIA	Ceratium hirundinella	6553	Ì	470,3	4,2		1,4
	Gymnodiniales ind < 20 μm	5011		54,7	7,5	2,3	-,.
	Gyrodinium helveticum	42326		0,5	0,6	2,0	1,9
MIOZOA	Parvodinium umbonatum	42325		9,1	0,0	2,3	2,3
	Gymnodinium	4925		82,0	3,7		2,4
	Peridiniales ind 20 - 50 μm	4921			3,7		
	Dinophycées ind	4900			-,	9,1	
	Dinobryon crenulatum	9577				9,1	
	Dinobryon sociale var. americanum	6137				,	14,6
	Kephyrion	6150					24,4
	Kephyrion littorale	6151			7,5		<u> </u>
	Mallomonas	6209			7,5	31,9	
	Ochromonas	6158		170,8	14,9		34,2
	Pseudopedinella	4764		41,0	14,9		
	Stomatocyste de Chrysophycées	24943			18,6	2,3	2,4
OCHROPHYTA	Dinobryon divergens	6130		6,8	875,9	91,1	39,0
	Pseudokephyrion entzii	6164			3,7	18,2	
	Dinobryon bavaricum	6127			3,7		
	Chromulina	6114		88,8	7,5		9,8
	Trachydiscus	20281				9,1	
	Kephyrion moniliferum	34195					19,5
	Chrysophycées ind	1160		20,5			24,4
	Kephyrion spirale	20175			7,5		
	Chrysocapsa	6119	Cf.				34,2
tres	Flagellés indéterminés < 5 μm			13,7	7,5	2,3	9,8
	Nombre de taxons			25	27	24	36

Tableau 15 : Liste taxonomique du phytoplancton (en mm³ /l)

	Tableau 15 : Liste taxonomi	Code			- ,		
Embranchement	Nom taxon	Sandre	Cf.	14-mars	01-juin	19-août	17-oct
BACILLARIOPHYTA	Asterionella formosa	4860		0,00174		0,01066	0,01015
	Diatomées centriques ind < 10 μm	6598					0,00027
	Diatomées centriques ind > 10 μm	6598		0,00367	0,00600	0,00122	
	Pantocsekiella costei	42844			0,07223	0,04414	
	Fragilaria	9533		0,00229			
	Ulnaria	9549		0,00186			
	Fragilaria crotonensis	6666					0,00372
CHAROPHYTA	Elakatothrix gelatinosa	5664			0,00071	0,00348	
	Cosmarium abbreviatum	5317		0,00167	0,02609		
CHLOROPHYTA	Chlamydomonas 10 - 20 μm	6016				0,02405	
	Chlorella vulgaris	5933				0,00774	
	Coenochloris pyrenoidosa	5620				0,00396	0,00255
	Mychonastes homosphaera	64252					0,00024
	Lanceola spatulifera	5720		0.02002		0,00014	0,00283
	Choricystis minor	10245	C.C	0,03893	0.00042		
	Choricystis	20074	Cf.		0,00012	0.00110	
	Lemmermannia triangularis	46583				0,00118	0.00004
	Crucigeniella irregularis	5637					0,00691
COVETO DI IVTA	Chlorococcales ind	4746		0.01211			0,00085
CRYPTOPHYTA	Cryptomonas	6269		0,01211	0.00447	0.02722	0,00432
	Cryptomonas marssonii	6273		0,00820	0,00447	0,02733	0,04686
	Cryptomonas ovata	6274		0,18601	0,00780	0,05723	0,12264
	Plagioselmis nannoplanctica	9634		0,03540	0,01122	0,02168	0,02118
	Cryptomonas curvata	6270	Cf.	0,05494 0,00683			0,00128
CVANODACTEDIA	Plagioselmis lacustris	9633	CI.	0,00683	0.01225	0.00107	
CYANOBACTERIA	Aphanocapsa holsatica Anathece minutissima	6312 39076			0,01225	0,00107 0,00014	0,00020
		1103		0,00055		0,00014	0,00020
	Aphanizomenon Planktothrix agardhii	6430		0,00033		<u> </u>	0,48261
	Anathece clathrata	40176		0,01448	0,00052		0,48201
	Aphanocapsa incerta	6313			0,00032		0,00010
	Microcystis smithii	9661					0,00564
	Eucapsis starmachii	33635	Cf.				0,00304
	Anathece bachmannii	40174	CI.				0,00051
EUGLENOZOA	Trachelomonas	6527					0,00072
НАРТОРНҮТА	Chrysochromulina parva	31903		0,01387	0,00076		0,00594
MIOZOA	Ceratium hirundinella	6553		0,01007	0,16769		0,05724
	Gymnodiniales ind < 20 μm	5011		0,02351	0,00321	0,00098	-,
	Gyrodinium helveticum	42326		0,00813	0,01021	.,	0,03253
	Parvodinium umbonatum	42325		0,08024		0,02017	-,
	Gymnodinium	4925		0,10660	0,00485		0,00317
	Peridiniales ind 20 - 50 μm	4921			0,01305		
	Dinophycées ind	4900				0,01184	
OCHROPHYTA	Dinobryon crenulatum	9577				0,00187	
	Dinobryon sociale var. americanum	6137					0,00529
	Kephyrion	6150					0,00154
	Kephyrion littorale	6151			0,00072		
	Mallomonas	6209			0,01992	0,08520	
	Ochromonas	6158		0,01708	0,00149		0,00342
	Pseudopedinella	4764		0,01738	0,00632		
	Stomatocyste de Chrysophycées	24943			0,00280	0,00034	0,00037
	Dinobryon divergens	6130		0,00143	0,18306	0,01904	0,00816
	Pseudokephyrion entzii	6164			0,00007	0,00035	
	Dinobryon bavaricum	6127			0,00079		
	Chromulina	6114		0,01253	0,00105		0,00138
	Trachydiscus	20281				0,00056	
	Kephyrion moniliferum	34195					0,00039
·	Chrysophycées ind	1160		0,00215			0,00256
	Kephyrion spirale	20175			0,00047		
	Chrysocapsa	6119	Cf.				0,00724
	Flagellés indéterminés < 5 μm			0,00026	0,00014	0,00004	0,00019
<u></u>							3.0
	Nombre de taxons			25	27	24	36

4.2.3 EVOLUTIONS SAISONNIERES DES GROUPEMENTS PHYTOPLANCTONIQUES

Les graphiques suivants présentent la répartition du phytoplancton (relative) par groupe algal à partir des résultats exprimés en abondance cellulaire d'une part, et à partir des biovolumes (mm³/l), d'autre part. Sur chacun des graphiques, la courbe représente l'abondance totale par échantillon (Figure 14), et le biovolume de l'échantillon (Figure 15).

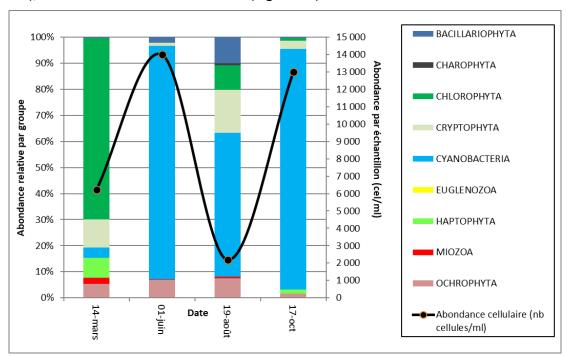


Figure 14: Répartition du phytoplancton sur le lac de Nantua à partir des abondances (cellules/ml)

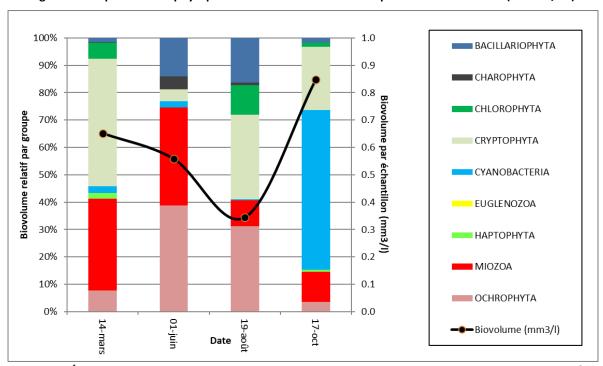


Figure 15 : Évolution saisonnière des biovolumes des principaux groupes algaux de phytoplancton (mm³/l)

La productivité phytoplanctonique est faible dans le lac de Nantua avec des valeurs d'abondance qui varient entre 2 180 cellules/ml en août et 14 008 cellules/ml en juin. Les valeurs les plus élevées sont dues à la forte abondance de cyanobactéries coloniales ou filamenteuses constituées par des nombreuses cellules de petite taille, donc avec un faible biovolume. La biomasse algale est toujours faible avec des biovolumes allant de 0.344 mm³/l en août à 0.849 mm³/l en octobre. Selon le critère

de Willén (2000) ces valeurs correspondent à celles d'un milieu mésotrophe (0.5-1.5 mm 3 /l). De manière générale, la richesse taxonomique est faible à modérée avec un minimum de 24 taxons en août et un maximum de 36 taxons en octobre. Les concentrations de chlorophylle a moyenne (1.5 μ g/l) et maximale (2 μ g/l) correspondent à un niveau oligotrophe (OCDE, 1982), ce qui confirme la faible productivité algale de ce lac. Ces résultats sont à nuancer car les développements algaux peuvent s'avérer assez profond dans le lac de Nantua (10-15 m) et ne pas être pris en compte dans les échantillons en zone euphotique, notamment le 17/08/22.

L'évolution saisonnière du phytoplancton peut être résumée de la manière suivante :

- Lors de la première campagne à la fin de l'hiver (mi-mars), la productivité algale est relativement faible avec une abondance de 6 226 cellules/ml et un biovolume de 0.652 mm³/l. Le peuplement phytoplanctonique est dominé par des taxons de petite taille, dont la chlorophyte *Choricystis minor*, qui représente à elle seule 69% de l'abondance cellulaire totale. Celle-ci est suivie de loin par des flagellés, dont la cryptophyte *Plagioselmis nannoplanctica* et l'haptophyte *Chrysochromulina parva* (représentant chacune 8% de l'abondance totale). En termes de biovolume, la communauté est également dominée par des flagellés, dont les cryptophytes *Cryptomonas ovata* et *C. curvata* ainsi que les dinoflagellés *Gymnodinium* sp. et *Parvodinium umbonatum* (respectivement 29%, 8%, 16% et 12% du biovolume total). A l'exception de *Choricystis minor*, souvent associée aux sols humides (Komárek & Fott, 1983), les autres taxons sont typiques de la saison printanière ou adaptés à des milieux oligo- à eutrophes (Padisák et al. 2009 ; Moestrup et Calado, 2018).
- ✓ Lors de la deuxième campagne (début juin), le biovolume reste stable (0.558 mm³/l) mais l'abondance est la plus élevée du suivi (14 008 cellules/ml), due à la dominance de la cyanobactérie Aphanocapsa holsatica. Cette cyanobactérie coloniale assez commune dans les lacs eutrophes (Komárek et Anagnostidis, 1999), représente 87% de l'abondance cellulaire totale mais son biovolume est insignifiant étant donné la petite taille des cellules constituant les colonies. Celle-ci est suivie de la chrysophyte Dinobryon divergens, laquelle est peu abondante (6%) mais assez représentative en termes de biovolume (33%). Cette dernière est accompagnée du dinoflagellé Ceratium hirundinella (30% du biovolume total). La dominance de flagellés mixotrophes comme D. divergens et C. hirundinella témoigne d'une limitation de nutriments caractéristique de la saison estivale.
- ✓ La troisième campagne (mi-août) est marquée par une forte diminution de la production algale (2180 cellules/ml et 0.344 mm3/l), à nuancer toutefois avec le développement phytoplanctonique profond, non pris en compte. Le peuplement est toujours dominé par *Aphanocapsa holsatica* (49% de l'abondance), suivie de *Plagioselmis nannoplanctica* et *Pantocsekiella costei* (respectivement 14% et 8% de l'abondance totale). Cette dernière est également représentative en termes de biovolume (13%) avec des flagellées, dont la chrysophyte *Mallomonas* et la cryptophyte *Cryptomonas ovata* (respectivement 25% et 17% du biovolume total). A l'exception de *Mallomonas*, plus adaptée à une colonne d'eau stable et limitée en nutriments (Reynolds, 2006), les autres taxons sont tolérants à des niveaux trophiques plus élevés (Komárek et Anagnostidis, 1999 ; Bey et Ector, 2013).
- ✓ En automne (mi-octobre), l'abondance est plus importante que celle de la saison précédente (12 987 cellules/ml) due à la présence de colonies et de filaments constitués par des nombreuses cellules de petite taille, ce qui explique le faible biovolume (0.848 mm3/l). Le peuplement est assez diversifié (36 taxons) et toujours dominé par des cyanobactéries (92% de l'abondance et 58% du biovolume) mais la composition taxonomique est différente. L'espèce filamenteuse Planktothrix agardhii, laquelle est potentiellement toxinogène (Anses, 2020), ainsi que des formes coloniales Eucapsis cf. starmachii et Anathece

bachmannii (respectivement 62%, 17% et 10% de l'abondance totale) dominent le cortège. La cyanobactérie *P. agardhii* domine également en termes de biovolume (57%), suivie de *Cryptomonas ovata* (14%) et *Ceratium hirundinella* (7%). Tous ces taxons sont typiques de milieux riches en nutriments (Komárek & Anagnostidis, 1999; Leitao et Couté, 2005; Moestrup et Calado, 2018).

La dominance de taxons typiques des milieux avec un niveau trophique élevé, contraste avec les faibles concentrations de chlorophylle a et de nutriments. Ceci pourrait être expliquée par un apport de sites avoisinants ou éventuellement par le relargage (même en faible quantité) de nutriments à partir des sédiments. Compte tenu des concentrations de phosphore très faibles (voire indétectables) dans la colonne d'eau, il est possible que la teneur en nutriments ne soit pas suffisante pour favoriser un développement plus important de ces taxons, ce qui expliquerait leur faible biovolume.

Les cyanobactéries sont très abondantes dans le lac de Nantua mais leur biovolume ne dépasse pas 1 mm³/l et la concentration de chlorophylle est inférieure à 10 μ g/l (note d'information N°DGS/EA4/EA3/2021/766). Parmi tous les taxons de répertoriés, plus de la moitié sont potentiellement toxinogènes (Anses, 2020) mais ils ne sont pas représentatifs en termes de biovolume (< 0.5 mm³/l). Leur présence ne représente donc pas de risque lié aux usages de ce plan d'eau.

4.2.4 INDICE PHYTOPLANCTONIQUE IPLAC

L'indice phytoplancton lacustre ou IPLAC est calculé à partir du SEEE (v1.1.0 en date du 23/05/2023). Il s'appuie sur la moyenne pondérée de 2 métriques : l'une basée sur les teneurs en chlorophylle a $(\mu g/l)$ (MBA ou métrique de biomasse algale totale), et l'autre sur la présence d'espèces indicatrices quantifiée en biovolume (mm³/l) (MCS ou métrique de composition spécifique). Plus la valeur d'une métrique tend vers 1, plus la qualité est proche de la valeur prédite en conditions de référence. Les 5 classes d'état sont fournies sur la figure 4 :

Les classes d'état pour les deux métriques et l'IPLAC sont données pour le lac de Nantua dans le tableau suivant.

Code Lac	Nom Lac	année	MBA	MCS	IPLAC	Classe IPLAC
V2515003	Nantua	2022	0,851	0,549	0,640	В

Selon le résultat de l'IPLAC, les eaux de ce lac sont de bonne qualité (IPLAC: 0.640). Ces observations sont confortées par la valeur moyenne de biovolume algal (0.601 mm³/l) qui correspond à celle d'un milieu mésotrophe (Willén, 2000). Bien que sur les 61 taxons répertoriés, seulement 16 aient une côte IPLAC, la note de la Métrique de Composition Spécifique (MCS= 0.549) semble cohérente avec la composition phytoplanctonique, caractérisée par des taxons typiques des milieux moyennement riches à riches en nutriments. La note de productivité est très élevée (MBA: 0.851). La dominance de groupes algaux inféodés aux milieux avec des niveaux trophiques plus élevés (e.g. chlorophytes, cyanobactéries, dinoflagellés) met en évidence une tendance à l'eutrophisation du lac.

L'indice IPLAC du lac de Nantua obtient la valeur de 0.64, ce qui correspond à une bonne classe d'état pour l'élément de qualité phytoplancton.

⁶ Note du 06 avril 2021, qui précise les modalités de gestion et les recommandations sanitaires qu'il convient de mettre en œuvre en cas de prolifération de cyanobactéries dans les eaux douces de baignades, à compter de la saison balnéaire 2022.

4.2.5 COMPARAISON AVEC LES INVENTAIRES ANTERIEURS

Le peuplement phytoplanctonique présente des successions assez similaires en 2016, 2019 et 2022 sur le lac de Nantua.

En fin d'hiver, il est dominé notamment par les cryptophycées (*Plagioselmis nannoplanctica* et *Cryptomonas ovata*), caractéristiques des milieux brassés. Au printemps, les cyanobactéries dominent le peuplement phytoplanctonique en termes d'abondance, mais non de biovolumes. Elles sont suivies de la chrysophyte *Dinobryon divergens*. Les diatomées se développent en période estivale avec la colonisation par des espèces assez communes dans les lacs alpins (*Cyclotella costei*). Au cours de l'été, les cyanobactéries (*Planktothrix agardhii*) se développent sur les mois d'août-septembre.

La production algale reste faible à modérée sur le lac de Nantua : le biovolume n'excède pas 0.85 mm³/l.

L'historique des valeurs IPLAC acquises sur le plan d'eau de Nantua est présenté dans le Tableau 16.

Nom lac	Code Lac	année	MBA	MCS	IPLAC	Classe IPLAC			
Nantua	V2515003	2010	0.838	0.654	0.709	В			
Nantua	V2515003	2013	1.000	0.978	0.985	ТВ			
Nantua	V2515003	2016	0.789	0.742	0.756	В			
Nantua	V2515003	2019	0.737	0.618	0.654	В			
Nantua	V2515003	2022	0.851	0.549	0.640	В			

Tableau 16: Évolution des Indices IPLAC depuis 2010

Les indices IPLAC depuis 2010 étaient assez similaires jusqu'en 2016. Depuis 2019, une dégradation de ces indices est observée. Ils indiquent tout de même toujours une bonne qualité pour le phytoplancton. Seul le suivi 2013 était plus favorable avec des indices constitutifs très bons.

L'étude du cortège floristique de ces dernières années semble mettre en évidence certaines espèces au profil mésotrophe, voire eutrophe. La production algale reste cependant faible à modérée dans le lac de Nantua.

Ces éléments tendent à indiquer que le lac de Nantua présente un bon état du compartiment phytoplancton depuis plusieurs années. La présence d'espèces de niveau trophique élevé est cependant à surveiller.

4.2.6 BIBLIOGRAPHIE

Anses (Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail). 2020. Actualisation de l'évaluation des risques liés à la présence de cyanobactéries et leurs toxines dans les eaux destinées à l'alimentation, les eaux de loisirs et les eaux destinées aux activités de pêche professionnelle et de loisir. - Avis de l'Anses, Rapport d'expertise collective, 438 pp. https://www.anses.fr/fr/system/files/EAUX2016SA0165Ra.pdf

Bey, M.-Y. & Ector, L. 2013. Atlas des diatomées des cours d'eau de la région Rhône-Alpes. Tome 1 : Centriques, Monoraphidées. Direction Régionale de l'Environnement, de l'Aménagement et du Logement - Auvergne-Rhône-Alpes, 187 pp.

Komárek, J. & Anagnostidis, K. 1999. Cyanoprokaryota 1. Teil: Chroococcales. Süsswasserflora von Mitteleuropa 19/1. Gustav Fischer edition. Gustav Fischer, Stuttgart.

Komárek, J. & Fott, B. 1983. Chlorophyceae (Grünalgen), Ordnung: Chlorococcales. E. Schweizerbartsche Verlagsbuchhandlung, Stuttgart.Moestrup, O. & Calado, A. 2018. Dinophyceae. Süßwasserflora von Mitteleuropa n°6. Springer Spêctrum, Berlin, 560 pp.

Leitao M. & A. Couté. 2005. Guide pratique des Cyanobactéries planctoniques du Grand Ouest de la France. Agence de l'Eau Seine-Normandie, 64 p.

Padisák, J., Crossetti, L. & Naselli-Flores, L. 2008. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia, 621:1–19.

Reynolds, C.S. 2006. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge. 535 p.

Willén, E. 2000. Phytoplankton in water quality assessment – an indicator concept. En: In Heinonen, P., G. Ziglio, & A. Van der Beken (eds), Hydrological and Limnological Aspects of Lake Monitoring: 58-80. Jhon Wiley & Sons Ltd.

4.3 Macrophytes

Globalement orienté nord-ouest/sud-est, le lac de Nantua est fortement marqué par l'urbanisation, accueillant port, plages et murs de soutènement. L'ensemble des berges est situé à proximité du réseau routier. Le caractère naturel des berges est donc fortement altéré.

Globalement, ce lac est peu végétalisé et lorsque la végétation est présente, les formations sont peu denses. On retrouve ainsi quelques phragmitaies éparses et des nupharaies présentes principalement dans les secteurs nord du lac.

La campagne d'inventaire macrophytes selon le protocole IBML (selon norme AFNOR XP T90-328 d'avril 2022) sur le lac de Nantua s'est déroulée les 26 et 27 juillet 2022 par une météo ensoleillée et ventée. Les 3 unités d'observation ont été inventoriées par Mathilde Reich (Mosaïque Environnement) accompagnée de Mathias Clavières (S.T.E). Les fiches caractéristiques des UO et listes sont disponibles en Annexe IV.

La transparence était comprise entre 6,5 m à 7 m mesurée au disque de Secchi.

4.3.1 CHOIX DES UNITES D'OBSERVATION

Le lac de Nantua a déjà fait l'objet d'un suivi des populations de macrophytes en 2019 par S.T.E. pour l'Agence de l'Eau Rhône-Méditerranée et Corse. Le protocole suivi par S.T.E. respecte la norme AFNOR XP T90-328 (Avril 2022).

Le positionnement des unités d'observation est déterminé avec la méthode de Jensen. Pour le lac de Nantua, 5 profils perpendiculaires à la plus grande longueur du plan d'eau ont été représentés, soit 10 points contacts potentiels auxquels s'ajoutent les 2 points correspondant aux points de départ et d'arrivée de cette ligne de base.

Le protocole d'échantillonnage s'appuie sur :

- ✓ les différents types de rives recensés sur le plan d'eau pour la sélection des unités d'observation (UO) à prospecter ;
- ✓ la pente des fonds et la transparence des eaux pour définir la limite de profondeur des profils perpendiculaires à explorer sur chaque UO (définition de la zone potentiellement colonisée par les végétaux).

Sur le lac de Nantua, 2 types de rives ont été observés. Une appréciation du recouvrement est donnée en % du périmètre total :

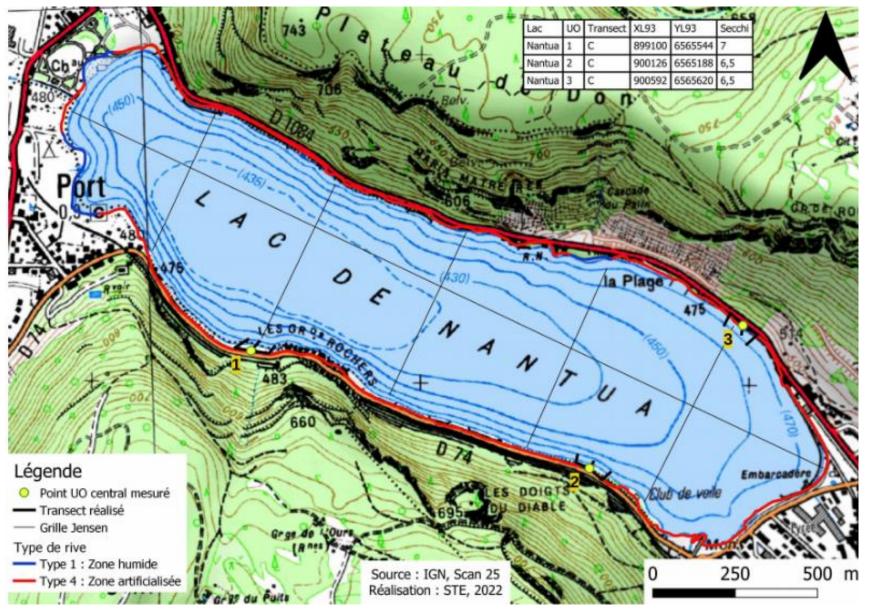
- ✓ Type 1 : zones humides caractéristiques : 8 % ;
- ✓ Type 4 : zones artificialisées ou subissant des pressions anthropiques visibles : 92 %.

La superficie du plan d'eau étant de 133 ha, 3 unités d'observation ont été sélectionnées selon leur représentativité d'un type de rive soit : trois unités de type 4.

Le type 1 représente moins de 10 % du linéaire total, il est considéré comme anecdotique. De plus, le linéaire concerné est morcelé, il n'est donc pas échantillonné conformément à la norme en vigueur.

Les 3 unités d'observation ainsi sélectionnées sont donc de type 4 :

- ✓ UO 1 : unité de type 4 située au sud-ouest du plan d'eau dans une zone à forte pente ;
- √ UO 2 : unité de type 4 située au sud du plan d'eau à proximité de la base nautique ;
- ✓ UO 3 : unité de type 4 située au nord-Est du plan d'eau dans un secteur aménagé pour la promenade.


Pour chaque unité d'observation, le choix a porté sur un secteur constitué d'un seul type de rive (sur 100 m minimum), accessible, à l'exclusion des arrivées de tributaires et des singularités. Il a été effectué en respectant les critères de la norme XP T90-328 tout en s'appuyant sur la localisation des unités d'observation ayant déjà fait l'objet d'inventaires lors des précédents suivis (2007, 2010, 2013, 2016 et 2019) afin de pouvoir suivre l'évolution temporelle des peuplements de macrophytes. L'unité d'observation 1 est identique à celle des suivis antérieurs et les unités d'observation 2 et 3 ont été légèrement décalées en 2016 afin de répondre aux exigences de la norme AFNOR XP T90-328 (Avril 2022).

Le point de contact Jensen à proximité de l'UO2 se situe au niveau de la base nautique avec pontons flottants : le secteur est inaccessible, et très singulier. Aussi, il a été choisi de se déporter vers l'Ouest pour avoir un secteur plus représentatif du type de rive.

4.3.2 CARTE DE LOCALISATION DES UNITES D'OBSERVATION

La Carte 3 présentée en page suivante fournit les éléments suivants :

- ✓ définition des profils et points contacts potentiels selon le protocole de Jensen ;
- ✓ représentation des différents types de rives ;
- ✓ localisation des unités d'observation effectivement réalisées lors de l'étude 2022 avec points GPS relevés sur le terrain.

Carte 3 : Localisation des unités d'observation pour l'étude des macrophytes sur le lac de Nantua

4.3.3 VEGETATION AQUATIQUE IDENTIFIEE

4.3.3.1 Unité d'observation 1 (UO1)

Cette unité d'observation est située sur la rive sud, dans la partie ouest du lac.

La zone littorale est caractérisée par la présence d'une route qui est séparée du lac par un talus boisé de 3 m de haut plutôt pentu. La plage est inexistante et les pentes sont fortes ce qui explique le faible nombre d'espèces relevées en zone littorale. Il s'agit principalement de bryophytes comme *Jungermannia atrovirens* (non observée en 2019, côte spécifique de 19 et coefficient sténoécie de 3), ainsi que *Fissidens crassipes*, *Cinclidotus*

fontinaloides et Rhynchostegium riparioides déjà observées en 2019). Les algues sont représentées par des colonies incrustantes hémisphériques souvent noirâtres des genres Tolypothrix, Lyngbya et des masses floconneuses vert clair telles que Spirogyra sp.

Le long des transects, à l'instar de 2019, la végétation n'est présente qu'au niveau des premiers points contacts du fait d'une pente très forte et d'un substrat rocheux inadéquat, avec des algues telles que *Tolypothrix* sp., *Spirogyra* sp. et *Mougeotia* sp.

Tableau 17 : Synthèse des résultats des profils IBML de l'UO1 sur le lac de Nantua

Unité d'observation macrophytes							Résultats	des profils
	Nom du plan d'eau : Nantua							eau : V2515003
Mathias Cla	vière	: Mathilde Reich, s/Mosaïque ent, STE	N° Unité Observation : 1				Date : 26/07/2022	
		Profil gauche		Profil central		Profil droit	MAi = (Magi	Commentaires
Taxon	Σai	Magi = Σai / 30	Σai	Maci = Σai / 30	Σai	Madi = Σai / 30	+ Maci + Madi)/3 (*)	/ Précisions
Tolypothrix sp.	2	0,07	1	0,03	2	0,07	0,06	
Spirogyra sp.	4	0,13	2	0,07	4	0,13	0,11	
Mougeotia sp.	2	0,07	1	0,03	2	0,07	0,06	

4.3.3.2 Unité d'observation 2 (UO2)

La seconde unité d'observation est située sur la rive sud du lac, à l'est de l'UO1.

Comme pour la première unité d'observation, la rive est caractérisée par la présence d'infrastructures de transport. Un talus boisé, d'environ 3 m, sépare ces infrastructures du lac. La plage est relictuelle (0.2 m de large) et les pentes sont fortes, ce qui explique le peu de végétation observée.

Le relevé de la zone littorale est caractérisé par la présence de quelques phanérogames (Angelica

sylvestris, Lysimachia vulgaris, Lythrum salicaria, etc.). Cinq espèces de bryophytes sont présentes dont 1 déjà observée en 2019, Rhynchostegium riparioides, et 4 non observées en 2019 :

Fissidens crassipes, Apopellia endiviifolia, Hygroamblystegium tenax (cote spécifique (CS⁷) de 15 et coefficient sténoécie (E⁸) de 2, contre une CS de 5 et un coefficient de sténoécie de 2 pour Leptodictyum riparium observé en 2019 et non relevé en 2022), Chiloscyphus polyanthos (CS de 15 et coefficient sténoécie de 2). Quelques algues sont également présentes (Lyngbya sp. et Bulbochaete sp., etc.).

A l'instar de 2019, les espèces observées sur le transect sont très rares du fait d'une profondeur importante, de pentes abruptes et d'un substrat rocheux peu favorable à l'implantation des macrophytes. Seules quelques algues en croute telles que *Lyngbya* sp. ont été observées.

Unité d'observation macrophytes								Résultats des profils	
Nom du plan d'eau : Nantua							Code plan d'	eau : V2515003	
Organisme/opéra Mathias Cla environ	vières	•	N° Unité Observation : 2				Date : 2	7/07/2022	
		Profil gauche		Profil central		Profil droit	MAi = (Magi	Commentaires	
Taxon	Σai	Magi = Σai / 30	Σai Maci = Σai / 30 Σai Madi = Σai / 30		+ Maci + Madi)/3 (*)	/ Précisions			
Bulbochaete sp.	4	0,13	4	0,13	4	0,13	0,13		
Lyngbya sp.	4	0,13	4	0,13	4	0,13	0,13		

4.3.3.3 Unité d'observation 3 (UO3)

Cette unité d'observation se situe sur la rive nord dans la partie est du lac. La rive est caractérisée par la présence d'une route, d'une voie piétonne et cyclable très fréquentées. Les berges sont aménagées en mur de soutènement sur l'ensemble de la zone prospectée. Un talus de 2 m sépare ces aménagements du lac. La plage est absente.

La faible pente des fonds sur les premiers mètres, permet l'installation d'une roselière à *Phragmites* australis. Le Roseau commun y est accompagné par un faible cortège d'espèces des roselières et

des mégaphorbiaies (*Calystegia sepium*, etc.). On retrouve également sur cette UO des bryophytes aquatiques généralistes. Certaines espèces de bryophytes non présentes en 2019 ont été observées en 2022 : *Cinclidotus riparius, Rhynchostegium riparioides, Fontinalis antipyretica*, d'autres espèces observées en 2019 n'ont pas été revues en 2022 : *Bryum pseudotriquetrum, Fissidens crassipes* et *Fissidens adianthoides*. Seul *Hygroamblystegium fluviatile* a été observé à la fois en 2019 et en 2022.

Les colonies algales sont représentées par les genres : *Tolypothrix, Oedogonium, Spirogyra, Encyonema,* etc.

⁷CS (0-20): traduit l'affinité pour les conditions trophiques du milieu : 0 (dystrophe/hypereutrophe et pollution organique forte) jusqu'à 20 (très oligotrophe).

⁸E (1-3): reflète l'amplitude écologique et donc la représentativité par rapport à des conditions mésologiques précises. Une valeur de 1 décrit un taxon euryèce (espèce à grande valence écologique, c'est-à-dire pouvant coloniser de nombreux habitats, car supportant d'importantes variations de facteurs écologiques), et une valeur de 3 un taxon sténoèce (espèce à faible valence écologique.

A l'instar de 2019 et comme sur les autres UO, les transects sont peu colonisés et seulement en début de transect par des algues (*Encyonema* sp., *Oedogonium* sp., etc.).

Tableau 19 : Synthèse des résultats des profils IBML de l'UO3 sur le lac de Nantua

	Résultats	Résultats des profils							
	Nom du plan d'eau : Nantua								
Mathias Cla	Clavières/Mosaïque			isme/opérateur : Mathilde Reich, Mathias Clavières/Mosaïque N° Unité Observation : 3 environnement, STE				Date : 27/07/2	022
		Profil gauche		Profil central		Profil droit	MAi = (Magi + Maci + Madi)/3 (*) Commentaire / Précisions		
Taxon	Σai	Magi = Σai / 30	Σai	Maci = Σai / 30	Σai	Madi = Σai / 30			
Encyonema sp.	4	0,13	4	0,13	4	0,13	0,13		
Spirogyra sp.	0	0	1	0,03	0	0	0,01		
Mougeotia sp.	0	0	1	0,03	0	0	0,01		
Oedogonium sp.	4	0,13	4	0,13	4	0,13	0,13		
Homeothrix sp.	0	0	1	0,03	0	0	0,01		
Tolypothrix sp	0	0	1	0,03	0	0	0,01		

4.3.4 LISTE DES ESPECES PROTEGEES ET ESPECES INVASIVES

Tout comme en 2019, aucune espèce exotique envahissante et espèce patrimoniale a été observée au sein des UO en 2022.

4.3.5 INDICE IBML ET NIVEAU TROPHIQUE DU PLAN D'EAU

Le lac de Nantua est classé comme plan d'eau de moyenne altitude à caractère alcalin. Il appartient au métatype H-Alc. L'EQR est calculé de la manière suivante :

Le calcul de l'indice IBML a été effectué à l'aide du SEEE version V1.0.1 de l'indicateur.

Nombre de taxons contributifs	32	
IBML Note de Profil PE	9.1	Indice EQR
IBML Note de Rive PE	11.93	
IBML Note de Trophie	10.51	0.697

L'indice IBML obtient une note de 10.51/20, qui indique un niveau de trophie moyen. La contribution de 32 taxons peut indiquer une certaine robustesse de la note obtenue pour la note de rive, mais on peut émettre des réserves sur la fiabilité de la note de profil compte tenu de la pauvreté des relevés : 8 genres d'algues recensés sur une quinzaine de points contacts au total (situés à moins de 1 m de profondeur).

A l'exception de la zone à proximité du port, le lac de Nantua ne présente pas d'herbiers aquatiques. Cette faible végétalisation s'explique certainement par les effets conjugués de la pression anthropique, de la nature rocheuse du substrat et des fortes pentes des fonds aquatiques.

Avec un EQR de 0.697, ce plan d'eau présente un bon état pour le compartiment macrophytes.

4.3.6 COMPARAISON AVEC LES SUIVIS ANTERIEURS

En 2016, l'EQR indiquait un très bon état du peuplement macrophytique (0.896). Entre 2016 et 2019, il a baissé de presque 0,3 points, l'état de ce compartiment est passé de très bon à bon. Ceci s'explique notamment par les différences de cortèges bryophytiques sur les zones littorales. En 2016, les espèces présentes avaient en majorité des côtes spécifiques (CS) plus élevées. Par exemple *Jungermannia atrovirens* avec une CS de 15, était présente en 2016 sur l'UO1 et absente en 2019, et *Leptodictyum riparium* avec une CS de 5 était absent en 2016 et présente en 2019.

Globalement, les cortèges floristiques ne semblent pas avoir beaucoup évolué entre 2019 et 2022. Les différences ont surtout été observées sur les zones littorales avec des cortèges de bryophytes parfois différents. Sur l'UO 1 notamment certaines espèces de bryophytes avec une côte spécifique élevée (15) ont été observées en 2022 alors qu'elles n'avaient pas été relevées en 2019. Ces différences peuvent expliquer la légère augmentation de l'EQR. Néanmoins l'état du peuplement macrophytique reste bon.

En 2013, les cortèges bryophytes étaient en partie semblables à ceux de 2019. Ce qui explique des EQR calculés proches.

En 2010, l'état du peuplement macrophytique fut le moins bon (moyen), avec un EQR de 0.481.

Année	EQR	Classe d'état				
2010	0,481	Moyen				
2013	0,683	Bon				
2016	0,896	Très bon				
2019	0,603	Bon				
2022	0,697	Bon				

4.4 Phytobenthos – méthode IBDLacs

4.4.1 DEROULEMENT DES PRELEVEMENTS

Trois unités d'observations sont concernées par ce suivi phytobenthos, elles sont similaires aux suivis précédents (2016, 2019). La localisation des trois unités d'observation est présentée sur la Carte 3 :

Les prélèvements se sont déroulés les 26 et 27 juillet 2022 lors de la campagne de terrain IBML, par une météo ensoleillée et venteuse. La transparence de l'eau a été mesurée entre 6.5 m et 7 m au disque de Secchi.

La liste des échantillons IBDlac est fournie dans le Tableau 20 pour le lac de Nantua en 2022.

Seule l'UO3 a pu être échantillonnée sur les 2 supports minéraux et végétaux. Les UO 1 et 2 ne présentaient pas de support végétal, l'échantillonnage a porté uniquement sur les pierres. Au total, ce sont donc 4 échantillons qui ont été envoyés au bureau d'études ECOMA pour détermination.

Tableau 20 : Liste des échantillons IBDlac pour le lac de Nantua en 2022

Plan d'eau	Unité	Date de	Support	Nombre
Plati u eau	d'observation	prélèvements	échantillonnés	d'échantillons
	UO1	26/07/2022	Pierres	4
Lac de	UO2	27/07/2022	Pierres	(Transmis à
Nantua	UO3	27/07/2022	Pierres	ECOMA le
	UO3	27/07/2022	Hélophytes	16/09/22)

4.4.2 Inventaire diatomees: Liste Floristique

Il est à noter que les caractéristiques écologiques des espèces présentées dans cette partie, font référence à la connaissance de ces taxons en cours d'eau. Cela doit donc être considéré avec précaution, puisque non directement transposable aux plans d'eau.

La liste floristique est présentée en Annexe V (en % par taxon).

4.4.3 Interpretation des resultats

Les inventaires pour les 4 échantillons du lac de Nantua mettent en évidence une assez forte diversité avec près de 80 taxons identifiés.

Cependant, les taxons dominants (> 10% de l'effectif) se limitent à 5 espèces de diatomées. Le tableau suivant rassemble les taxons dominants.

	Bassin		RA	AC	
	Plan d'eau		Nar	ntua	
	Code Lac		V251		
	Nom	DIA22-0286	DIA22-0287	DIA22-0288	DIA22-0289
	Date	26/07/2022	27/07/2022	27/07/2022	27/07/2022
	Libellé station	UO1 Min	UO2 Min	UO3 Min	UO3 Vég
Espèces de diatomées	Code (*IBD)	%	%	%	%
Achnanthidium minutissimum (Kützing) Czarnecki var. minutissimum	ADMI*	17,62	18,49	11,72	35,5
Achnanthidium straubianum (Lange- Bertalot)Lange-Bertalot	ADSB*	10,95	12,9	10,97	2,5
Encyonema bonapartei HeudrE. C.E. Wetzel & Ector	EBNA	1,9	16,55	18,7	1,5
Gomphonema lateripunctatum Reichardt & Lange-Bertalot	GLAT*		1,95	2,99	10,75
Pantocsekiella costei (Druart et F. Straub) K.T. Kiss et Ács	PCOS*	12,62	4,87	2,99	1,25

Les inventaires montrent une domination de l'espèce *Achnanthidium minutissimum*. Elle représente entre 12 et plus de 35 % de l'effectif pour tous les échantillons. Cette espèce est tolérante vis-à-vis de la charge en nutriments, mais indique une eau bien oxygénée et faiblement chargée en matière organique

Elle est accompagnée par un autre taxon : Achnanthidium straubianum. Il s'agit d'une espèce se développant dans les eaux légèrement saumâtres et à charge minérale modérée et faible charge organique.

Sont retrouvées également *Encyonema bonapartei* sur les UO2 et 3 minérales, espèce dont l'écologie reste à préciser. *Pantocsekiella costei* est retrouvé sur l'UO1, il s'agit d'un taxon davantage de pleine eau sensible à la charge organique mais tolérant une charge minérale modérée à élevée.

Sur l'UO3vég, Gomphonema lateripunctatum (10,8%); une espèce de bonne qualité, typique de milieux peu chargés en matière organique et en nutriments.

4.4.4 CONCLUSIONS

Les cortèges de diatomées observés sur le lac de Nantua sur toutes les unités d'observation, révèlent une bonne qualité. Le plan d'eau ne semble pas subir d'apport en matière organique et montre une charge faible à modérée en nutriments.

4.5 Macroinvertébrés lacustres

110622NAN01

6.76

BD

NAN01

4.5.1 ECHANTILLONNAGE

L'échantillonnage a été réalisé par S.T.E. le 13 avril 2022 dans de bonnes conditions (peu de vent, météo nuageuse, très bonne visibilité des substrats). Les données relatives aux prélèvements (plan d'échantillonnage et caractéristiques du plan d'eau) font l'objet d'un rapport de campagne disponible en Annexe VI.

Figure 16 : Vue d'un point de prélèvement sur le lac de Nantua

Pour le lac de Nantua, les habitats littoraux identifiés dans la base de données CHARLI comprenaient majoritairement des substrats minéraux grossiers (galets/blocs) et fins (vases), accompagnés parfois par des hélophytes (HE) ou des hydrophytes immergées (HI) (Tableau 21).

		Tableau 21	. Necouviei	ilellis des su	DSLIALS SUI IE	iac de ivant	ua	
Code lac	Code campagne	%recCHARLI	Substrat	Hélophytes	Hydrophytes immergées	%rec adapté	Nombre échantillons	Nombre d'échantillons arrondi
NAN01	110622NAN01	55.87	GA	ABSENT	ABSENT	57.3%	8.59	9
NAN01	110622NAN01	18.46	BD	ABSENT	ABSENT	18.9%	2.84	3
NAN01	110622NAN01	9.04	GA	HE	ABSENT	9.3%	1.39	1
NAN01	110622NAN01	7.39	VA	HE	ABSENT	7.6%	1.14	1

Tableau 21: Recouvrements des substrats sur le lac de Nantua

Légende substrats : VA = vase (<0.002mm); SL = sable (>2mm); GR = graviers (2mm-2cm); GA = galets (2-20cm) ; BD = bloc-dalle (>20cm)

ΗE

ABSENT

6.9%

1.04

Lors de l'échantillonnage, aucun écart au protocole n'a été effectué. A noter que les hydrophytes flottantes (HF) sont absentes sur tout le pourtour du lac (excepté une zone très réduite de nénuphars entre les points 7 et 8). Etant donné les données dont nous disposons sur ce lac, nous supposons une erreur de saisie des substrats et avons supprimé celui-ci de la cartographie des points d'échantillonnages présentée ci-après.

Carte 4 : Localisation des points de prélèvements IML sur le lac de Nantua

4.5.2 LISTES FAUNISTIQUES

La détermination de la faune invertébrée a été réalisée par S.T.E. pour la faune hors *Chironomidae* et par ECOMA pour les *Chironomidae*. Les listes obtenues sont présentées dans le tableau cidessous.

				1	2	3	4	5	6 GA	7 VA	8 BD	9	10	11	12	13	14	15		
NAN01	Famille	Genre	ANDRI	GA	GA	GA	-	GA	+ HE	+ HE	+ HE	GA	BD	GA	GA	BD	GA	GA	тот.	9
richoptères	Hydroptilidae	Hydroptila Orthotrichia	200 197		1						1			1	4	8	68		81 2	2,0
	Leptoceridae		311		'		3		1		'	1		1		7	2		15	0,4
		Mystacides	312	1	İ				2	3					1		5	1	13	0,
	·	Oecetis	317						1	3					1	1	1		7	0,
*	Limnephilidae	Limnephilinae	3163	7	6		3		5	10							1		32	0,
	Polycentropod	Cyrnus	224	1	1	6			1		3	1	9	1		7	1		31	0,
	Psychomyiida	Lype	241								1								1	0,
		Tinodes	245	15	1	22	27	24		2		9	2	6	2	3			113	2,
phéméroptè	Baetidae	Centroptilum	383			2	12	1	3	10		5	3		2	17	6		61	1,
		Cloeon	387		<u> </u>		<u> </u>		1	2	1								4	0,
	Caenidae	Caenis	457	54	36	16	4	17	55	182	2	51	6	39	21_	52	224	58	817	20
	Ephemeridae	Ephemera	502		ļ	ļ	ļ			ļ		3							3	0,
	Leptophlebiida	Leptophlebia	478	1	1			1						5	1	3	1		13	0,
oléoptères	Elmidae (I,a)	Elmis (I,a)	618		ļ	2				ļ									2	0,
		Esolus (I,a)	619		2	19	ļ	67	1	ļ				2	3			ļ	94	2,
		Limnius (I,a)	623		ļ	ļ	1			ļ								ļ	11	0,
		Oulimnius (I,a)	622	1	ļ	ļ	ļ			ļ									1	0,
		Riolus (I,a)	625	3	<u> </u>	6	<u> </u>	1		<u> </u>			1	1	2	7		1	22	0,
iptères	Ceratopogonio		819						2	7			0	1	0			3	13	0,
	Chironomidae		2781	14	18	1	ļ		54	5	8	13	29	12	33_	8	26	2	223	5,
	1	Chironomus	817	ļ	ļ	ļ	ļ			1	ļ								1	0,
		Cladopelma	19278	ļ	ļ	ļ	ļ		3	5									8	0,
	,	Cladotanytarsus	2862	ļ	ļ	ļ	ļ		16	8			2				4	24	54	1,
		Clinotanypus	2783	ļ	ļ	ļ	ļ			1	ļ								1	0,
	,	Cricotopus/Orthocladius	·····	19	1	22	21	10	11	8	7		58	16	12_	41	18	3	247	6,
	Cryptochironomus	2835	ļ	ļ	ļ	ļ		11	7									18	0,	
	,	Dicrotendipes	2839	6	1	5				1		8	5	19	33	8	20		106	2,
	Endochironomus	2842		ļ	ļ	ļ			ļ	ļ				2				2	0,	
	,	Epoicocladius	2807		1		ļ					8							9	0,
		Glyptotendipes	2843	ļ						ļ	1								1	0,
	· ·	Macropelopia	2784		ļ	ļ	ļ		3	ļ									3	0,
		Microtendipes	2849	12	6				3	1	1	29		7	2	30	13		104	2,
		Monopelopia	19246	ļ	1	ļ	ļ			ļ									1	0,
		Neozavrelia	19199	<u></u>	ļ	ļ	ļ			ļ							2		2	0,
	1	Parachironomus	2851	1	ļ		ļ		3	ļ						4	2	ļ	10	0,
		Paracricotopus	2819	ļ	 	1	ļ			ļ					2				3	0,
	,	Parakiefferiella	2820]		ļ				1								11_	0,
		Paratanytarsus	2865				ļ		40	ļ	11	-10			40		4		15	0,
	1	Paratendipes	2853	8	ļ	ļ	ļ		16	1		19	_	4	10		6		64	1,
		Phaenopsectra	2855		ļ	ļ			8	2	ļ		2						12	0,
		Polypedilum	2856	ļ	ļ	ļ	ļ		16	11									27	0,
		Procladius	2788		ļ	ļ				12	ļ		5		5		6		28	0,
		Prodiamesa	812				ļ			<u> </u>							4-	2	2	0,
		Psectrocladius	2825	1	2	14	ļ	4	27	2	3	13	41	4	2	117	15	3	248	6,
	,	Stenochironomus	2858		ļ	ļ			ļ		1						^		1	0,
		Synorthocladius	2830				4			40	_			00		40	2	_	2	0,
lintàra-	Empidi-I	Tanytarsus	2869	1	3	-	1	2	11	10	3	8	5	22	3	19	4	2	94	2,
)iptères	Empididae Indátorminás		831	1	2	4	4		1	<u> </u>									1	0,
	Indéterminés Aeshnidae	Povorio	648 670	4	2	1	1	4											8	0,
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Boyeria			2	<b></b>		1	4	2					4					0,
1	Coenagrionida		658	-	2		ļ		1	3					1				7	0,
		Libellula	697	<b></b>	-				1	4	-								11	0,
	Platycnemidia		657							1									1	0,
légaloptères		Sialis	704	1	20	40	_	10	20	70		F /	4	07	1.4	10	1		1	0,
	Gammaridae	Gammarus	892	105	30	18		12	39	78	6	54	1	27	14	10	1	F	285	7,
•	Asellidae		880	185	21	68		59	5	7	6	74		73	156	28	190	5	877	21
lysida	Mysidae	Droiseana	4324	20	-	47		-	10	0	C	_			_	1	14		1 1 1 1 1	0,
ivalves	Dreissenidae		1046	26	5	17	ļ	5	13	3	8	2			2	44	11	8	144	3,
		Pisidium	1043						3	21		1					1	23	49	1,
		Acroloxus	1033		<b> </b>	1	<b></b>		1	1	1								4	0,
	Bithyniidae	Bithynia	994	ļ	ļ	ļ												1	1	0,
		Potamopyrgus	978	ļ	ļ	ļ	ļ		19	5	ļ							1	25	0,
	Physidae	Indéterminés	995	ļ	ļ	ļ		1		ļ	ļ								1	0,
		Physa	997	ļ	ļ	1	ļ			1	ļ						1	ļ	3	0,
	Planorbidae		1009							1								4	5	0,
	Valvatidae	Valvata	972			_					Ш							3	3	0,
lirudinés	Erpobdellidae		928			ļ	ļ			ļ	<b></b>							6	6	0,
	Glossiphoniida		908															5	5	0,
riclades	Dendrocoelida	ie	1071	4	3	2		4				1		1			4		19	0,
	Dugesiidae	Dugesia	1056	5		1	L	1		L				2			7		16	0,
			versité		21	20	9	16	32	34	17	18	14	20	23	20	29	19	71	

#### 4.5.3 INTERPRETATION ET INDICES

Les interprétations ci-après sont basées sur les indices calculés à l'aide de l'outil d'évaluation IML-plan d'eau (MACRO de calcul IML : E-PE pour les plans d'eau naturels et dont le marnage est inférieur à 2 m, V 03/2022). Ces résultats sont donnés à titre indicatif (cf. avertissement §3.2.4.4) et n'ont pas été validés par l'Université de Franche-Comté.

Les listes faunistiques témoignent d'une bonne diversité (71 taxons) et d'une bonne densité (2718 ind./m²). Les échantillons contiennent en moyenne 24 taxons pour environ 510 individus. Ceux présentant le plus de variété et de densité sont ceux contenant de la vase et des hélophytes. Les substrats moins biogènes (BD) atteignent en moyenne 14 taxons, mais peuvent néanmoins abriter une densité assez élevée (219 individus en moyenne) en raison d'un recouvrement algal intéressant pour les macroinvertébrés.

Les indices calculés (version mars 2022) sont présentés dans le Tableau 22.

Tableau 22: Indices relatifs à l'IML sur le lac de Nantua

Nom du lac	NANTUA					
Calcul de l'IML		Calculs des autres indices				
Sous-indices :		Densité (ind./m²)	2718			
sIML chimie	0,76	Indice de Shannon	2,88			
sIML habitat	1	Equitabilité Pielou	0,47			
sIML marnage	1	Variété générique	71			
IML E-PE	0,92	Variété générique <i>Chironomidae</i>	28			
Classe d'état	Très bon					

L'indice d'évaluation de l'état écologique  $IML_{E-PE}$ , réservé aux lacs naturels ou faiblement marnant, est très bon sur ce plan d'eau. Les sous-indices IML pour les habitats et le marnage sont de 1/1 soit le score maximum ; ils indiquent une bonne qualité des habitats littoraux et l'absence d'altération liée à la variation du niveau d'eau. Le sous-indice pour la chimie est de 0.76/1, en limite du très bon état à 0.8. Il pourrait indiquer une légère désoxygénation ou des apports nutritifs déséquilibrés en zone littorale.

Les indices de diversité et d'équitabilité sont assez moyens et semblent témoigner d'un peuplement invertébré moyennement diversifié et présentant un déséquilibre.

Les *Chironomidae* représentent près de 30% des effectifs sur le lac de Nantua. Parmi eux, ce sont les *Psectrocladius* les plus abondants (Figure 17). Ce taxon est retrouvé dans les zones littorales, et les larves sont associées aux macrophytes. Il est caractéristique des milieux méso à eutrophes. Ils sont suivis par les genres tout aussi ubiquistes *Cricotopus/Orthocladius*, *Ablabesmyia*, *Dicrotendipes*, et *Microtendipes*. Ces quatre taxons indiquent des eaux mésotrophes, à tendance eutrophes.





Figure 17 : A gauche : capsule céphalique de Psectrocladius (x400), à droite : crustacé Asellidae (x20)

La liste faunistique comprend également des taxons polluosensibles (EPT = éphémères, plécoptères et trichoptères). 13 genres représentant près de 30% des effectifs sont recensés. Parmi eux, on retrouve des taxons fréquents en milieux lacustres tels que l'éphémère *Caenis* (20% des effectifs totaux). Ce taxon est ubiquiste et plutôt tolérant vis-à-vis de la qualité de l'eau, tout comme les autres genres recensés tels que les trichoptères *Tinodes* ou *Limnephilinae*. Des individus du genre *Ephemera*, taxon plutôt considéré comme sensible à la qualité de l'eau, ont également été retrouvés dans l'échantillon n°9.

Le lac de Nantua est également fréquenté par :

- √ des libellules appartenant aux familles des Libellulidae et Aeshnidae, ainsi que des demoiselles (Coenagrionidae et Platycnemididae), assez fréquentes sur les littoraux végétalisés;
- ✓ les crustacés Asellidae (22% des effectifs totaux, voir photo ci-dessus), Gammarus (7%) et une petite crevette d'origine ponto-caspienne (considérée comme invasive) de la famille des Mysidae;
- √ des mollusques dont la moule zébrée *Dreissena*, taxon invasif (3,5% des effectifs totaux, présentes dans 12/15 échantillons);
- ✓ des vers plats (planaires Dendrocoelidae et Dugesiidae), présents dans la moitié des échantillons, ils représentent un peu plus d'une trentaine d'individus. Ces taxons sont polluo-résistants et se nourrissent d'autres invertébrés morts ou vivants.

Les taxons dominants (*Caenis, Asellidae*) sont plutôt polluo- résistants, ils présentent des cycles courts suggérant une certaine instabilité du milieu.

Au travers des résultats de l'indice IML 2022, la faune invertébrée benthique du lac de Nantua semble indiquer un milieu en très bon état. Ce constat est à tempérer compte tenu de la faible variété des habitats aquatiques rencontrés dans le lac de Nantua.

### **4.5.4** COMPARAISON AVEC LES DONNEES ANTERIEURES

Code_lac	Plan d'eau	Année	SIMLchimie	sIMLhabitats	SIMLmarnage	IML E-PE	classe d'état
V2E1E002	lac de Nantua	2018	0,62	1	1	0,87	ТВ
V 2515005	iac de Nantua	2022	0,76	1	1	0,92	ТВ

Sur le lac de Nantua, un inventaire de la faune macroinvertébrée avait été réalisé en 2018. La note obtenue était identique à celle obtenue en 2022, à savoir que le milieu était déjà en très bon état. Seul le sous-indice Chimie affichait déjà un score légèrement inférieur au très bon état (bon état).

# 5 Appréciation globale de la qualité du plan d'eau

Le suivi physicochimique et biologique 2022 sur le lac de Nantua s'est déroulé conformément aux prescriptions de suivi de l'état écologique et l'état chimique des eaux douces de surface.

L'année 2022 a été globalement chaude et moyennement arrosée dans le secteur de Nantua. Les résultats obtenus sont proches de ceux de 2019 et 2016 pour tous les compartiments, ils sont synthétisés dans le tableau suivant.

Compartiment	Synthèse de la qualité du plan d'eau ⁹
Profils verticaux	Belle stratification thermique Désoxygénation hypolimnique marquée – anoxie au fond
Qualité physico-chimique des eaux	Absence de pollution organique Teneurs modérées en nitrates et faibles en phosphates Concentrations plus élevées en phosphore, fer et manganèse dans le fond en fin d'été Peu de métaux Quelques micropolluants organiques (metformine, tolyltriazole et plastifiants)
Qualité physico-chimique des sédiments	Sédiments de qualité moyenne : charge moyenne en matière organique, en azote, et en phosphore. Relargage potentiel de phosphore à l'interface eau/sédiments Peu de métaux lourds Quelques HAP et PCB
Biologie - phytoplancton	Production algale faible à moyenne – Phytoplancton au profil méso-eutrophe IPLAC : Bon état
Biologie - macrophytes	Peu de macrophytes – absence d'hydrophytes, quelques bryophytes et algues Absence d'espèces protégées ou envahissantes IBML = 10.51/20 - EQR = 0.697 Bon état
Biologie - phytobenthos	Bonne qualité. Peuplement indicateur de faibles apports en matière organique, charge faible à modérée en nutriments.
Biologie - macroinvertébrés	Absence de dégradation des habitats littoraux – Peuplement assez diversifié et dense. IML: très bon état

L'ensemble des suivis physico-chimiques et biologiques 2022 indiquent un milieu aquatique de bonne qualité. Le lac de Nantua, d'origine naturelle, présente une belle stratification thermique.

Les analyses physico-chimiques montrent des apports modérés en nutriments azotés et faibles pour le phosphore dans le milieu aquatique. Les nitrates restent disponibles toute l'année mais les phosphates sont peu disponibles (non quantifiés en zone euphotique). La production primaire

S.T.E. - juin 23- Page 59 sur 78

⁹ il s'agit d'une interprétation des valeurs brutes observées (analyses physico-chimiques, peuplements biologiques) mais pas d'une stricte évaluation de l'Etat écologique et chimique selon les arrêtés en vigueur

résultante reste modérée. Le cortège phytoplanctonique présente globalement un profil mésotrophe à tendance eutrophe.

L'analyse des micropolluants ne met pas en évidence de contamination métallique. Quelques micropolluants organiques sont retrouvés de manière récurrente (metformine, tolyltriazole, plastifiants (DEHP, phtalates)).

On observe une forte demande en oxygène pour dégrader la matière organique dans la couche profonde, qui conduit à l'anoxie au fond du lac en période estivale.

La qualité des sédiments est moyenne, les teneurs en matière organique et en nutriments sont modérées. Les conditions anoxiques régnant dans le fond du lac en période estivale favorisent le phénomène de relargage vers la masse d'eau, notamment concernant l'élément phosphore.

Les micropolluants minéraux sont peu présents dans les sédiments. Les concentrations en PCB et HAP restent modérées, elles sont dans la lignée de celles obtenues lors des précédents suivis.

L'indice biologique macrophytes (IBML) affiche un bon état. Cependant, la végétation aquatique est très peu présente dans le lac de Nantua. Il est donc difficile d'attribuer un niveau trophique au plan d'eau.

Les cortèges de diatomées observés sur le lac de Nantua révèlent une bonne qualité. Le plan d'eau ne semble pas subir d'apport en matière organique, mais montre une charge faible à modérée en nutriments.

L'indice macroinvertébrés IML affiche un très bon état. Le peuplement est diversifié et assez abondant, malgré l'homogénéité des habitats rivulaires.

Les résultats du suivi 2022 montrent que le lac de Nantua présente une bonne qualité globale avec une nette amélioration par rapport aux années 1980-1990. Il peut être qualifié de mésotrophe à tendance eutrophe.

Agence de l'Eau RMC	- Etude des plans d'eau	du programme	de surveillance	des bassins	Rhône-Méditerr	anée et Corse	- Rapport de
	données	brutes et intern	rétation 2022 -	Lac de Nant	ua (01)		

6 Annexes

# I. <u>Liste des micropolluants analysés sur eau</u>

paramètre	Code SANDRE	LQ	Unité	paramètre	Code SANDRE	LQ	Unité	paramètre	Code SANDRE	LQ	Unité
1-(3-chloro-4-methylphenyl)uree	2934	0.02	μg/L	Dichlobénil	1679	0.005	μg/L	Metiram	2067	0.03	μg/L
1,7-Dimethylxanthine	6751	0.02	μg/L	Dichlofenthion	1159	0.005	μg/L	Métobromuron	1515	0.005	μg/L
14-Hydroxyclarithromycin	7041	0.005	μg/L	Dichlofluanide	1360	0.005	μg/L	Métofluthrine	8311	0.02	μg/L
17alpha-Estradiol	5399	0.005	μg/L	Dichloréthane-1,1	1160	0.5	μg/L	Metolachlor ESA	6854	0.02	μg/L
1-Hydroxy Ibuprofen	7011	0.01	μg/L	Dichloréthane-1,2	1161	0.5	μg/L	Metolachlor OXA	6853	0.02	μg/L
2 4 5 T	1264	0.02	μg/L	Dichloréthylène-1,1	1162	0.5	μg/L	Métolachlore	1221	0.005	μg/L
2 4 D	1141	0.02	μg/L	Dichloréthylène-1,2 cis	1456	0.05	μg/L	Métolachlore NOA 413173	7729	0.03	μg/L
2 4 D isopropyl ester	2872	0.005	μg/L	Dichloréthylène-1,2 trans	1727	0.5	μg/L	Metolcarb	5796	0.005	μg/L
2 4 D méthyl ester	2873	0.005	μg/L	Dichlormide	2929	0.01	μg/L	Metoprolol	5362	0.005	μg/L
2 4 DB	1142	0.05	μg/L	Dichloroaniline-2,4	1589	0.02	μg/L	Métosulame	1912	0.005	μg/L
2 4 MCPA	1212	0.005	μg/L	Dichloroaniline-2,5	1588	0.02	μg/L	Métoxuron	1222	0.005	μg/L
2 4 MCPB	1213	0.005	μg/L	Dichloroaniline-3,4	1586	0.01	μg/L	Metrafenone	5654	0.005	μg/L
2 6 Dichlorobenzamide	2011	0.005	μg/L	Dichloroaniline-3,5	1585	0.01	μg/L	Métribuzine	1225	0.005	μg/L
2-(3-trifluoromethylphenoxy)nicotinamide	6870	0.005	μg/L	Dichlorobenzène-1,2	1165	0.05	μg/L	Metronidazole	6731	0.005	μg/L
2,4,7,9-Tetramethyl-5-decyne-4,7-diol	6649	16	μg/L	Dichlorobenzène-1,3	1164	0.5	μg/L	Metsulfuron méthyl	1797	0.02	μg/L
2,6-di-tert-butyl-4-méthylphénol	7815	0.05	μg/L	Dichlorobenzène-1,4	1166	0.05	μg/L	Mévinphos	1226	0.005	μg/L
2.4+2.5-dichloroanilines	6022	0.05	μg/L	Dichlorobromométhane	1167	0.05	μg/L	Mexacarbate	7143	0.005	μg/L
2-éthylhexyl sulfate	8327	10	μg/L	Dichlorodifluorométhane	1485	0.5	μg/L	Miconazole	7130	0.5	μg/L
2-Hydroxy Ibuprofen	7012	0.01	μg/L	Dichlorométhane	1168	5	μg/L	Midazolam	7140	0.01	μg/L
2-hydroxy-desethyl-Atrazine	3159	0.005	μg/L	Dichloronitrobenzène-2,3	1617	0.02	μg/L	Mirex	5438	0.01	μg/L
2-laureth sulfate	8324	100	μg/L	Dichloronitrobenzène-2,4	1616	0.01	μg/L	Molinate	1707	0.005	μg/L
2-nitrotoluène	2613	0.02	μg/L	Dichloronitrobenzène-2,5	1615	0.01	μg/L	Molybdène	1395	1	μg(Mo)/L
3,4,5-Trimethacarb	5695	0.005	μg/L	Dichloronitrobenzène-3,4	1614	0.01	μg/L	Monobutyletain cation	2542	0.0025	μg/L
3-Chloro-4 méthylaniline	2820	0.05	μg/L	Dichloronitrobenzène-3,5	1613	0.02	μg/L	Monocrotophos	1880	0.005	μg/L
4,5-dichloro-2-octyl-1,2-thiazol-3(2H)-one	8301	0.05	μg/L	Dichlorophène	2981	0.005	μg/L	Monolinuron	1227	0.005	μg/L
4-Chlorobenzoic acid	5367	0.1	μg/L	Dichlorophénol-2,3	1645	0.01	μg/L	Monooctyletain cation	7496	0.00039	μg/L
4-méthoxycinnamate de 2-éthylhexyle	7816	0.65	μg/L	Dichlorophénol-2,4	1486	0.02	μg/L	Monophenyletain cation	7497	0.001	μg/L
4-Methylbenzylidene camphor	6536	0.02	μg/L	Dichlorophénol-2,5	1649	0.02	μg/L	Monuron	1228	0.005	μg/L
4-n-nonylphénol	5474	0.1	μg/L	Dichlorophénol-3,4	1647	0.01	μg/L	Morphine	6671	0.02	μg/L
4-nonylphénols ramifiés	1958	0.1	μg/L	Dichloropropane-1,2	1655	0.2	μg/L	Morpholine	7475	2	μg/L
4-tert-butylphénol	2610	0.14	μg/L	Dichloropropane-1,3	1654	0.5	μg/L	MTBE	1512	0.5	μg/L
4-tert-octylphénol	1959	0.03	μg/L	Dichloropropane-2,2	2081	0.05	μg/L	Musc xylène	6342	0.1	μg/L
Abamectin	2007	0.02	μg/L	Dichloropropène-1,1	2082	0.5	μg/L	Myclobutanil	1881	0.005	μg/L
Acebutolol	6456	0.005	μg/L	Dichloropropylène-1,3 Cis	1834	0.05	μg/L	N-(2,6-dimethylphenyl)-N-(2-methoxyet	6380	0.01	μg/L
Acénaphtène	1453	0.005	μg/L	Dichloropropylène-1,3 Trans	1835	0.05	μg/L	N,N-Diethyl-m-toluamide	5797	0.1	μg/L
Acénaphtylène	1622	0.005	μg/L	Dichloropropylène-2,3	1653	0.5	μg/L	N,N-Dimethylsulfamide	6384	0.05	μg/L
Acéphate	1100	0.005	μg/L	Dichlorprop	1169	0.02	μg/L	Nadolol	6443	0.005	μg/L
Acétaldéhyde	1454	5	μg/L	Dichlorprop-P	2544	0.05	μg/L	Naled	1516	0.005	μg/L
Acetamiprid	5579	0.005	μg/L	Dichlorvos	1170	0.0002	μg/L	Naphtalène	1517	0.005	μg/L
Acetazolamide	7136	0.02	μg/L	Diclofenac	5349	0.005	μg/L	Napropamide	1519	0.005	μg/L
Acetochlor ESA	6856	0.03	μg/L	Diclofop méthyl	1171	0.005	μg/L	Naproxene	5351	0.02	μg/L
Acetochlor OXA	6862	0.03	μg/L	Dicofol	1172	0.005	μg/L	Naptalame	1937	0.05	μg/L
Acétochlore	1903	0.005	μg/L	Dicrotophos	5525	0.005	μg/L	n-Butyl Phtalate	1462	0.14	μg/L
Acibenzolar-S-Methyl	5581	0.02	μg/L	Dicyclanil	6696	0.01	μg/L	N-Butylbenzenesulfonamide	5299	0.227	μg/L
Acide (S)-6-hydroxy-alpha-méthyl-2-naphtalène acé	5352	0.1	μg/L	Didéméthylisoproturon	2847	0.005	μg/L	Néburon	1520	0.005	μg/L
Acide acetylsalicylique	6735	0.02	μg/L	Dieldrine	1173	0.001	μg/L	Nickel	1386	0.5	μg(Ni)/L
Acide clofibrique	5408	0.005	μg/L	Dienestrol	7507	0.005	μg/L	Nicosulfuron	1882	0.005	μg/L
Acide diatrizoique	6701	0.003	μg/L	Diéthofencarbe	1402	0.005	μg/L	Nicotine	5657	0.125	μg/L
Acide fenofibrique	5369	0.005	μg/L	Diéthyl phtalate	1527	0.05	μg/L	Nitrobenzène	2614	0.123	μg/L
Acide mefenamique	6538	0.005	μg/L	Diéthylamine	2826	6	μg/L	Nitrofène	1229	0.005	μg/L μg/L
Acide merenamique Acide monochloroacétique	1465	0.003	μg/L μg/L	Diethylstilbestrol	2628	0.005	μg/L μg/L	Nitrophénol-2	1637	0.003	μg/L μg/L
Acide monochioroacetique Acide nitrilotriacétique (NTA)	1521	5	μg/L μg/L	Difenacoum	2982	0.005	μg/L μg/L	Norethindrone	5400	0.02	μg/L μg/L
Acide Pentacosafluorotridecanoique (PFTrDA)	6549	0.2	μg/L μg/L	Difénoconazole	1905	0.005	μg/L μg/L	Norfloxacine	6761	0.001	μg/L μg/L
Acide perfluorodecane sulfonique (PFTDA)  Acide perfluorodecane sulfonique (PFDS)	6550	0.002	μg/L μg/L	Difenoxuron	5524	0.005	μg/L μg/L	Norfluoxetine	6772	0.005	μg/L μg/L
Acide perfluoro-decanoïque (PFDA)	6509	0.002	μg/L μg/L	Difethialone	2983	0.003	μg/L μg/L	Norfluoxetine	1669	0.005	
Acide perfluoro-decanoique (PFDA)  Acide perfluorododecane sulfonique	8741	0.002	μg/L μg/L	Diflubenzuron	1488	0.02	μg/L μg/L	Norflurazon Norflurazon desméthyl	2737	0.005	μg/L μg/L
Acide perfluorododecane suironique Acide perfluoro-dodecanoïque (PFDoDA)	6507	0.02	μg/L μg/L	Diflufénicanil	1814	0.02	μg/L μg/L	Norriurazon desmetnyi Nuarimol	1883	0.005	μg/L μg/L
Acide perfluoro-dodecanoique (PFDODA)  Acide perfluoroheptane sulfonique (PFHpS)	6542	0.02	μg/L μg/L	Dihexyl phtalate	2539	0.001		Octylisothiazolinone	8302	0.005	
	6830	0.001			6647	0.005	μg/L	· ·	6767	0.005	μg/L
Acide perfluorohexanesulfonique (PFHxS)	5980	0.002	μg/L	Dihydrocodeine	5325		μg/L	O-Demethyltramadol Oflovasino	6533	0.005	μg/L
Acide perfluoro-n-butanoïque (PFBA)	5980 5977	0.2	μg/L	Diisobutyl phthalate	6658	0.4 5	μg/L	Ofloxacine	2027		μg/L
Acide perfluoro-n-heptanoïque (PFHpA)	59//	0.002	μg/L	Diisodecyl phthalate	8600	5	μg/L	Ofurace	2027	0.005	μg/L

Acide perfluoro-n-hexanoïque (PFHxA)	5978	0.002	μg/L
Acide perfluoro-n-nonanoïque (PFNA)	6508	0.02	μg/L
Acide perfluorononane sulfonique (PFNS)	8739	0.1	μg/L
Acide perfluoro-n-undecanoïque (PFUnDA)	6510	0.02	μg/L
Acide perfluorooctanesulfonique (PFOS)	6560	0.002	μg/L
Acide perfluoro-octanoïque (PFOA)	5347	0.002	μg/L
Acide perfluoropentane sulfonique (PFPeS)	8738	0.1	μg/L
Acide perfluorotridecane sulfonique	8742	0.5	μg/L
Acide perfluoroundecane sulfonique	8740	0.5	μg/L
Acide salicylique	5355	0.131	μg/L
Acide sulfonique de perfluorobutane (PFBS)	6025	0.002	μg/L
Acifluorfen	1970	0.02	μg/L
Aclonifen	1688	0.001	μg/L
Acrinathrine	1310	0.005	μg/L
Alachlor ESA	6800	0.03	μg/L
Alachlor OXA	6855	0.03	μg/L
Alachlore	1101	0.005	μg/L
Albendazole	6740	0.005	μg/L
Aldicarbe	1102	0.005	μg/L
Aldicarbe sulfone	1807	0.02	μg/L
Aldicarbe sulfoxyde	1806	0.02	μg/L
Aldrine	1103	0.001	μg/L
Alléthrine	1697	0.03	μg/L
Allyxycarbe	7501	0.005	μg/L
alpha-Hexabromocyclododecane	6651	0.005	μg/L
Alphaméthrine	1812	0.005	μg/L
Alprazolam	5370	0.01	μg/L
Aluminium	1370	2	μg(Al)/L
Ametoctradine	7842	0.02	μg/L
Amétryne	1104	0.005	μg/L
Amidithion	5697	0.005	μg/L
Amidosulfuron	2012	0.005	μg/L
Aminocarbe	5523	0.005	μg/L
Aminochlorophénol-2,4	2537	0.003	μg/L
Aminopyralid	7580	0.1	μg/L
Aminotriazole	1105	0.03	μg/L
Amiprofos-methyl	7516	0.005	μg/L
Amitraze	1308	0.003	μg/L
Amitriptyline	6967	0.001	μg/L
Amlodipine	6781	0.05	μg/L
Amoxicilline	6719	0.02	μg/L
AMPA	1907	0.02	μg/L
Androstenedione	5385	0.005	μg/L
Anilofos	6594	0.005	μg/L μg/L
Anthracène	1458	0.005	μg/L μg/L
Anthraguinone	2013	0.005	μg/L μg/L
Antimoine	1376	0.003	μg(Sb)/L
Argent	1368	0.01	μg(Ag)/L
Arsenic	1369	0.01	μg(Ag)/L μg(As)/L
Asulame	1965	0.48	μg(AS)/L μg/L
Atenolol	5361	0.005	μg/L μg/L
Atrazine	1107	0.005	μg/L μg/L
Atrazine Atrazine 2 hydroxy	1832	0.003	μg/L μg/L
Atrazine 2 riyuroxy Atrazine déisopropyl	1109	0.02	μg/L μg/L
Atrazine deisopropyi Atrazine déséthyl	1109	0.005	μg/L μg/L
Atrazine desetnyi Atrazine déséthyl déïsopropyl	1830	0.005	
Atrazine-desethyl-2-hydroxy	3160	0.02	μg/L μg/L
Azaconazole	2014	0.005	
Azaméthiphos	2014	0.005	μg/L
			μg/L
Azimsulfuron	2937	0.005 0.005	μg/L
Azinphos éthyl	1110 1111	0.005	μg/L
Azinphos méthyl	7817		μg/L
Azithromycine	7817 1951	0.5 0.005	μg/L
Azoxystrobine	1921	0.005	μg/L

Diltiazem	6729	0.005	μg/L
Diméfuron	1870	0.005	μg/L
Dimepiperate	7142	0.005	μg/L
Dimétachlore	2546	0.005	μg/L
Diméthachlore CGA 369873	7727	0.02	μg/L
Diméthachlore-ESA	6381	0.02	μg/L
Dimethametryn	5737	0.005	μg/L
Dimethenamid ESA	6865	0.01	μg/L
Diméthénamide	1678	0.005	μg/L
Diméthénamide OXA	7735	0.01	μg/L
Dimethenamid-P	5617	0.03	μg/L
Diméthoate	1175	0.01	μg/L
Diméthomorphe	1403	0.005	μg/L
Diméthylamine	2773	10	μg/L
Diméthylphénol-2,4	1641	0.02	μg/L
Dimethylvinphos	6972	0.005	μg/L
Dimétilan	1698	0.005	μg/L
dimoxystrobine	5748	0.005	μg/L
Diniconazole	1871	0.005	μg/L
Dinitrotoluène-2,4	1578	0.5	μg/L
Dinitrotoluène-2,6	1577	0.5	μg/L
Dinocap	5619	0.05	μg/L
Di-n-octyl phthalate	3342	0.1	μg/L
Dinosèbe	1491	0.005	μg/L
Dinoterbe	1176	0.03	μg/L
Dioctyletain cation	7494	0.00058	μg/L
Dioxacarb	5743	0.005	μg/L
Dipentyl phtalate	2540	0.1	μg/L
Diphenyletain cation	7495	0.00046	μg/L
Dipropyl phtalate	2541	0.1	μg/L
Diquat	1699	0.03	μg/L
Disulfoton	1492	0.01	μg/L
Ditalimfos	5745	0.05	μg/L
Dithianon	1966	0.1	μg/L
Diuron	1177	0.005	μg/L
DNOC	1490	0.02	μg/L
Dodécyl diméthyl benzyl ammoniur	8297	10	μg/L
Dodine	2933	0.02	μg/L
Doxepine	6969	0.005	μg/L
Doxycycline	6791	0.1	μg/L
DPU (Diphenylurée)	7515	0.005	μg/L
Dydrogesterone	6714	0.02	μg/L
Edifenphos	5751	0.005	μg/L
EDTA	1493	5	μg/L
Emamectine	8102	0.1	μg/L
Endosulfan alpha	1178	0.001	μg/L
Endosulfan beta	1179	0.001	μg/L
Endosulfan sulfate	1742	0.001	μg/L
Endrine	1181	0.001	μg/L
Endrine aldehyde	2941	0.005	μg/L
Enoxacine	6768	0.02	μg/L
Enrofloxacine	6784	0.02	μg/L
Epichlorohydrine	1494	0.1	μg/L
EPN	1873	0.005	μg/L
Epoxiconazole	1744	0.005	μg/L
EPTC	1182	0.05	μg/L
Equilin	7504	0.005	μg/L
Erythromycine	6522	0.005	μg/L
Esfenvalérate	1809	0.005	μg/L
Estradiol	5397	0.005	μg/L
Estriol	6446	0.005	μg/L
Estrone	5396	0.005	μg/L
Etain	1380	0.5	μg(Sn)/L
Ethametsulfuron-methyl	5529	0.005	μg/L

<b>t</b>			
Ométhoate	1230	0.0005	μg/L
Orthophénylphénol	2781	0.3	μg/L
Oryzalin Oxadiargyl	1668 2068	0.02 0.005	μg/L
Oxadiazon	1667	0.005	μg/L μg/L
Oxadixyl	1666	0.005	
Oxamyl	1850	0.003	μg/L μg/L
Oxasulfuron	5510	0.005	μg/L μg/L
Oxazepam	5375	0.005	μg/L μg/L
Oxyclozanide	7107	0.005	μg/L μg/L
Oxycodone	6682	0.01	μg/L
Oxydéméton méthyl	1231	0.005	μg/L
Oxyfluorfène	1952	0.002	μg/L
Oxytetracycline	6532	0.1	μg/L
Paclobutrazole	2545	0.005	μg/L
Paracetamol	5354	0.025	μg/L
Paraoxon	5806	0.005	μg/L
Parathion éthyl	1232	0.01	μg/L
Parathion méthyl	1233	0.005	μg/L
Parconazole	6753	0.01	μg/L
PCB 101	1242	0.0012	μg/L
PCB 105	1627	0.0003	μg/L
PCB 114	5433	0.00003	μg/L
PCB 118	1243	0.0012	μg/L
PCB 123	5434	0.00003	μg/L
PCB 125	2943	0.005	μg/L
PCB 126	1089	0.000006	μg/L
PCB 128	1884	0.0012	μg/L
PCB 138	1244	0.0012	μg/L
PCB 149	1885	0.0012	μg/L
PCB 153	1245	0.0012	μg/L
PCB 156	2032	0.00012	μg/L
PCB 157	5435	0.000018	μg/L
PCB 167	5436	0.00003	μg/L
PCB 169	1090	0.000006	μg/L
PCB 170	1626	0.0012	μg/L
PCB 180	1246	0.0012	μg/L
PCB 189	5437	0.000012	μg/L
PCB 194	1625	0.0012	μg/L
PCB 209	1624	0.005	μg/L
PCB 28	1239	0.0012	μg/L
PCB 31	1886	0.005	μg/L
PCB 35	1240	0.005	μg/L
PCB 37	2031	0.005	μg/L
PCB 44	1628	0.0012	μg/L
PCB 52	1241	0.0012	μg/L
PCB 54	2048	0.005	μg/L
PCB 66	5803	0.005	μg/L
PCB 77	1091	0.00006	μg/L
PCB 81	5432	0.000006	μg/L
Penconazole	1762	0.005	μg/L
Pencycuron	1887	0.005	μg/L
Pendiméthaline	1234	0.005	μg/L
Penoxsulam	6394	0.005	μg/L
Pentachlorobenzène	1888	0.0005	μg/L
Pentachloroethane	5924	0.01	μg/L
Pentachlorophénol	1235	0.03	μg/L
Pentoxifylline	7670	0.005	μg/L
Perchlorate	6219	0.1	μg/L
Perfluorooctanesulfonamide (PFOSA)	6548	0.02	μg/L
Perméthrine	1523	0.01	μg/L
Pethoxamide	7519	0.005	μg/L
Pethoxamide ESA	8590	0.05	μg/L
Phénamiphos	1499	0.005	μg/L

BDE 181	<del></del>			
DEE 203	Baryum	1396	5.3	μg(Ba)/L
DEC 205   5997				
BDE100	BDE 203			μg/L
BDE138	BDE 205	5997	0.0015	μg/L
BDE138	BDE100	2915	0.0002	μg/L
BDE153	BDE138	2913	0.0002	
DELISA   2911	BDF153	2912		
BDE17				
DELIB3				
BDE190				
BDE209				
BDE28				
BDE47				
BDE66				
BDE71	BDE47		0.0002	μg/L
BDE77	BDE66	2918	0.0002	μg/L
BDE85   2914   0.0002   µg/L     BDE99   2916   0.0002   µg/L     Beflubutamide   7522   0.01   µg/L     Bénalaxyl   1687   0.005   µg/L     Bénalaxyl   1687   0.005   µg/L     Benaloxyl   1687   0.005   µg/L     BenAlLAXYL-M   7423   0.1   µg/L     Benfluraline   1132   0.005   µg/L     Benfluraline   1112   0.005   µg/L     Benfluracarbe   2924   0.01   µg/L     Bensulfuron-methyl   5512   0.005   µg/L     Bensulfuron-methyl   5512   0.005   µg/L     Bensulfuron-methyl   5512   0.005   µg/L     Bensulfuron-methyl   75512   0.005   µg/L     Bensulfuron-methyl   7460   0.005   µg/L     Bensulfuron-methyl   7460   0.005   µg/L     Bentazone   1113   0.02   µg/L     Bentazone   1764   0.005   µg/L     Bentazone   1764   0.005   µg/L     Bentazone   1764   0.005   µg/L     Benzione   1764   0.005   µg/L     Benzione   1764   0.005   µg/L     Benzione   18306   5   µg/L     Benzione   18306   5   µg/L     Benzione   1116   0.000   µg/L     Benzo (a) Anthracène   1082   0.001   µg/L     Benzo (b) Fluoranthène   1115   0.001   µg/L     Benzo (b) Fluoranthène   1116   0.0005   µg/L     Benzo (k) Fluoranthène   1117   0.005   µg/L     Benzo (k) Fluoranthène   1120   0.05   µg/L     Benzo (k) Fluoranthène   1502   0.05   µg/L     Betaxolol   6457   0.005   µg/L     Betaxolol   6458   0.005   µg/L     Birénox   1119   0.005   µg/L     Birénox   1119   0.005   µg/L     Birénox   1120   0.005   µg/L     Birénox   1120   0.005   µg/L     Birénol-A   2766   0.02   µg/L     Birénox   1529   0.005   µg/L	BDE71	2917	0.0002	μg/L
BDE85   2914   0.0002   µg/L     BDE99   2916   0.0002   µg/L     Beflubutamide   7522   0.01   µg/L     Bénalaxyl   1687   0.005   µg/L     Bénalaxyl   1687   0.005   µg/L     Benaloxyl   1687   0.005   µg/L     BenAlLAXYL-M   7423   0.1   µg/L     Benfluraline   1132   0.005   µg/L     Benfluraline   1112   0.005   µg/L     Benfluracarbe   2924   0.01   µg/L     Bensulfuron-methyl   5512   0.005   µg/L     Bensulfuron-methyl   5512   0.005   µg/L     Bensulfuron-methyl   5512   0.005   µg/L     Bensulfuron-methyl   75512   0.005   µg/L     Bensulfuron-methyl   7460   0.005   µg/L     Bensulfuron-methyl   7460   0.005   µg/L     Bentazone   1113   0.02   µg/L     Bentazone   1764   0.005   µg/L     Bentazone   1764   0.005   µg/L     Bentazone   1764   0.005   µg/L     Benzione   1764   0.005   µg/L     Benzione   1764   0.005   µg/L     Benzione   18306   5   µg/L     Benzione   18306   5   µg/L     Benzione   1116   0.000   µg/L     Benzo (a) Anthracène   1082   0.001   µg/L     Benzo (b) Fluoranthène   1115   0.001   µg/L     Benzo (b) Fluoranthène   1116   0.0005   µg/L     Benzo (k) Fluoranthène   1117   0.005   µg/L     Benzo (k) Fluoranthène   1120   0.05   µg/L     Benzo (k) Fluoranthène   1502   0.05   µg/L     Betaxolol   6457   0.005   µg/L     Betaxolol   6458   0.005   µg/L     Birénox   1119   0.005   µg/L     Birénox   1119   0.005   µg/L     Birénox   1120   0.005   µg/L     Birénox   1120   0.005   µg/L     Birénol-A   2766   0.02   µg/L     Birénox   1529   0.005   µg/L	BDE77	7437	0.0002	μg/L
BDE99	BDE85	2914	0.0002	
Beflubutamide         7522         0.01         µg/L           Bénalaxyl         1687         0.005         µg/L           BENALAXYL-M         7423         0.1         µg/L           Bendiocarbe         1329         0.005         µg/L           Benfuraline         1112         0.005         µg/L           Benfuracarbe         2924         0.01         µg/L           Bensulfuron-methyl         5512         0.005         µg/L           Bentazone         1113         0.00         µg/L           Bentazone         1113         0.00         µg/L           Bentazone         1114         0.5         µg/L           Benzisothiazolinone         8306         5         µg/L           Benzisothiazolinone         8306         5         µg/L           Benzisotiazola <td< td=""><td></td><td></td><td></td><td></td></td<>				
Bénalaxyl         1687         0.005         μg/L           BENALAXYL-M         7423         0.1         μg/L           Bendiocarbe         1329         0.005         μg/L           Benfluraline         1112         0.005         μg/L           Benfluracarbe         2924         0.01         μg/L           Benoxacor         2074         0.005         μg/L           Bensulide         6595         0.005         μg/L           Bensulide         6595         0.005         μg/L           Bentazone         1113         0.02         μg/L           Bentazone         1764         0.005         μg/L           Benzisothiazolinore         8306         5         μg/L           Benzisothiazolinone         8306         5         μg/L           Benzo (a) Anthracène         1082         0.001         μg/L           Benzo (b) Fluoranthène         1115         0.001         μg/L           Benzo (b) Fluoranthène         1116         0.0005         μg/L           Benzo (k) Fluoranthène         1117         0.0005         μg/L           Benzo (k) Fluoranthène         1117         0.0005         μg/L           Benzo (k) Fluora				
BENALAXYL-M   7423   0.1				
Bendiocarbe   1329   0.005   µg/L				
Benfluraline         1112         0.005         µg/L           Benfuracarbe         2924         0.01         µg/L           Benoxacor         2074         0.005         µg/L           Bensulfuron-methyl         5512         0.005         µg/L           Bensulide         6595         0.005         µg/L           Bentazone         1113         0.02         µg/L           Benthavalicarbe-isopropyl         7460         0.005         µg/L           Benthiocarbe         1764         0.005         µg/L           Benzisone         1114         0.5         µg/L           Benzisothiazolinone         8306         5         µg/L           Benzo (a) Anthracène         1082         0.001         µg/L           Benzo (a) Pyrène         1115         0.001         µg/L           Benzo (b) Fluoranthène         1116         0.0005         µg/L           Benzo (k) Fluoranthène         1117         0.0005         µg/L				
Benfuracarbe   2924   0.01				
Benoxacor   2074   0.005   mg/L				
Bensulfuron-methyl         5512         0.005         µg/L           Bensulide         6595         0.005         µg/L           Bentazone         1113         0.02         µg/L           Benthiavalicarbe-isopropyl         7460         0.005         µg/L           Benthiavalicarbe-isopropyl         7460         0.005         µg/L           Benzicarbe         1764         0.005         µg/L           Benzicarbe         1114         0.5         µg/L           Benzicarbiazolinone         8306         5         µg/L           Benzo (a) Anthracène         1082         0.001         µg/L           Benzo (b) Fluoranthène         1115         0.001         µg/L           Benzo (b) Fluoranthène         1118         0.0005         µg/L           Benzo (k) Fluoranthène         1117         <				
Bensulfuron-methyl         5512         0.005         µg/L           Bensulide         6595         0.005         µg/L           Bentazone         1113         0.02         µg/L           Benthiavalicarbe-isopropyl         7460         0.005         µg/L           Benthiavalicarbe-isopropyl         7460         0.005         µg/L           Benzisorhe         11764         0.005         µg/L           Benzisorhiazolinone         8306         5         µg/L           Benzo (a) Anthracène         1082         0.001         µg/L           Benzo (a) Pyrène         1115         0.001         µg/L           Benzo (b) Fluoranthène         1116         0.0005         µg/L           Benzo (k) Fluoranthène         1117	Benoxacor	2074	0.005	μg/L
Bensulide         6595         0.005         µg/L           Bentazone         1113         0.02         µg/L           Benthiavalicarbe-isopropyl         7460         0.005         µg/L           Benthiocarbe         1764         0.005         µg/L           Benzione         1114         0.5         µg/L           Benziothiazolinone         8306         5         µg/L           Benzo (a) Anthracène         1082         0.001         µg/L           Benzo (a) Pyrène         1115         0.001         µg/L           Benzo (b) Fluoranthène         1116         0.0005         µg/L           Benzo (k) Fluoranthène         1118         0.0005         µg/L           Benzo (k) Fluoranthène         1117         0.0005         µg/L           Benzo (ghi) Pérylène         1118         0.0005         µg/L           Benzo (ghi) Pérylène         1118         0.00         µg/L           Benzo (ghi) Pérylène         1118         0.00	Bensulfuron-methyl	5512	0.005	
Bentazone         1113         0.02         µg/L           Benthiavalicarbe-isopropyl         7460         0.005         µg/L           Benthiocarbe         1764         0.005         µg/L           Benzène         1114         0.5         µg/L           Benzo (a) Purben         1114         0.5         µg/L           Benzo (a) Anthracène         1082         0.001         µg/L           Benzo (a) Pyrène         1115         0.001         µg/L           Benzo (b) Fluoranthène         1116         0.0005         µg/L           Benzo (k) Fluoranthène         1117         0.0005         µg/L           Berzi (ghi) Pérylène         1118         0.00         µg/L           Berzi (ghi) Pérylène         1329	Bensulide	6595	0.005	
Benthiavalicarbe-isopropyl         7460         0.005         µg/L           Benthiocarbe         1764         0.005         µg/L           Benzène         1114         0.5         µg/L           Benzisothiazolinone         8306         5         µg/L           Benzo (a) Anthracène         1082         0.001         µg/L           Benzo (b) Fluorantène         1115         0.001         µg/L           Benzo (b) Fluorantène         1116         0.0005         µg/L           Benzo (k) Fluorantène         1117         0.000         µg/L           Benzo (k) Fluorantène         1117         0.00         µg/L           Benzo (k) Fluorantène         1127         0.05         µg/L           Benzo (k) Fluorantène         1127 </td <td>Bentazone</td> <td>1113</td> <td>0.02</td> <td></td>	Bentazone	1113	0.02	
Benthiocarbe         1764         0.005         µg/L           Benziene         1114         0.5         µg/L           Benzo (a) Anthracène         1082         0.001         µg/L           Benzo (a) Pyrène         1115         0.001         µg/L           Benzo (b) Fluoranthène         1116         0.0005         µg/L           Benzo (k) Fluoranthène         1118         0.0005         µg/L           Benzo (k) Fluoranthène         1117         0.0005         µg/L           Benzyl butyl phtalate         1924         0.05         µg/L           Benzyl butyl phtalate         1924         0.05         µg/L           Beryllium         1377         0.01         µg/Bep/l           Beta vellol         6457         0.05         µg/L           Beta vellol         6457         0.005         µg/L           Bifenthrine         1119         0.005         µg/L           Bifenthrine         1120         0.005         µg/L				
Benzène         1114         0.5         µg/L           Benzisothiazolinone         8306         5         µg/L           Benzo (a) Anthracène         1082         0.001         µg/L           Benzo (b) Privanthane         1115         0.001         µg/L           Benzo (b) Fluoranthène         1116         0.0005         µg/L           Benzo (k) Fluoranthène         1117         0.0005         µg/L           Benza (k) Fluoranthène         1117         0.0005         µg/L           Benza (k) Fluoranthène         1124         0.05         µg/L           Berzafisota         1320         0.01         µg/L         µg/L           Berzafisate         6652         0.05         µg/L         µg/L         Bezafibrate         5366         0.005         µg/L         µg/L         Bisénenthine         1119				
Benzisothiazolinone         8306         5         µg/L           Benzo (a) Anthracène         1082         0.001         µg/L           Benzo (a) Pyrène         1115         0.001         µg/L           Benzo (b) Fluoranthène         1116         0.0005         µg/L           Benzo (ghi) Pérylène         1118         0.0005         µg/L           Benzo (k) Fluoranthène         1117         0.0005         µg/L           Benzyl butyl phalate         1924         0.05         µg/L           Beryllium         1377         0.01         µg(Be)/L           Beta cyfluthrine         3209         0.01         µg/L           Beta cyfluthrine         6652         0.05				
Benzo (a) Anthracène         1082         0.001         µg/L           Benzo (a) Pyrène         1115         0.001         µg/L           Benzo (ghi) Fluoranthène         1116         0.0005         µg/L           Benzo (ghi) Péryiène         1118         0.0005         µg/L           Benzo (k) Fluoranthène         1117         0.0005         µg/L           Benzot butyl phalate         1924         0.02         µg/L           Benzyl butyl phalate         1924         0.05         µg/L           Beta vgliuthrine         3209         0.01         µg/L           Beta vgliuthrine         3209         0.01         µg/L           Beta-ketavpfluthrine         3209         0.01         µg/L           Betavolol         6457         0.005         µg/L           Betavolol         6457         0.005         µg/L           Bisfenox         1119         0.005         µg/L           Bifenox         1119         0.005         µg/L           Birenthrine         1120         0.005         µg/L           Bioresméthrine         1502         0.005         µg/L           Bisphényle         1584         0.005         µg/L				
Benzo (a) Pyrène				
Benzo (b) Fluoranthène         1116         0.0005         µg/L           Benzo (ghi) Pérylène         1118         0.0005         µg/L           Benzo (k) Fluoranthène         1117         0.0005         µg/L           Benzo (k) Fluoranthène         1117         0.0005         µg/L           Benzoli socialità         7543         0.02         µg/L           Benzyl butyl phtalate         1924         0.05         µg/L           Beryllium         1377         0.01         µg/Bel/L           Beta cyfluthrine         3209         0.01         µg/L           Beta cyfluthrine         6652         0.05         µg/L           Betaxolol         6457         0.005         µg/L           Bifentor         1119         0.005         µg/L           Birentare				
Benzo (ghi) Pérylène         1118         0.0005         µg/L           Benzo (k) Fluoranthène         1117         0.0005         µg/L           Benzo (k) Fluoranthène         1117         0.0005         µg/L           Benzyl butyl phalate         1924         0.05         µg/L           Beryllium         1377         0.01         µg(Be)/L           Beta cyfluthrine         3209         0.01         µg/L           beta-Hexabromocyclododecane         6652         0.05         µg/L           Betaxolol         6457         0.005         µg/L           Berafibrate         5366         0.005         µg/L           Bifenox         1119         0.005         µg/L           Bifenox         1119         0.005         µg/L           Bioresméthrine         1502         0.005         µg/L           Bioresméthrine         1520         0.005         µg/L           Bisphényle         1584         0.005         µg/L           Bisphényle         1584         0.005         µg/L           Bisphénol-A         2766         0.02         µg/L           Bisphénol-A         2766         0.02         µg/L           Bithionol				
Benzo (k) Fluoranthène         1117         0.0005         µg/L           Benzotriazole         7543         0.02         µg/L           Benzyl butyl phtalate         1924         0.05         µg/L           Beryllium         1377         0.01         µg (Be)/L           Beta cyfluthrine         3209         0.01         µg/L           beta-keabromocyclododecane         6652         0.05         µg/L           Betaxolol         6457         0.005         µg/L           Bezafibrate         5366         0.005         µg/L           Bifenthrine         1119         0.005         µg/L           Bifenthrine         1120         0.005         µg/L           Bioresméthrine         1502         0.005         µg/L           Bisphényle         1584         0.005         µg/L           Bisphényle         1584         0.005         µg/L           Bisphénol S         7594         0.02         µg/L           Bisphénol A         2766         0.02         µg/L           Bithionol         7104         0.05         µg/L           Bitranol         1529         0.005         µg/L           Bixafen         7345				
Benzotriazole         7543         0.02         µg/L           Benzyl butyl phtalate         1924         0.05         µg/L           Beryllium         1377         0.01         µg(Be)/L           Beta cyfluthrine         3209         0.01         µg/L           beta-Hexabromocyclododecane         6652         0.05         µg/L           Betaxolol         6457         0.005         µg/L           Bezafibrate         5366         0.005         µg/L           Birenthrine         1119         0.005         µg/L           Birenthrine         1120         0.005         µg/L           Biphényle         1584         0.005         µg/L           Bisphenol         6453         0.005         µg/L           Bisphenol S         7594         0.02         µg/L           Bisphenol-A         2766         0.02         µg/L           Bitertanol         1529         0.005         µg/L           Bithinol         7104         0.05         µg/L           Bixafen         7345         0.005         µg/L           Bore         1362         10         µg/B)/L           Brodifacoum         5526         0.005				
Benzyl butyl phtalate         1924         0.05         µg/L           Beryllium         1377         0.01         µg(Be)/L           Beta cyfluthrine         3209         0.01         µg/L           beta-Hexabromocyclododecane         6652         0.05         µg/L           Betaxolol         6457         0.005         µg/L           Bezafibrate         5366         0.005         µg/L           Bifénox         1119         0.005         µg/L           Bifenthrine         1120         0.005         µg/L           Bioresméthrine         1502         0.005         µg/L           Bisphenyle         1584         0.005         µg/L           Bisphenol         6453         0.005         µg/L           Bisphenol S         7594         0.02         µg/L           Bisphénol-A         2766         0.02         µg/L           Bitertanol         1529         0.005         µg/L           Bithionol         7104         0.05         µg/L           Biteranol         1529         0.005         µg/L           Boscalid         5526         0.005         µg/L           Boscalid         5526         0.005 <td>Benzo (k) Fluoranthène</td> <td>1117</td> <td>0.0005</td> <td>μg/L</td>	Benzo (k) Fluoranthène	1117	0.0005	μg/L
Beryllium         1377         0.01         µg(Be)/I           Beta cyfluthrine         3209         0.01         µg/L           beta-Hexabromocyclododecane         6652         0.05         µg/L           Betaxolol         6457         0.005         µg/L           Bezafibrate         5366         0.005         µg/L           Bifenox         1119         0.005         µg/L           Bifenthrine         1120         0.005         µg/L           Bioresméthrine         1502         0.005         µg/L           Bisphényle         1584         0.005         µg/L           Bispoprolol         6453         0.005         µg/L           Bisphénol-A         2766         0.02         µg/L           Bitertanol         1529         0.005         µg/L           Bithionol         7104         0.05         µg/L           Bixafen         7345         0.005         µg/L           Boscalid         5526         0.005         µg/L           Brodifacoum         5546         0.5         µg/L           Bromacil         1686         0.005         µg/L           Bromazepam         5371         0.01         <	Benzotriazole	7543	0.02	μg/L
Beta cyfluthrine         3209         0.01         µg/L           beta-Hexabromocyclododecane         6652         0.05         µg/L           Betaxolol         6457         0.005         µg/L           Bezafibrate         5366         0.005         µg/L           Bifenox         1119         0.005         µg/L           Bifenthrine         1120         0.005         µg/L           Bioresméthrine         1502         0.005         µg/L           Bisphényle         1584         0.005         µg/L           Bisphenol S         7594         0.02         µg/L           Bisphénol-A         2766         0.02         µg/L           Bitertanol         1529         0.005         µg/L           Bithinol         7104         0.05         µg/L           Bixafen         7345         0.005         µg/L           Boscalid         5526         0.005         µg/L           Bromacil         1686         0.005         µg/L           Bromacil         1686         0.005         µg/L           Bromacipome         1321         0.5         µg/L           Bromoflorométhane         1121         0.5         <	Benzyl butyl phtalate	1924	0.05	μg/L
Beta cyfluthrine         3209         0.01         µg/L           beta-Hexabromocyclododecane         6652         0.05         µg/L           Betaxolol         6457         0.005         µg/L           Bezafibrate         5366         0.005         µg/L           Bifenox         1119         0.005         µg/L           Bifenthrine         1120         0.005         µg/L           Bioresmethrine         1502         0.005         µg/L           Bisphényle         1584         0.005         µg/L           Bisphenol S         7594         0.02         µg/L           Bisphenol-A         2766         0.02         µg/L           Bitertanol         1529         0.005         µg/L           Bitertanol         7104         0.05         µg/L           Bitafen         7345         0.005         µg/L           Bore         1362         10         µg/B/L           Brodifacoum         5546         0.5         µg/L           Bromacil         1686         0.005         µg/L           Bromacil         1686         0.005         µg/L           Bromacilonométhane         1121         0.5 <td< td=""><td>Beryllium</td><td>1377</td><td>0.01</td><td>μg(Be)/L</td></td<>	Beryllium	1377	0.01	μg(Be)/L
beta-Hexabromocyclododecane         6652         0.05         µg/L           Betaxolol         6457         0.005         µg/L           Bezafibrate         5366         0.005         µg/L           Bifénox         1119         0.005         µg/L           Bifenthrine         1120         0.005         µg/L           Bioresméthrine         1502         0.005         µg/L           Biphényle         1584         0.005         µg/L           Bisphenol G         6453         0.005         µg/L           Bisphenol S         7594         0.02         µg/L           Bisphénol-A         2766         0.02         µg/L           Bitertanol         1529         0.005         µg/L           Bithinol         7104         0.05         µg/L           Bixafen         7345         0.005         µg/L           Bore         1362         10         µg/B/L           Boscalid         5526         0.005         µg/L           Bromacil         1686         0.005         µg/L           Bromazepam         5371         0.01         µg/L           Bromoforme         1121         0.5         µg/L		3209	0.01	
Betaxolol         6457         0.005         µg/L           Bezafibrate         5366         0.005         µg/L           Bifénox         1119         0.005         µg/L           Bifenthrine         1120         0.005         µg/L           Bioresméthrine         1502         0.005         µg/L           Bisphényle         1584         0.005         µg/L           Bisphenol S         7594         0.02         µg/L           Bisphénol-A         2766         0.02         µg/L           Bitertanol         1529         0.005         µg/L           Bithionol         7104         0.05         µg/L           Bixafen         7345         0.005         µg/L           Bore         1362         10         µg(B)/L           Brodifacoum         5526         0.005         µg/L           Bromacil         1686         0.05         µg/L           Bromazepam         5371         0.01         µg/L           Bromoforme         1121         0.5         µg/L				
Bezafibrate         5366         0.005         µg/L           Bifénox         1119         0.005         µg/L           Bifenthrine         1120         0.005         µg/L           Bioresméthrine         1502         0.005         µg/L           Biphényle         1584         0.005         µg/L           Bisphényle         1584         0.005         µg/L           Bisphényle         1584         0.005         µg/L           Bisphénol         6453         0.005         µg/L           Bisphénol-A         2766         0.02         µg/L           Bithionol         1529         0.005         µg/L           Bithionol         7104         0.05         µg/L           Bixafen         7345         0.005         µg/L           Bore         1362         10         µg/B)/L           Boscalid         5526         0.005         µg/L           Brodifacoum         5546         0.5         µg/L           Bromacil         1686         0.005 <tp>µg/L           Bromaciapam         5371         0.01         µg/L           Bromochorométhane         1121         0.5         µg/L</tp>				
Bifénox         1119         0.005         µg/L           Bifenthrine         1120         0.005         µg/L           Bioresméthrine         1502         0.005         µg/L           Bisphényle         1584         0.005         µg/L           Bisoprolol         6453         0.005         µg/L           Bisphenol S         7594         0.02         µg/L           Bisphénol-A         2766         0.02         µg/L           Bitertanol         1529         0.005         µg/L           Bithionol         7104         0.05         µg/L           Bixafen         7345         0.005         µg/L           Bore         1362         10         µg/B/L           Boscalid         5526         0.005         µg/L           Bromacil         1686         0.05         µg/L           Bromacil         1686         0.005         µg/L           Bromacapam         5371         0.01         µg/L           Bromochlorométhane         1121         0.5         µg/L           Bromoforme         1122         0.5         µg/L				
Bifenthrine         1120         0.005         µg/L           Bioresméthrine         1502         0.005         µg/L           Biphényle         1584         0.005         µg/L           Bisphenol         6453         0.005         µg/L           Bisphenol S         7594         0.02         µg/L           Bisphénol-A         2766         0.02         µg/L           Bitertanol         1529         0.005         µg/L           Bithionol         7104         0.05         µg/L           Bixafen         7345         0.005         µg/L           Bore         1362         10         µg/B/L           Boscalid         5526         0.005         µg/L           Bromacil         1686         0.005         µg/L           Bromacil         1686         0.005         µg/L           Bromazepam         5371         0.01         µg/L           Bromoforme         1121         0.5         µg/L           Bromoforme         1122         0.5         µg/L				
Bioresméthrine         1502         0.005         μg/L           Biphényle         1584         0.005         μg/L           Bisoprolol         6453         0.005         μg/L           Bisphenol S         7594         0.02         μg/L           Bisphénol-A         2766         0.02         μg/L           Bitertanol         1529         0.005         μg/L           Bithionol         7104         0.05         μg/L           Bixafen         7345         0.005         μg/L           Bore         1362         10         μg/B)/L           Brodifacoum         5526         0.005         μg/L           Bromacil         1686         0.05         μg/L           Bromacil         1686         0.005         μg/L           Bromazepam         5371         0.01         μg/L           Bromochorométhane         1121         0.5         μg/L           Bromoforme         1122         0.5         μg/L				
Biphényle         1584         0.005         µg/L           Bisoprolol         6453         0.005         µg/L           Bisphénol S         7594         0.02         µg/L           Bisphénol-A         2766         0.02         µg/L           Bitertanol         1529         0.005         µg/L           Bithionol         7104         0.05         µg/L           Bixafen         7345         0.005         µg/L           Bore         1362         10         µg/B/L           Brosalid         5526         0.005         µg/L           Brodifacoum         5546         0.5         µg/L           Bromacil         1686         0.005         µg/L           Bromadiolone         1859         0.05         µg/L           Bromazepam         5371         0.01         µg/L           Bromochorométhane         1121         0.5         µg/L           Bromoforme         1122         0.5         µg/L				
Bisoprolol         6453         0.005         µg/L           Bisphenol S         7594         0.02         µg/L           Bisphénol-A         2766         0.02         µg/L           Bitertanol         1529         0.005         µg/L           Bithionol         7104         0.05         µg/L           Bixafen         7345         0.005         µg/L           Bore         1362         10         µg(B)/L           Boscalid         5526         0.005         µg/L           Bromacil         1686         0.05         µg/L           Bromadiolone         1859         0.05         µg/L           Bromazepam         5371         0.01         µg/L           Bromochlorométhane         1121         0.5         µg/L           Bromoforme         1122         0.5         µg/L				
Bisphenol S         7594         0.02         µg/L           Bisphénol-A         2766         0.02         µg/L           Bitertanol         1529         0.005         µg/L           Bithionol         7104         0.05         µg/L           Bixafen         7345         0.005         µg/L           Bore         1362         10         µg(B)/L           Boscalid         5526         0.005         µg/L           Bromacil         1686         0.05         µg/L           Bromacil         1686         0.005         µg/L           Bromazepam         5371         0.01         µg/L           Bromochlorométhane         1121         0.5         µg/L           Bromoforme         1122         0.5         µg/L				
Bisphénol-A         2766         0.02         µg/L           Bitertanol         1529         0.005         µg/L           Bithionol         7104         0.05         µg/L           Bixafen         7345         0.005         µg/L           Bore         1362         10         µg(B)/L           Boscalid         5526         0.005         µg/L           Brodifacoum         5546         0.5         µg/L           Bromacil         1686         0.005         µg/L           Bromadiolone         1859         0.05         µg/L           Bromazepam         5371         0.01         µg/L           Bromochorométhane         1121         0.5         µg/L           Bromoforme         1122         0.5         µg/L				μg/L
Bitertanol         1529         0.005         µg/L           Bithionol         7104         0.05         µg/L           Bixafen         7345         0.005         µg/L           Bore         1362         10         µg/B)/L           Boscalid         5526         0.005         µg/L           Brodifacoum         5546         0.5         µg/L           Bromacil         1686         0.005         µg/L           Bromadiolone         1859         0.05         µg/L           Bromazepam         5371         0.01         µg/L           Bromochlorométhane         1121         0.5         µg/L           Bromoforme         1122         0.5         µg/L		7594	0.02	μg/L
Bitertanol         1529         0.005         μg/L           Bithionol         7104         0.05         μg/L           Bixafen         7345         0.005         μg/L           Bore         1362         10         μg/B)/L           Boscalid         5526         0.005         μg/L           Brodifacoum         5546         0.5         μg/L           Bromacil         1686         0.005         μg/L           Bromadiolone         1859         0.05         μg/L           Bromazepam         5371         0.01         μg/L           Bromochlorométhane         1121         0.5         μg/L           Bromoforme         1122         0.5         μg/L	Bisphénol-A	2766	0.02	μg/L
Bithionol         7104         0.05         μg/L           Bixafen         7345         0.005         μg/L           Bore         1362         10         μg/B)/L           Boscalid         5526         0.005         μg/L           Brodifacoum         5546         0.5         μg/L           Bromacil         1686         0.005         μg/L           Bromadiolone         1859         0.05         μg/L           Bromazepam         5371         0.01         μg/L           Bromochlorométhane         1121         0.5         μg/L           Bromoforme         1122         0.5         μg/L	Bitertanol	1529	0.005	
Bixafen         7345         0.005         µg/L           Bore         1362         10         µg(B)/L           Boscalid         5526         0.005         µg/L           Brodifacoum         5546         0.5         µg/L           Bromacil         1686         0.005         µg/L           Bromadiolone         1859         0.05         µg/L           Bromazepam         5371         0.01         µg/L           Bromochlorométhane         1121         0.5         µg/L           Bromoforme         1122         0.5         µg/L				
Bore         1362         10         μg(B)/L           Boscalid         5526         0.005         μg/L           Brodifacoum         5546         0.5         μg/L           Bromacil         1686         0.005         μg/L           Bromadiolone         1859         0.05         μg/L           Bromazepam         5371         0.01         μg/L           Bromochlorométhane         1121         0.5         μg/L           Bromoforme         1122         0.5         μg/L				
Boscalid         5526         0.005         µg/L           Brodifacoum         5546         0.5         µg/L           Bromacil         1686         0.005         µg/L           Bromadiolone         1859         0.05         µg/L           Bromazepam         5371         0.01         µg/L           Bromochlorométhane         1121         0.5         µg/L           Bromoforme         1122         0.5         µg/L				
Brodifacoum         5546         0.5         µg/L           Bromacil         1686         0.005         µg/L           Bromadiolone         1859         0.05         µg/L           Bromazepam         5371         0.01         µg/L           Bromochlorométhane         1121         0.5         µg/L           Bromoforme         1122         0.5         µg/L				
Bromacil         1686         0.005         µg/L           Bromadiolone         1859         0.05         µg/L           Bromazepam         5371         0.01         µg/L           Bromochlorométhane         1121         0.5         µg/L           Bromoforme         1122         0.5         µg/L				
Bromadiolone         1859         0.05         μg/L           Bromazepam         5371         0.01         μg/L           Bromochlorométhane         1121         0.5         μg/L           Bromoforme         1122         0.5         μg/L				
Bromazepam         5371         0.01         µg/L           Bromochlorométhane         1121         0.5         µg/L           Bromoforme         1122         0.5         µg/L				
Bromochlorométhane         1121         0.5         µg/L           Bromoforme         1122         0.5         µg/L				
Bromoforme 1122 0.5 μg/L				
	Bromochlorométhane		0.5	μg/L
	Bromoforme	1122	0.5	μg/L
Bromophos ethyl   1123   0.005   μg/L	Bromophos éthyl	1123	0.005	μg/L

Ethephon	2093	0.02	μg/L
Ethidimuron	1763	0.005	μg/L
Ethiofencarbe sulfone	5528	0.005	μg/L
Ethiofencarbe sulfoxyde	6534	0.02	μg/L
Ethion	1183	0.005	μg/L
Ethiophencarbe	1874	0.005	μg/L
Ethofumésate	1184	0.005	μg/L
Ethoprophos	1495	0.005	μg/L
Ethoxysulfuron	5527	0.005	μg/L
Ethyl tert-butyl ether	2673	0.003	μg/L
Ethylbenzène	1497	0.5	
EthylèneThioUrée	5648	0.3	μg/L
	6601	0.1	μg/L
EthylèneUrée			μg/L
Ethylparaben	6644	0.01	μg/L
Ethynyl estradiol	2629	0.001	μg/L
Etoxazole	5625	0.005	μg/L
Famoxadone	2020	0.005	μg/L
Famphur	5761	0.005	μg/L
Fénamidone	2057	0.005	μg/L
Fénarimol	1185	0.005	μg/L
Fénazaquin	2742	0.02	μg/L
Fenbendazole	6482	0.005	μg/L
Fenbuconazole	1906	0.005	μg/L
Fenchlorazole-ethyl	7513	0.1	μg/L
Fenchlorphos	1186	0.005	μg/L
Fenhexamid	2743	0.005	μg/L
Fénitrothion	1187	0.001	μg/L
Fenizon	5627	0.005	μg/L
Fenobucarb	5763	0.005	μg/L
Fenofibrate	5368	0.01	μg/L
Fenoprofen	6970	0.05	μg/L
Fenothiocarbe	5970	0.005	μg/L
Fénoxaprop éthyl	1973	0.003	μg/L
	1967	0.005	μg/L μg/L
Fénoxycarbe Fenpropathrine	1188	0.005	
			μg/L
Fenpropidine	1700	0.01	μg/L
F		0.005	/1
Fenpropimorphe	1189	0.005	μg/L
Fenthion	1189 1190	0.005	μg/L
Fenthion Fénuron	1189 1190 1500	0.005 0.02	μg/L μg/L
Fenthion Fénuron Fenvalérate	1189 1190 1500 1701	0.005 0.02 0.01	μg/L μg/L μg/L
Fenthion Fénuron Fenvalérate Fer	1189 1190 1500 1701 1393	0.005 0.02 0.01 322	μg/L μg/L μg/L μg(Fe)/L
Fenthion Fénuron Fenvalérate Fer Fipronil	1189 1190 1500 1701 1393 2009	0.005 0.02 0.01 322 0.005	µg/L µg/L µg/L µg(Fe)/L µg/L
Fenthion Fénuron Fenvalérate Fer Fipronil Fipronil sulfone	1189 1190 1500 1701 1393 2009 6260	0.005 0.02 0.01 322 0.005 0.01	µg/L µg/L µg/L µg(Fe)/L µg/L µg/L
Fenthion Fénuron Fenvalérate Fer Fipronil Fipronil sulfone Flamprop-isopropyl	1189 1190 1500 1701 1393 2009 6260 1840	0.005 0.02 0.01 322 0.005 0.01 0.005	μg/L μg/L μg/L μg(Fe)/L μg/L μg/L μg/L
Fenthion Fénuron Fenvalérate Fer Fipronil Fipronil sulfone	1189 1190 1500 1701 1393 2009 6260	0.005 0.02 0.01 322 0.005 0.01	µg/L µg/L µg/L µg(Fe)/L µg/L µg/L
Fenthion Fénuron Fenvalérate Fer Fipronil Fipronil sulfone Flamprop-isopropyl Flamprop-methyl Flazasulfuron	1189 1190 1500 1701 1393 2009 6260 1840 6539 1939	0.005 0.02 0.01 322 0.005 0.01 0.005 0.005 0.005	μg/L μg/L μg/L μg(Fe)/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg
Fenthion Fénuron Fenvalérate Fer Fipronil Fipronil sulfone Flamprop-isopropyl Flamprop-methyl	1189 1190 1500 1701 1393 2009 6260 1840 6539	0.005 0.02 0.01 322 0.005 0.01 0.005 0.005	μg/L μg/L μg/L μg(Fe)/L μg/L μg/L μg/L μg/L μg/L μg/L
Fenthion Fénuron Fenvalérate Fer Fipronil Fipronil sulfone Flamprop-isopropyl Flamprop-methyl Flazasulfuron	1189 1190 1500 1701 1393 2009 6260 1840 6539 1939	0.005 0.02 0.01 322 0.005 0.01 0.005 0.005 0.005	μg/L μg/L μg/L μg(Fe)/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg
Fenthion Fénuron Fenvalérate Fer Fipronil Fipronil sulfone Flamprop-isopropyl Flamprop-methyl Flazasulfuron Flocoumafen	1189 1190 1500 1701 1393 2009 6260 1840 6539 1939 5633	0.005 0.02 0.01 322 0.005 0.01 0.005 0.005 0.005 0.005	µg/L µg/L µg/L µg(Fe)/L µg/L µg/L µg/L µg/L µg/L µg/L
Fenthion Fénuron Fenvalérate Fer Fipronil Fipronil sulfone Flamprop-isopropyl Flamprop-methyl Flazasulfuron Flocoumafen Flonicamid	1189 1190 1500 1701 1393 2009 6260 1840 6539 1939 5633 6393	0.005 0.02 0.01 322 0.005 0.01 0.005 0.005 0.005 0.005 0.005	µg/L µg/L µg/L µg(Fe)/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L
Fenthion Fénuron Fenvalérate Fer Fipronil Fipronil sulfone Flamprop-isopropyl Flamprop-methyl Flazsulfuron Flocoumafen Floricamid Florasulam	1189 1190 1500 1701 1393 2009 6260 1840 6539 1939 5633 6393 2810	0.005 0.02 0.01 322 0.005 0.01 0.005 0.005 0.005 0.005 0.005 0.005	µg/L µg/L µg/L µg(Fe)/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg
Fenthion Fénuron Fénuron Fenvalérate Fer Fipronil Fipronil sulfone Flamprop-isopropyl Flamprop-methyl Flazasulfuron Flocoumafen Flonicamid Florasulam Florfenicol	1189 1190 1500 1701 1393 2009 6260 6260 1939 5633 633 2810 6764	0.005 0.02 0.01 322 0.005 0.005 0.005 0.005 0.2 0.005 0.005 0.2	µg/L µg/L µg/L µg/Fe)/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg
Fenthion Fénuron Fenvalérate Fer Fipronil Fipronil sulfone Flamprop-isopropyl Flamprop-methyl Flazasulfuron Flocoumafen Flonicamid Florasulam Florfenicol Fluazifop	1189 1190 1500 1701 1393 2009 6260 1840 6539 1939 5633 6393 2810 6764 6545	0.005 0.02 0.01 322 0.005 0.01 0.005 0.005 0.2 0.005 0.2 0.005 0.005 0.005	µg/L µg/L µg/L µg/Fe)/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L
Fenthion Fénuron Fénuron Fenvalérate Fer Fipronil Fipronil sulfone Filamprop-isopropyl Flamprop-methyl Flazsulfuron Flocoumafen Floricamid Floriasulam Florfenicol Fluazifop Fluazifop-butyl Fluazifop-P-butyl	1189 1190 1500 1701 1393 2009 6260 1840 6539 1939 5633 6393 2810 6764 6545 1825	0.005 0.02 0.01 322 0.005 0.01 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.1 0.005 0.005 0.005	нв/L нв/L нв/L нв/L нв/L нв/L нв/L нв/L
Fenthion Fénuron Fénuron Fenvalérate Fer Fipronil Fipronil sulfone Flamprop-isopropyl Flamprop-methyl Flazasulfuron Flocoumafen Flonicamid Floriamid Floriam	1189 1190 1500 1701 1393 2009 6260 1840 6539 1939 5633 6764 6545 1825 1404 2984	0.005 0.02 0.01 322 0.005 0.01 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	нв/L
Fenthion Fénuron Fénuron Fenvalérate Fer Fipronil Fipronil sulfone Flamprop-isopropyl Flamprop-methyl Flazasulfuron Flocoumafen Flonicamid Floricamid Florisulam Florfenicol Fluazifop-butyl Fluazifop-P-butyl Fluazimam Fluconazole	1189 1190 1500 1701 1393 2009 6260 1840 6539 1939 5633 6393 2810 6545 1825 1404 2984 8564	0.005 0.02 0.01 322 0.005 0.01 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	нв/L
Fenthion Fénuron Fénuron Fenvalérate Fer Fipronil Fipronil sulfone Flamprop-isopropyl Flamprop-methyl Flazasulfuron Flocoumafen Floricamid Florasulam Florfenicol Fluazifop Fluazifop-butyl Fluazifop-butyl Fluazifop-b-butyl Fluazifom Fluconazole Fludioxonil	1189 1190 1500 1701 1393 2009 6260 1840 6539 1939 2810 6764 6545 1825 1404 2984 8564 2022	0.005 0.02 0.01 322 0.005 0.01 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	нв/L
Fenthion Fénuron Fénuron Fenvalérate Fer Fipronil Fipronil sulfone Flamprop-isopropyl Flamprop-methyl Flazasulfuron Flocoumafen Floricamid Floriasulam Florfenicol Fluazifop Fluazifop-butyl FluazifopP-butyl Fluazimam Fluconazole Fludoxonil Fludienonil Flufenacet oxalate	1189 1190 1500 1701 1393 2009 6260 1840 6539 1939 5633 6393 2810 6764 6545 1825 1404 2984 8564 2022 6863	0.005 0.02 0.01 322 0.005 0.01 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	нв/L нв/L нв/L нв/I нв/I нв/L нв/L нв/L нв/L нв/L нв/L нв/L нв/L
Fenthion Fénuron Fénuron Fénuron Fenvalérate Fer Fipronil Fipronil sulfone Flamprop-isopropyl Flamprop-methyl Flazasulfuron Flocoumafen Flonicamid Floricamid Floriasulam Florfenicol Fluazifop Fluazifop-butyl Fluazifop-b-butyl Fluazifop-P-butyl Fluazinam Fluconazole Fludioxonil Flufuncet oxalate Flufenacet sulfonic acid	1189 1190 1500 1701 1393 2009 6260 1840 6539 1939 5633 6764 6545 1825 1404 2984 8564 2022 6863 6864	0.005 0.02 0.01 322 0.005 0.01 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	нв/L
Fenthion Fénuron Fénuron Fenvalérate Fer Fipronil Fipronil sulfone Flamprop-isopropyl Flamprop-methyl Flazasulfuron Flocoumafen Floricamid Florasulam Florfenicol Fluazifop Fluazifop-P-butyl Fluazifop-P-butyl Fluazimm Fluconazole Fludioxonil Flufenacet oxalate Flufenacet sulfonic acid Flufenoxuron	1189 1190 1701 1393 2009 6260 1840 6539 1939 5633 6393 2810 6545 1825 1404 2022 6863 6864 1676	0.005 0.02 0.01 322 0.005 0.01 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.01 0.005 0.02 0.005 0.05 0.005 0.01 0.005	нв/L
Fenthion Fénuron Fénuron Fenvalérate Fer Fipronil Fipronil sulfone Filamprop-isopropyl Flamprop-methyl Flazasulfuron Flocoumafen Floricamid Florasulam Florfenicol Fluazifop Fluazifop-butyl Fluazifop-butyl Fluazifop-butyl Fluazinam Fluconazole Fludioxonil Flufenacet sulfonic acid Flufenacet sulfonic acid Flufenacet sulfonic acid Flufenacet sulfonic acid Flufenacune	1189 1190 1500 1701 1393 2009 6560 1840 6539 1939 2810 6764 6764 5635 1404 2984 2984 2022 6863 6864 1676 5635	0.005 0.02 0.01 322 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	нв/L
Fenthion Fénuron Fénuron Fenvalérate Fer Fipronil Fipronil sulfone Flamprop-isopropyl Flamprop-methyl Flazasulfuron Flocoumafen Floricamid Floriasulam Florfenicol Fluazifop Fluazifop-butyl Fluazifop-butyl Fluazimam Fluconazole Fludiconnil Fludenacet sulfonic acid Flufenoxuron Flufenoxuron Flufenoxuron Flufenoxuron Flumequine Flumenoxies	1189 1190 1500 1701 1393 2009 6260 1840 6539 1939 2810 6764 6545 1825 1404 2984 8564 2022 6863 6864 1676 5635 2023	0.005 0.02 0.01 322 0.005 0.01 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	нв/L
Fenthion Fénuron Fénuron Fénuron Fénuron Fenvalérate Fer Fipronil Fipronil sulfone Filamprop-isopropyl Flamprop-methyl Flazasulfuron Flocoumafen Flonicamid Florasulam Florfenicol Fluazifop Fluazifop-butyl Fluazifop-P-butyl Fluazifop-P-butyl Fluazimm Fluconazole Fludioxonil Flufenacet oxalate Flufenacet sulfonic acid Flufenoxuron Flumequine Flumowazine Flumometuron	1189 1190 1500 1701 1393 2009 6260 1840 6539 1939 5633 6393 2810 6545 1825 1404 2984 8564 2022 6863 6864 1676 5635 2023 1501	0.005 0.02 0.01 322 0.005 0.01 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	
Fenthion Fénuron Fénuron Fenvalérate Fer Fipronil Fipronil sulfone Flamprop-isopropyl Flamprop-methyl Flazasulfuron Flocoumafen Floricamid Floriasulam Florfenicol Fluazifop Fluazifop-butyl Fluazifop-butyl Fluazimam Fluconazole Fludiconnil Fludenacet sulfonic acid Flufenoxuron Flufenoxuron Flufenoxuron Flufenoxuron Flumequine Flumenoxies	1189 1190 1500 1701 1393 2009 6260 1840 6539 1939 2810 6764 6545 1825 1404 2984 8564 2022 6863 6864 1676 5635 2023	0.005 0.02 0.01 322 0.005 0.01 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	µg/L µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l

Phénanthrène	1524	0.005	μg/L
Phénazone	5420	0.005	μg/L
Phenmédiphame	1236	0.02	μg/L
Phenthoate	5813	0.005	μg/L
Phenytoin	7708	0.05	μg/L
Phorate	1525	0.005	μg/L
Phosalone	1237	0.005	μg/L
Phosmet	1971	0.005	μg/L
Phosphamidon	1238	0.005	μg/L
Phoxime	1665	0.005	μg/L
Phtalate de diméthyle	1489	0.4	μg/L
Piclorame	1708	0.03	μg/L
Picolinafen	5665	0.02	μg/L
Picoxystrobine	2669	0.005	μg/L
Pinoxaden	7057	0.05	μg/L
Piperonil butoxide	1709	0.005	μg/L
Piperophos	5819	0.005	μg/L
Pirimicarbe	1528	0.01	μg/L
Pirimicarbe Desmethyl	5531	0.005	μg/L
Pirimicarbe Formamido Desmethyl	5532	0.005	μg/L
Piroxicam	7668	0.02	μg/L
Plomb	1382	0.17	μg(Pb)/L
p-Nitrotoluene	5821	0.02	μg/L
Pravastatine	6771	0.02	μg/L
Prednisolone	6734	0.02	μg/L
Pretilachlore	1949	0.005	μg/L
Prilocaine	6531	0.005	μg/L
Primidone	7961	0.02	μg/L
Pristinamycine IIA	6847	0.02	μg/L
Prochloraze	1253	0.001	μg/L
Procymidone	1664	0.005	μg/L
Profénofos	1889	0.005	μg/L
Progesterone	5402	0.02	μg/L
Promécarbe	1710	0.005	μg/L
Prométon	1711	0.005	μg/L
Prométryne	1254	0.005	μg/L
Propachlor ethane sulfonic acid	6887	0.02	μg/L
Propachlore	1712	0.01	μg/L
Propachlore OXA	7736	0.05	μg/L
Propamocarb	6398	0.005	μg/L
Propanil	1532	0.005	μg/L
Propaphos	6964	0.005	μg/L
Propaguizafop	1972	0.02	μg/L
Propargite	1255	0.005	μg/L
Propazine	1256	0.02	μg/L
Propazine 2-hydroxy	5968	0.005	μg/L
Propétamphos	1533	0.005	μg/L
Prophame	1534	0.02	μg/L
Propiconazole	1257	0.005	μg/L
Propoxur	1535	0.005	μg/L
Propoxycarbazone-sodium	5602	0.02	μg/L
Propranolol	5363	0.005	μg/L
Propylbenzène	1837	0.5	μg/L
Propylene thiouree	6214	0.5	μg/L
Propylparaben	6693	0.01	μg/L
Propyphénazone	5421	0.005	μg/L
Propyzamide	1414	0.005	μg/L
Proquinazid	7422	0.005	μg/L
Prosulfocarbe	1092	0.005	μg/L μg/L
Prosulfuron	2534	0.005	μg/L μg/L
Prothioconazole	5603	0.005	
Proximpham	7442	0.005	μg/L
Pymétrozine	5416	0.005	μg/L μg/L
Pyraclofos	6611	0.005	
r yr aciolos	0011	0.005	μg/L

<u></u>			
Bromophos méthyl	1124	0.005	μg/L
Bromopropylate	1685	0.005	μg/L
Bromoxynil	1125	0.005	μg/L
Bromoxynil octanoate	1941	0.01	μg/L
Bromuconazole	1860	0.005	μg/L
Bromure de méthyle	1530	0.05	μg/L
Bufencarbe	7502	0.02	μg/L
Buflomedil	6742	0.005	μg/L
Bupirimate	1861	0.01	μg/L
Bupivacaine	6518	0.005	μg/L
Buprofézine	1862	0.005	μg/L
Butamifos	5710	0.005	μg/L
Butraline	1126	0.005	μg/L
Buturon	1531	0.005	μg/L
Butylate	7038	0.003	μg/L
Butylbenzène n	1855	0.03	μg/L μg/L
Butylbenzène sec	1610	0.5	
,			μg/L
Butylbenzène tert	1611	0.5	μg/L
Cadmium	1388	0.01	μg(Cd)/L
Cadusafos	1863	0.005	μg/L
Cafeine	6519	0.01	μg/L
Captafol	1127	0.05	μg/L
Captane	1128	0.05	μg/L
Carbamazepine	5296	0.005	μg/L
Carbamazepine epoxide	6725	0.005	μg/L
Carbaryl	1463	0.005	μg/L
Carbendazime	1129	0.005	μg/L
Carbétamide	1333	0.005	μg/L
Carbofuran	1130	0.005	μg/L
Carbofuran 3 hydroxy	1805	0.005	μg/L
Carbophénothion	1131	0.005	μg/L
Carboxine	2975	0.005	μg/L
Carboxyibuprofen	6842	0.1	μg/L
Carfentrazone-ethyl	2976	0.005	μg/L
Cétylpyridium	8310	10	μg/L
Chinométhionate	1865	0.005	μg/L
Chlorantraniliprole	7500	0.005	μg/L
Chlorbufame	1336	0.02	μg/L
Chlordane alpha	7010	0.005	μg/L
Chlordane beta	1757	0.005	μg/L
Chlorefenizon	5553	0.005	μg/L
Chlorfenapyr	2861	0.003	
Chlorfenvinphos	1464	0.005	μg/L
	2950	0.005	μg/L
Chloridarana			μg/L
Chloringuron other	1133	0.005	μg/L
Chlorimuron-ethyl	5522	0.02	μg/L
Chlormadinone	5405	0.01	μg/L
Chlormadinone-acetate	7709	0.01	μg/L
Chlorméphos	1134	0.005	μg/L
Chlormequat	5554	0.03	μg/L
Chlormequat chlorure	2097	0.038	μg/L
Chloroalcanes C10-C13	1955	0.15	μg/L
Chloroaniline-2	1593	0.02	μg/L
Chloroaniline-3	1592	0.02	μg/L
Chloroaniline-4	1591	0.02	μg/L
Chlorobenzène	1467	0.5	μg/L
Chlorobromuron	2016	0.005	μg/L
Chloroéthane	1853	0.5	μg/L
Chloroforme (Trichlorométhane)	1135	0.5	μg/L
Chlorométhane	1736	0.5	μg/L
Chlorométhylaniline-4,2	2821	0.02	μg/L
Chlorométhylphénol-4,3	1636	0.02	μg/L
Chloronèbe	1341	0.005	μg/L
Chloronitroaniline-4,2	1594	0.1	μg/L

Fluoranthène	1191	0.005	μg/L
Fluorène	1623	0.005	μg/L
Fluoxetine	5373	0.005	μg/L
Flupyrsulfuron methyle	2565	0.005	μg/L
Fluquinconazole	2056	0.005	μg/L
Fluridone	1974	0.005	μg/L
Flurochloridone	1675	0.005	μg/L
Fluroxypyr	1765	0.02	μg/L
Fluroxypyr-meptyl	2547	0.02	μg/L
Flurprimidol	2024	0.005	μg/L
Flurtamone	2008	0.005	μg/L
Flusilazole	1194	0.005	μg/L
Flutolanil	2985	0.005	μg/L
Flutriafol	1503	0.005	μg/L
Fluvoxamine	6739	0.01	μg/L
fluxapyroxade	7342	0.005	μg/L
Folpel	1192	0.01	μg/L
Fomesafen	2075	0.05	μg/L
Fonofos	1674	0.005	μg/L
Foramsulfuron	2806	0.005	μg/L
Forchlorfenuron	5969	0.005	μg/L
Formaldéhyde	1702	1	μg/L
Foséthyl aluminium	1975	0.02	μg/L
Fosetyl	1816	0.0185	μg/L
Fosthiazate	2744	0.005	μg/L
Furalaxyl	1908	0.005	μg/L
Furathiocarbe	2567	0.003	μg/L
Furilazole	7441	0.005	μg/L
Furosemide	5364	0.003	μg/L
Gabapentine	7602	0.01	μg/L
Galaxolide	6618	0.025	μg/L μg/L
gamma-Hexabromocyclododecane	6653	0.023	μg/L
Gemfibrozil	5365	0.03	μg/L
Glufosinate	1526	0.02	μg/L
Glyphosate	1506	0.03	μg/L
Halosulfuron-methyl	5508	0.03	μg/L
Haloxyfop	2047	0.02	μg/L
Haloxyfop-éthoxyéthyl	1833	0.02	μg/L
Haloxyfop-R	1909	0.005	μg/L
HCH alpha	1200	0.003	μg/L
HCH beta	1201	0.001	μg/L
HCH delta	1202	0.001	μg/L
HCH epsilon	2046	0.001	μg/L
HCH gamma	1203	0.003	μg/L
Heptachlore	1197	0.001	μg/L
Heptachlore époxyde cis	1748	0.005	μg/L
Heptachlore époxyde trans	1749	0.005	μg/L
Heptenophos	1910	0.005	μg/L
Hexachlorobenzène	1199	0.003	μg/L μg/L
Hexachlorobutadiène	1652	0.001	μg/L
Hexachloroéthane	1656	0.02	μg/L μg/L
Hexachloropentadiène	2612	0.1	μg/L
Hexaconazole	1405	0.005	μg/L
Hexaflumuron	1875	0.005	μg/L
Hexazinone	1673	0.005	μg/L
Hexythiazox	1876	0.003	μg/L μg/L
Hydrazide maleique	5645	0.02	μg/L μg/L
Hydrochlorothiazide	6746	0.005	μg/L μg/L
Hydroxy-metronidazole	6730	0.003	μg/L μg/L
Ibuprofene	5350	0.01	μg/L μg/L
Ifosfamide	6727	0.005	
Imazalil	1704	0.005	μg/L μg/L
Imazaméthabenz	1695	0.005	μg/L μg/L
Imazaméthabenz méthyl	1911	0.003	
imazamethabenz metnyi	1711	0.01	μg/L

Pyraclostrobine	2576	0.005	μg/L
Pyraflufen-ethyl	5509	0.005	μg/L
Pyrazophos	1258	0.005	μg/L
Pyrazosulfuron-ethyl	6386	0.005	μg/L
Pyrazoxyfen	6530	0.005	μg/L
Pyrène	1537	0.005	μg/L
Pyributicarb	5826 1890	0.005	μg/L
Pyridabène	1890 5606	0.005	μg/L
Pyridaphenthion Pyridate	1259	0.005 0.05	μg/L
Pyrifénox	1663	0.03	μg/L
Pyriméthanil	1432	0.005	μg/L
Pyrimethanii Pyrimiphos éthyl	1260	0.003	μg/L
Pyrimiphos ethyl	1261	0.005	μg/L μg/L
Pyriproxyfène	5499	0.005	μg/L
Pyroxsulam	7340	0.005	μg/L
Quinalphos	1891	0.005	μg/L
Quinmerac	2087	0.005	μg/L
Quinoxyfen	2028	0.005	μg/L
Quintozène	1538	0.01	μg/L
Quizalofop	2069	0.02	μg/L
Quizalofop éthyl	2070	0.005	μg/L
Ranitidine	6529	0.005	μg/L
Rimsulfuron	1892	0.005	μg/L
Roténone	2029	0.005	μg/L
Roxythromycine	5423	0.05	μg/L
RS-Iopamidol RS-Iopamidol	7049	0.05	μg/L
S Métolachlore	2974	0.03	μg/L
Salbutamol	6527	0.005	μg/L
Sébuthylazine	1923	0.005	μg/L
Sebuthylazine 2-hydroxy	6101	0.005	μg/L
Sebutylazine desethyl	5981	0.005	μg/L
Secbumeton	1262	0.005	μg/L
Sedaxane	7724	0.01	μg/L
Sélénium	1385	0.1	μg(Se)/L
Sertraline	6769	0.005	μg/L
Séthoxydime	1808	0.02	μg/L
Siduron	1893	0.005	μg/L
Silthiopham	5609	0.005	μg/L
Silvex	1539	0.02	μg/L
Simazine	1263	0.005	μg/L
Simazine hydroxy	1831	0.005	μg/L
Simétryne	5477	0.005	μg/L
Somme de Méthylphénol-3 et de Méthy	5855 5424	0.02	μg/L
Sotalol		0.005	μg/L
Spinosad Spinosuma A	5610 7438	0.01	μg/L
Spinosyne A	7438	0.01	μg/L
Spinosyne D	7506	0.005	μg/L
Spirotetramat Spiroxamine	2664	0.005	μg/L
Styrène	1541	0.005	μg/L μg/L
Sulcotrione	1662	0.02	μg/L
Sulfadiazine	6758	0.02	μg/L
Sulfamethazine	6525	0.005	μg/L
Sulfamethizole	6795	0.005	μg/L
Sulfamethoxazole	5356	0.005	μg/L
Sulfaquinoxaline	6575	0.003	μg/L
Sulfathiazole	6572	0.005	μg/L
Sulfomethuron-methyl	5507	0.005	μg/L
Sulfonate de perfluorooctane (PFOS anio	6561	0.003	μg/L
Sulfosufuron	2085	0.002	μg/L
Sulfotep	1894	0.005	μg/L
Sulprofos	5831	0.003	μg/L
Taufluvalinate	1193	0.005	μg/L
			F-6/ -

Chloronitrobenzène-1,2	1469	0.01	μg/L
Chloronitrobenzène-1,3	1468	0.01	μg/L
Chloronitrobenzène-1,4	1470	0.01	μg/L
Chlorophacinone	1684	0.02	μg/L
Chlorophénol-2	1471	0.01	μg/L
Chlorophénol-3	1651	0.05	μg/L
Chlorophénol-4	1650	0.05	μg/L
Chloroprène	2611	0.5	μg/L
Chloropropène-3	2065	0.5	μg/L
Chlorothalonil	1473	0.001	μg/L
Chlorotoluène-2	1602	0.5	μg/L
Chlorotoluène-3	1601	0.5	μg/L
Chlorotoluène-4	1600	0.5	μg/L
Chloroxuron	1683	0.005	μg/L
Chlorprophame	1474	0.005	μg/L
Chlorpyriphos éthyl	1083	0.005	μg/L
Chlorpyriphos methyl	1540	0.005	
			μg/L
Chlorsulfuron	1353	0.005	μg/L
Chlortetracycline	6743	0.1	μg/L
Chlorthal dimethyl	2966	0.005	μg/L
Chlorthiamide	1813	0.01	μg/L
Chlorthiophos	5723	0.02	μg/L
Chlortoluron	1136	0.005	μg/L
Chlorure de Benzylidène	2715	0.1	μg/L
CHLORURE DE CHOLINE	2977	0.1	μg/L
Chlorure de didecyl dimethyl ammonium	6636	10	μg/L
Chlorure de vinyle	1753	0.05	μg/L
Chrome	1389	0.5	μg(Cr)/L
Chrysène	1476	0.005	μg/L
Cinosulfuron	5481	0.005	μg/L
Ciprofloxacine	6540	0.02	μg/L
Clarithromycine	6537	0.005	μg/L
Clenbuterol	6968	0.005	μg/L
Clethodim	2978	0.005	μg/L
Clindamycine	6792	0.005	μg/L
Clodinafop-propargyl	2095	0.005	μg/L
Clofentézine	1868	0.005	μg/L
Clomazone	2017	0.005	μg/L
Clopidol	8743	1	μg/L
Clopyralide	1810	0.02	μg/L
Cloquintocet mexyl	2018	0.005	μg/L
Clorsulone	6748	0.003	
Clothianidine	6389	0.005	μg/L μg/L
	5360	0.005	
Clotrimazole			μg/L
Cobalt	1379	0.05	μg(Co)/L
Cotinine	6520	0.008	μg/L
Coumafène	2972	0.005	μg/L
Coumaphos	1682	0.02	μg/L
Coumatétralyl	2019	0.005	μg/L
Crésol-ortho	1640	0.01	μg/L
Crésol-para Crésol-para	1638	0.1	μg/L
Crotamiton	3285	0.05	μg/L
Crotoxyphos	5724	0.005	μg/L
Crufomate	5725	0.005	μg/L
Cuivre	1392	0.1	μg(Cu)/L
Cumyluron	6391	0.005	μg/L
Cyanazine	1137	0.005	μg/L
Cyanofenphos	5726	0.005	μg/L
Cyanures libres	1084	0.2	μg(CN)/L
	5567	0.005	μg/L
Cyazofamid	5567		
Cycloate		0.02	μg/L
Cycloate	5567 5568 6733		μg/L μg/L
•	5568	0.02	μg/L μg/L μg/L

Imazamox	2986	0.005	μg/L
Imazapyr	2090	0.02	μg/L
IMAZAQUINE	2860	0.02	μg/L
Imibenconazole	7510	0.005	μg/L
Imidaclopride	1877	0.005	μg/L
Imipramine	6971	0.005	μg/L
Indéno(1,2,3-cd)pyrène	1204	0.0005	μg/L
Indometacine	6794	0.01	μg/L
Indoxacarbe	5483	0.02	μg/L
Iobitridol	6706	0.05	μg/L
Iodocarbe	2741	0.02	μg/L
Iodofenphos	2025	0.005	μg/L
Iodosulfuron	2563	0.005	μg/L
Iopromide	5377	0.05	μg/L
loxynil	1205	0.005	μg/L
loxynil methyl ester	2871	0.005	μg/L
loxynil octanoate	1942	0.01	μg/L
Ipoconazole	7508	0.005	μg/L
Iprobenfos	5777	0.005	μg/L
Iprodione	1206	0.05	μg/L
Iprovalicarbe	2951	0.005	μg/L
Irbesartan	6535	0.005	μg/L
Irgarol (Cybutryne)	1935	0.001	μg/L
Isobutylbenzène	1836	0.5	μg/L
Isodrine	1207	0.001	μg/L
Isofenphos	1829	0.005	μg/L
Isoprocarb	5781	0.005	μg/L
Isopropylbenzène	1633	0.5	μg/L
Isopropyltoluène o	2681	0.5	μg/L
Isopropyltoluène p	1856	0.5	μg/L
Isoproturon	1208	0.005	μg/L
Isoquinoline	6643	0.01	μg/L
Isothiocyanate de methyle	2722	0.05	μg/L
Isoxaben	1672	0.005	μg/L
Isoxadifen-éthyle	2807	0.005	μg/L
Isoxaflutol	1945	0.005	μg/L
Isoxathion	5784	0.005	μg/L
Karbutilate	7505	0.005	μg/L
Ketoprofene	5353	0.005	μg/L
Ketorolac	7669	0.01	μg/L
Kresoxim méthyl	1950	0.005	μg/L
Lambda Cyhalothrine	1094	0.00006	μg/L
Lauryl sulfate	5282	50	μg/L
Laurylpyridinium	8330	10	μg/L
Lénacile	1406	0.005	μg/L
Levamisole	6711	0.005	μg/L
Levonorgestrel	6770	0.02	μg/L
Lincomycine	7843	0.005	μg/L
Linuron	1209	0.005	μg/L
Lithium	1364	0.5	μg(Li)/L
Lorazepam	5374	0.005	μg/L
Malathion	1210	0.005	μg/L
Malathion-o-analog	5787	0.005	μg/L
Mancozèbe	1211	0.03	μg/L
Mandipropamid	6399	0.005	μg/L
Manèbe	1705	0.03	μg/L
Manganèse	1394	293	μg(Mn)/L
Marbofloxacine	6700	0.1	μg/L
MCPA-1-butyl ester	2745	0.005	μg/L
MCPA-2-ethylhexyl ester	2746	0.005	μg/L
MCPA-butoxyethyl ester	2747	0.005	μg/L
MCPA-ethyl-ester	2748	0.01	μg/L
MCPA-methyl-ester	2749	0.005	μg/L
Mecarbam	5789	0.005	μg/L

ГСМТВ	5834	0.01	μg/L
Fébuconazole	1694	0.005	μg/L
Γébufénozide	1895	0.005	μg/L
Γébufenpyrad	1896	0.005	μg/L
Fébupirimfos	7511	0.02	μg/L
rébutame	1661	0.005	μg/L
Γébuthiuron	1542	0.005	μg/L
Геспаzène	5413	0.01	μg/L
Téflubenzuron	1897	0.005	μg/L
Féfluthrine	1953	0.005	μg/L
Fellure	2559	0.003	μg(Te)/L
Tembotrione	7086	0.05	μg/L
Téméphos	1898	0.02	
Terbacile	1659	0.005	μg/L μg/L
Terbuméton	1266	0.005	μg/L
Terbuphos	1267	0.005	μg/L μg/L
Terbutaline	6963	0.003	
			μg/L
Ferbuthylazine	1268	0.005	μg/L
Ferbuthylazine déséthyl	2045	0.005	μg/L
Ferbuthylazine desethyl-2-hydroxy	7150	0.005	μg/L
Ferbuthylazine hydroxy	1954	0.02	μg/L
Terbutryne	1269	0.005	μg/L
Testosterone	5384	0.005	μg/L
Tetrabutyletain	1936	0.00058	μg/L
Fétrachloréthane-1,1,1,2	1270	0.5	μg/L
Fétrachloréthane-1,1,2,2	1271	0.02	μg/L
Tétrachloréthylène	1272	0.5	μg/L
Fétrachlorobenzène	2735	0.02	μg/L
Fétrachlorobenzène-1,2,3,4	2010	0.01	μg/L
Fétrachlorobenzène-1,2,3,5	2536	0.01	μg/L
Fétrachlorobenzène-1,2,4,5	1631	0.01	μg/L
Tétrachlorure de C	1276	0.5	μg/L
Tétrachlorvinphos	1277	0.005	μg/L
Tétraconazole	1660	0.005	μg/L
Tetracycline	6750	0.1	μg/L
Tétradécyl diméthyl benzyl ammonium	8298	10	μg/L
Tétradifon	1900	0.005	μg/L
Tétraphénylétain	5249	0.005	μg/L
Tetrasul	5837	0.01	μg/L
Thallium	2555	0.01	μg(TI)/L
Thiabendazole	1713	0.005	μg/L
Thiacloprid	5671	0.005	μg/L
Thiafluamide	1940	0.005	μg/L
Thiamethoxam	6390	0.005	μg/L
Thiazasulfuron	1714	0.02	μg/L
Thidiazuron	5934	0.005	μg/L
Thiencarbazone-methyl	7517	0.02	μg/L
Thifensulfuron méthyl	1913	0.005	μg/L
Thiocyclam hydrogen oxalate	7512	0.01	μg/L
Thiodicarbe	1093	0.02	μg/L
Thiofanox	1715	0.05	μg/L
Thiofanox sulfone	5476	0.005	μg/L
Thiofanox sulfoxyde	5475	0.005	μg/L
Fhiométon	2071	0.005	μg/L
Thionazin	5838	0.003	μg/L
Thiophanate-ethyl	7514	0.05	μg/L
Thiophanate-méthyl	1717	0.02	μg/L
Thirame	1717	0.02	
Ficlopidine	6524	0.005	μg/L
•			μg/L
Finolol	7965 5922	0.005 0.005	μg/L
Fitano			μg/L
Filane	1373	0.5	μg(Ti)/L
Foliciofos-methyl	5675	0.005	μg/L
Toluène	1278	0.5	μg/L

cyflufénamide	7748	0.05	μg/L
Cyfluthrine	1681	0.005	μg/L
Cyhalofop-butyl	5569	0.02	μg/L
Cyhalothrine	1138	0.005	μg/L
Cymoxanil	1139	0.005	μg/L
Cyperméthrine	1140	0.005	μg/L
Cyproconazole	1680	0.005	μg/L
Cyprodinil	1359	0.005	μg/L
Cyprosulfamide	7801	0.005	μg/L
Cyromazine	2897	0.02	μg/L
Cythioate	7503	0.02	μg/L
Daimuron	5930	0.005	μg/L
Dalapon	2094	0.02	μg/L
Daminozide	5597	0.02	μg/L
Danofloxacine	6677	0.1	μg/L
DCPMU (métabolite du Diuron)	1929	0.005	μg/L
DCPU (métabolite du blaton)	1930	0.005	μg/L
DDD-o,p'	1143	0.003	μg/L
DDD-o,p'	1143	0.001	μg/L μg/L
DDE-o,p'	1145	0.001	μg/L μg/L
DDE-p,p'	1145	0.001	μg/L μg/L
DDT-o,p'	1147	0.001	
	1147	0.001	μg/L
DDT-p,p' DEHP		0.001	μg/L
Deltaméthrine	6616 1149	0.001	μg/L
	1149	0.001	μg/L
Déméton S méthyl	1153	0.005	μg/L
Déméton S méthyl sulfone Déméton-O			μg/L
Déméton-S	1150	0.01	μg/L
	1152	0.01	μg/L
Déséthyl-terbuméthon	2051	0.005	μg/L
Desmediphame	2980	0.005	μg/L
Desméthylisoproturon	2738	0.005	μg/L
Desmétryne	1155	0.005	μg/L
Desvenlafaxine	6785	0.01	μg/L
Dexamethasone	6574	0.05	μg/L
Di iso heptyl phtalate	2538	0.1	μg/L
Diallate	1156	0.02	μg/L
Diazepam	5372	0.005	μg/L
Diazinon	1157	0.005	μg/L
Dibenzo (ah) Anthracène	1621	0.001	μg/L
Dibromo-1,2 chloro-3propane	1479	0.5	μg/L
Dibromoacétonitrile	1738	5	μg/L
Dibromochlorométhane	1158	0.05	μg/L
Dibromoéthane-1,2	1498	0.05	μg/L
Dibromométhane	1513	0.5	μg/L
Dibutyletain cation	7074	0.00039	μg/L
Dicamba	1480	0.03	μg/L

Mécoprop	1214	0.005	μg/L
Mecoprop n isobutyl ester	2870	0.005	μg/L
Mecoprop-1-octyl ester	2750	0.005	μg/L
Mecoprop-2,4,4-trimethylphenyl es	2751	0.005	μg/L
Mecoprop-2-butoxyethyl ester	2752	0.005	μg/L
Mecoprop-2-ethylhexyl ester	2753	0.005	μg/L
Mecoprop-2-octyl ester	2754	0.005	μg/L
Mecoprop-methyl ester	2755	0.005	μg/L
Mécoprop-P	2084	0.05	μg/L
Méfenacet	1968	0.005	μg/L
Méfenpyr diethyl	2930	0.005	μg/L
Mefluidide	2568	0.005	μg/L
Méfonoxam	2987	0.02	μg/L
Mepanipyrim	5533	0.005	μg/L
Mephosfolan	5791	0.005	μg/L
Mépiquat	1969	0.03	μg/L
Mépiquat chlorure	2089	0.04	μg/L
Mepivacaine	6521	0.005	μg/L
Mépronil	1878	0.005	μg/L
Meptyldinocap	1677	1	μg/L
Mercaptodiméthur	1510	0.005	μg/L
Mercaptodiméthur sulfoxyde	1804	0.005	μg/L
Mercure	1387	0.01	μg(Hg)/L
Mesosulfuron methyle	2578	0.005	μg/L
Mésotrione	2076	0.03	μg/L
metaflumizone	7747	0.02	μg/L
Métalaxyl	1706	0.005	μg/L
Métaldéhyde	1796	0.02	μg/L
Métamitrone	1215	0.005	μg/L
Metazachlor oxalic acid	6894	0.02	μg/L
Metazachlor sulfonic acid	6895	0.02	μg/L
Métazachlore	1670	0.005	μg/L
Metconazole	1879	0.005	μg/L
Metformine	6755	0.005	μg/L
Méthabenzthiazuron	1216	0.005	μg/L
Methacrifos	5792	0.02	μg/L
Méthamidophos	1671	0.005	μg/L
Méthidathion	1217	0.005	μg/L
Méthomyl	1218	0.005	μg/L
Methotrexate	6793	0.005	μg/L
Méthoxychlore	1511	0.005	μg/L
Methoxyfenoside	5511	0.1	μg/L
Méthyl-2-Fluoranthène	1619	0.001	μg/L
Méthyl-2-Naphtalène	1618	0.005	μg/L
Méthylchloroisothiazolinone	8252	0.2	μg/L
Wietriyiciiioroisotiiiazoiiiiorie			
Méthylisothiazolinone	8253	0.1	μg/L

Tolylfluanide	1719	0.005	μg/L
Tolyltriazole	6660	0.005	μg/L
Tramadol	6720	0.005	μg/L
Triadiméfon	1544	0.005	μg/L
Triadiménol	1280	0.005	μg/L
Triallate	1281	0.005	μg/L
Triasulfuron	1914	0.005	μg/L
Triazamate	1901	0.005	μg/L
Triazophos	1657	0.005	μg/L
Tribenuron-Methyle	2064	0.02	μg/L
Tributyl phosphorotrithioite	5840	0.02	μg/L
Tributyletain cation	2879	0.0001	μg/L
Tributylphosphate	1847	0.01	μg/L
Trichlopyr	1288	0.02	μg/L
Trichloréthane-1,1,1	1284	0.05	μg/L
Trichloréthane-1,1,2	1285	0.2	μg/L
Trichloréthylène	1286	0.5	μg/L
Trichlorobenzène-1,2,3	1630	0.05	μg/L
Trichlorobenzène-1,2,4	1283	0.05	μg/L
Trichlorobenzène-1,3,5	1629	0.05	μg/L
Trichlorofluorométhane	1195	0.05	μg/L
Trichlorophénol-2,4,5	1548	0.01	μg/L
Trichlorophénol-2,4,6	1549	0.02	μg/L
Trichloropropane-1,2,3	1854	0.5	μg/L
Trichlorotrifluoroéthane-1,1,2	1196	0.5	μg/L
Triclocarban	6989	0.005	μg/L
Triclosan	5430	0.02	μg/L
Tricyclazole	2898	0.005	μg/L
Tricyclohexyletain cation	2885	0.0005	μg/L
Trietazine	5842	0.005	μg/L
Trietazine 2-hydroxy	6102	0.005	μg/L
Trietazine desethyl	5971	0.005	μg/L
Trifloxystrobine	2678	0.005	μg/L
Triflumuron	1902	0.005	μg/L
Trifluraline	1289	0.005	μg/L
Triflusulfuron-methyl	2991	0.005	μg/L
Triforine	1802	0.005	μg/L
Trimetazidine	6732	0.005	μg/L
Trimethoprime	5357	0.005	μg/L
Triméthylbenzène-1,2,3	1857	1	μg/L
Triméthylbenzène-1,2,4	1609	1	μg/L
Triméthylbenzène-1,3,5	1509	1	μg/L
Trinexapac-ethyl	2096	0.02	μg/L
Trioctyletain cation	2886	0.0005	μg/L
Triphenyletain cation	6372	0.00059	μg/L
Triticonazole	2992	0.02	μg/L
Uniconazole	7482	0.005	μg/L
Uranium	1361	0.19	μg(U)/L
Vamidothion	1290	0.005	μg(U)/L μg/L
Vanadium	1384	0.003	μg(V)/L
Venlafaxine	7611	1	μg/L
Vinclozoline	1291	0.005	μg/L
Xylène-meta	1293	0.003	μg/L
Xylène-ortho	1292	0.05	μg/L
Xylène-para	1294	0.03	μg/L
Zinc	1383	1	μg(Zn)/L
Zolpidem	5376	0.005	μg(ZII)/ L μg/L
Zoxamide	2858	0.005	μg/L
20xamuc	2030	0.005	μg/ L

Agence de l'Eau RMC - Etude des	plans d'eau du programme	de surveillance d	les bassins Rhône-M	éditerranée et Cors	se - Rapport de
	données brutes et interp	rétation 2022 – L	ac de Nantua (01)		

# II. <u>Liste des micropolluants analysés sur sédiment</u>

Libellé paramètre	Code SANDRE	LQ	Unité
1-Butanol	2595	1000	μg/(kg MS)
1-Methylnaphthalene	2725	2	μg/(kg MS)
1-Propanol	2617	1000	μg/(kg MS)
2 4 D isopropyl ester	2872	5 & 10 & 20	μg/(kg MS)
2 4 D méthyl ester	2873	50 & 100 4 & 8	μg/(kg MS)
2 6 Dichlorobenzamide 2,2',5-Trichlorobiphenyl	2011 3164	1 & 2	μg/(kg MS) μg/(kg MS)
2,2-Dimethylbutane	2666	2	μg/(kg MS)
2,3,4-Trichloroanisole	2761	50 & 100	μg/(kg MS)
2,3-Dimethylbutane	2667	2	μg/(kg MS)
2,3-Dimethylpentane	2668	2	μg/(kg MS)
2-Butanol	2570	1000	μg/(kg MS)
2-Ethylhexanol	5263 2619	1000	μg/(kg MS)
2-Heptanone 2-Hexanone	2619	1000 1000	μg/(kg MS) μg/(kg MS)
2-Methyl-1-Butanol	2577	1000	μg/(kg MS)
2-Methylcyclohexanone	2630	1000	μg/(kg MS)
2-Methylpentane	2683	2	μg/(kg MS)
2-Nonanone	2631	1000	μg/(kg MS)
2-Pentanol	2584	1000	μg/(kg MS)
2-Pentanone 3-Chloro-4 méthylaniline	2633 2820	1000 50 & 100	μg/(kg MS) μg/(kg MS)
3-methyl-cyclohexanone	2636	1000	μg/(kg IVIS) μg/(kg MS)
3-Octanone	2634	1000	μg/(kg MS)
3-Pentanol	2587	1000	μg/(kg MS)
4-Heptanone	2638	1000	μg/(kg MS)
			,,,
Methylbenzylidene camph	6536	5 & 10 & 20	μg/(kg MS)
4-n-nonylphénol phenol diethoxylate (méla	5474 6369	5 & 10 & 20 10 & 20	μg/(kg MS) μg/(kg MS)
4-nonylphénols ramifiés	1958	10 & 20	μg/(kg MS)
c-Butyl-2,6-di-tert-butylph	7101	20 & 40	μg/(kg MS)
4-tert-butylphénol	2610	5 & 10 & 20	μg/(kg MS)
4-tert-octylphénol	1959	20 & 40	μg/(kg MS)
5-Methylchrysène	7155	10 & 20	μg/(kg MS)
5-Nonanone	2640	1000	μg/(kg MS)
Acénaphtène	1453	10 & 20 10 & 20	μg/(kg MS)
Acénaphtylène	1622	10 & 20	μg/(kg MS)
Acetate de butyle	2711	1000	μg/(kg MS)
Acetate de vinyle	6241	1000	μg/(kg MS)
Acétate d'éthyl	1496	1000	μg/(kg MS)
			<i>(</i> ()
Acétate d'Isopropyl	2710	1000	μg/(kg MS)
Acétochlore Acétone	1903 1455	4 & 8 1000	μg/(kg MS) μg/(kg MS)
Acetonitrile	5316	1000	μg/(kg MS)
Acibenzolar-S-Methyl	5581	5 & 10 & 20	μg/(kg MS)
e perfluoro-decanoïque (Pi	6509	50	μg/(kg MS)
erfluorohexanesulfonique	6830	50	μg/(kg MS)
perfluoro-n-hexanoïque (P	5978		
perfluorooctanesulfonique		50	μg/(kg MS)
	6560	5	μg/(kg MS)
e perfluoro-octanoïque (Pf	6560 5347	5 50	μg/(kg MS) μg/(kg MS)
	6560	5	μg/(kg MS) μg/(kg MS) μg/(kg MS)
e perfluoro-octanoïque (PF Aclonifen	6560 5347 1688 1310 2707	5 50 10 & 20 20 & 40 1000	μg/(kg MS) μg/(kg MS)
e perfluoro-octanoïque (Pf Aclonifen Acrinathrine Acrylate de methyle Acrylate d'ethyle	6560 5347 1688 1310 2707 2708	5 50 10 & 20 20 & 40 1000	μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS)
e perfluoro-octanoïque (Pf Aclonifen Acrinathrine Acrylate de methyle Acrylate d'ethyle Alachlore	6560 5347 1688 1310 2707 2708 1101	5 50 10 & 20 20 & 40 1000 1000 5 & 10 & 20	μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS)
e perfluoro-octanoïque (Pf Aclonifen Acrinathrine Acrylate de methyle Acrylate d'ethyle	6560 5347 1688 1310 2707 2708	5 50 10 & 20 20 & 40 1000	μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS)
e perfluoro-octanoïque (Pf Aclonifen Acrinathrine Acrylate de methyle Acrylate d'ethyle Alachlore Aldrine	6560 5347 1688 1310 2707 2708 1101 1103	5 50 10 & 20 20 & 40 1000 1000 5 & 10 & 20 5 & 10 & 20	μg/(kg MS)
e perfluoro-octanoïque (Pf Aclonifen Acrinathrine Acrylate de methyle Acrylate d'ethyle Alachlore	6560 5347 1688 1310 2707 2708 1101	5 50 10 & 20 20 & 40 1000 1000 5 & 10 & 20	μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS)
e perfluoro-octanoïque (PI Aclonifen Acrinathrine Acrylate de methyle Acrylate d'ethyle Alachlore Aldrine	6560 5347 1688 1310 2707 2708 1101 1103	5 50 10 & 20 20 & 40 1000 1000 5 & 10 & 20 5 & 10 & 20	µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS)
e perfluoro-octanoïque (PF Aclonifen Acrinathrine Acrylate de methyle Alachlore Alachlore Aldrine ha-Hexabromocyclododeca Alphaméthrine Aluminium Amétryne	6560 5347 1688 1310 2707 2708 1101 1103 6651 1812 1370 1104	5 50 10 & 20 20 & 40 1000 1000 5 & 10 & 20 5 & 10 & 20 4 & 8 5 4 & 8	μg/(kg MS)
e perfluoro-octanoïque (PF Aclonifen Acrinathrine Acrylate de methyle Acrylate d'ethyle Alachlore Aldrine ha-Hexabromocyclododeca Alphaméthrine Aluminium Amétryne Amitraze	6560 5347 1688 1310 2707 2708 1101 1103 6651 1812 1370 1104 1308	5 50 10 & 20 20 & 40 1000 1000 5 & 10 & 20 5 & 10 & 20 4 & 8 5 4 & 8 5 & 10 & 20	μg/(kg MS)
e perfluoro-octanoïque (PF Acionifen Acrinathrine Acrinathrine Acrylate de methyle Alachlore Aldrine Aldrine ha-Hexabromocyclododec: Alphaméthrine Aluminium Amétryne Amitraze Amylene hydrate	6560 5347 1688 1310 2707 2708 1101 1103 6651 1812 1370 1104 1308 2582	5 50 10 & 20 20 & 40 1000 5 & 10 & 20 5 & 10 & 20 4 & 8 5 4 & 8 5 & 10 & 20 1000	μg/(kg MS)
e perfluoro-octanoïque (PF Acionifen Acrinathrine Acrylate de methyle Alachlore Aldrine ha-Hexabromocyclododeci Alphaméthrine Aluminium Amétryne Amitraze Amylene hydrate Anthanthrene	6560 5347 1688 1310 2707 2708 1101 1103 6651 1812 1370 1104 1308 2582 7102	5 50 10 & 20 20 & 40 1000 5 & 10 & 20 5 & 10 & 20 4 & 8 5 4 & 8 5 & 10 & 20 1000 10 & 20	μg/(kg MS)
e perfluoro-octanoïque (PF Acionifen Acrinathrine Acrylate de methyle Alachlore Alachlore Aldrine ha-Hexabromocyclododec: Alphaméthrine Aluminium Amétryne Amitraze Anylene hydrate Anthanthrene Anthracène	6560 5347 1688 1310 2707 2708 1101 1103 6651 1812 1370 1104 1308 2582 7102	5 50 10 & 20 20 & 40 1000 5 & 10 & 20 5 & 10 & 20 4 & 8 5 & 10 & 20 1000 10 & 20 10 & 20	μg/(kg MS)
e perfluoro-octanoïque (PF Acionifen Acrinathrine Acrylate de methyle Alachlore Aldrine ha-Hexabromocyclododeci Alphaméthrine Aluminium Amétryne Amitraze Amylene hydrate Anthanthrene	6560 5347 1688 1310 2707 2708 1101 1103 6651 1812 1370 1104 1308 2582 7102	5 50 10 & 20 20 & 40 1000 5 & 10 & 20 5 & 10 & 20 4 & 8 5 4 & 8 5 & 10 & 20 1000 10 & 20	μg/(kg MS)
e perfluoro-octanoïque (PF Aclonifen Acrinathrine Acrylate de methyle Acrylate d'ethyle Alachlore Aldrine ha-Hexabromocyclododeca Alphaméthrine Aluminium Amétryne Amitraze Amylene hydrate Antharacène Anthracène Anthraquinone	6560 5347 1688 1310 2707 2708 1101 1103 6651 1812 1370 1104 1308 2582 7102 1458 2013	5 50 10 & 20 20 & 40 1000 1000 5 & 10 & 20 5 & 10 & 20 4 & 8 5 & 10 & 20 1000 1000 10 & 20 10 & 20	μg/(kg MS)
e perfluoro-octanoïque (PF Acinaithrine Acrinathrine Acrylate de methyle Alachlore Aldrine ha-Hexabromocyclododeci Alphaméthrine Aluminium Amétryne Amitraze Amylene hydrate Anthracène Anthracène Anthraquinone Argent Arsenic	6560 5347 1688 1310 2707 2708 1101 1103 6651 1812 1370 1104 1308 2582 7102 1458 2013 1376 1368 1368	5 50 10 & 20 20 & 40 1000 5 & 10 & 20 5 & 10 & 20 4 & 8 5 & 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20	μg/(kg MS)
e perfluoro-octanoïque (PF Aclonifen Acrinathrine Acrylate de methyle Acrylate d'ethyle Alachlore Aldrine ha-Hexabromocyclododeca Alphaméthrine Aluminium Amétryne Amitraze Amylene hydrate Anthanthrene Anthracène Anthracène Anthraquinone Antimoine Argent Arsenic Atrazine	6560 5347 1688 1310 2707 2708 1101 1103 6651 1812 1370 1104 1308 2582 7102 1458 2013 1376 1369 1107	5 50 10 & 20 20 & 40 1000 5 & 10 & 20 5 & 10 & 20 4 & 8 5 & 10 & 20 1000 1000 10 & 20 10 &	μg/(kg MS)
e perfluoro-octanoïque (PF Acionifen Acrinathrine Acrinathrine Acrylate de methyle Alachlore Aldrine Aldrine ha-Hexabromocyclododect Alphaméthrine Aluminium Amétryne Amitraze Amylene hydrate Anthanthrene Anthracène Anthraquinone Antimoine Argent Arsenic Atrazine Atrazine	6560 5347 1688 1310 2707 2708 1101 1103 6651 1812 1370 1104 1308 2582 7102 1458 2013 1376 1368 1368 1368 1369 1107 1109	5 50 10 & 20 20 & 40 1000 5 & 10 & 20 5 & 10 & 20 4 & 8 5 & 10 & 20 1000 10 & 20 10 & 20 10 & 20 10 & 20 4 & 8 5 & 10 & 20 4 & 8 5 & 10 & 20 10 & 20 10 & 20 4 & 8 0.2 0.1	μg/(kg MS)
e perfluoro-octanoïque (PF Aclonifen Acrinathrine Acrylate de methyle Alachlore Aldrine ha-Hexabromocyclododec: Alphaméthrine Aluminium Amétryne Amitraze Amylene hydrate Anthanthrene Anthracène Anthraquinone Argent Arsenic Atrazine Atrazine désopropyl Atrazine déséthyl	6560 5347 1688 1310 2707 2708 1101 1103 6651 1812 1370 1104 1308 2582 7102 1458 2013 1376 1368 1369 1109 1109	5 50 10 & 20 20 & 40 1000 5 & 10 & 20 5 & 10 & 20 4 & 8 5 & 10 & 20 1000 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 4 & 8 5 & 10 & 20 10 & 20	μg/(kg MS)
e perfluoro-octanoïque (PF Acionifen Acrinathrine Acrylate de methyle Alachlore Aldrine ha-Hexabromocyclododeci Alphaméthrine Aluminium Amétryne Amitraze Amylene hydrate Anthracène Anthraquinone Antimoine Argent Arsazine déisopropyl Atrazine déséthyl Azaconazole	6560 5347 1688 1310 2707 2708 1101 1103 6651 1812 1370 1104 1308 2582 7102 1458 2013 1376 1368 1369 1107 1108 2014	5 50 10 & 20 20 & 40 1000 5 & 10 & 20 5 & 10 & 20 4 & 8 5 4 & 8 5 & 10 & 20 10 & 2	μg/(kg MS)
e perfluoro-octanoïque (PF Acionifen Acrinathrine Acrinathrine Acrylate de methyle Alachlore Aldrine ha-Hexabromocyclododec: Alphaméthrine Aluminium Amétryne Amitraze Amylene hydrate Anthanthrene Anthracène Anthraquinone Argent Arsenic Atrazine Atrazine désopropyl Atrazine déséthyl	6560 5347 1688 1310 2707 2708 1101 1103 6651 1812 1370 1104 1308 2582 7102 1458 2013 1376 1368 1369 1109 1109	5 50 10 & 20 20 & 40 1000 5 & 10 & 20 5 & 10 & 20 4 & 8 5 & 10 & 20 1000 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 4 & 8 5 & 10 & 20 10 & 20	μg/(kg MS)
e perfluoro-octanoïque (Pr Acionifen Acrinathrine Acrinathrine Acrylate de methyle Alachlore Aldrine ha-Hexabromocyclododeci Alphaméthrine Aluminium Amétryne Amitraze Amylene hydrate Anthracène Anthracène Anthracène Antiracien Argent Arsenic Arsenic Atrazine déisopropyl Atrazine déséthyl Azaconazole Azaméthiphos	6560 5347 1688 1310 2707 2708 1101 1103 6651 1812 1370 1104 1308 2582 7102 1458 2013 1376 1369 1107 1109 1109 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 1209	5 50 10 & 20 20 & 40 1000 1000 5 & 10 & 20 5 & 10 & 20 4 & 8 5 & 10 & 20 1000 1000 1000 10 & 20 10 & 20 10 & 20 10 & 20 4 & 8 5 & 10 & 20 20 & 4 & 8 0.2 0.2 4 & 8 0.2 0.1 0.2 4 & 8 20 & 40 20 & 40 10 & 20 5 & 10 & 20 10 & 20	μg/(kg MS)
e perfluoro-octanoïque (PF Aclonifen Acrinathrine Acrylate de methyle Acrylate d'ethyle Alachlore Aldrine ha-Hexabromocyclododeca Alphaméthrine Aluminium Amétryne Amitraze Anylene hydrate Anthanthrene Anthracène Anthracène Anthracène Anthracinone Argent Arsenic Atrazine Atrazine Atrazine déisopropyl Atrazine déséthyl Azaconazole Azaméthiphos Azinphos éthyl	6560 5347 1688 1310 2707 2708 1101 1103 6651 1812 1370 1104 1308 2582 7102 1458 2013 1376 1368 1369 1107 1109 1108 2014 2015 1111	5 50 10 & 20 10 & 20 20 & 40 1000 5 & 10 & 20 5 & 10 & 20 4 & 8 5 4 & 8 5 & 10 & 20 1000 10 & 20 10 & 20 4 & 8 0.2 0.1 0.2 4 & 8 0.2 0.1 0.2 4 & 8 0.2 0.1 0.2 5 & 10 0.2 0.1 0.2 0.1 0.2 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.3 0.2 0.1 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	μg/(kg MS)
e perfluoro-octanoïque (Pr Aclonifen Acrinathrine Acrylate de methyle Alachlore Aldrine ha-Hexabromocyclododeci Alphaméthrine Aluminium Amétryne Anitraze Amylene hydrate Anthracène Anthracène Anthracène Arsenic Arsenic Atrazine déséthyl Azaconazole Azaméthiphos Azinphos méthyl Azoxystrobine Baryum	6560 5347 1688 1310 2707 2708 1101 1103 6651 1812 1370 1104 1308 2582 7102 1458 2013 1376 1369 1107 1109 1109 1109 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201	5 50 10 & 20 20 & 40 1000 1000 5 & 10 & 20 5 & 10 & 20 4 & 8 5 & 10 & 20 1000 1000 1000 10 & 20 10 & 20 4 & 8 0.2 0.1 0.2 4 & 8 20 & 40 20 & 40 10 & 20 10 & 20	μg/(kg MS)
e perfluoro-octanoïque (PI Aclonifen Acrinathrine Acrylate de methyle Acrylate d'ethyle Alachlore Aldrine ha-Hexabromocyclododeca Alphaméthrine Aluminium Amétryne Amitraze Amylene hydrate Anthanthrene Anthracène Anthracène Anthracène Antrazine Argent Arsenic Atrazine Atrazine déisopropyl Atrazine déséthyl Azaconazole Azaméthiphos Azinphos méthyl Azoxystrobine Baryum BDE 196	6560 5347 1688 1310 2707 2708 1101 1103 6651 1812 1370 1104 1308 2582 7102 1458 2013 1376 1369 1107 1109 1108 2014 2015 1110 1111 1111 1951 1111 1951 1110 1111 1951 1110 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1	5 50 10 & 20 10 & 20 20 & 40 1000 1000 5 & 10 & 20 5 & 10 & 20 4 & 8 5 & 10 & 20 1000 1000 10 & 20 10 & 20 4 & 8 0.2 0.1 0.2 4 & 8 20 & 40 20 & 40 20 & 40 10 & 20 10 & 20 10 & 20 10 & 20 5 & 10 10 & 20 10 & 20 5 & 10 10 & 20 10 & 20 5 & 10 10 & 20 10 & 20 5 & 10 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20	μg/(kg MS)
e perfluoro-octanoïque (PF Aclonifen Acrinathrine Acrinathrine Acrylate de methyle Alachlore Aldrine Aldrine ha-Hexabromocyclododec: Alphaméthrine Aluminium Amétryne Amitraze Amylene hydrate Anthanthrene Anthracène Anthracène Anthraquinone Argent Arsenic Atrazine Atrazine déisopropyl Atrazine déséthyl Azaconazole Azaméthiphos Azinphos éthyl Azinphos méthyl Azoxystrobine Baryum BDE 196 BDE 197	6560 5347 1688 1310 2707 2708 1101 1103 6651 1812 1370 1104 1308 2582 7102 1458 2013 1376 1368 1369 1107 1109 1108 2014 2015 1110 1111 1951 1396 5989	5 50 10 & 20 10 & 20 20 & 40 1000 5 & 10 & 20 5 & 10 & 20 4 & 8 5 4 & 8 5 & 10 & 20 1000 1000 10 & 20 10 & 20 4 & 8 0.2 0.1 0.2 4 & 8 20 & 40 10 & 20 10 & 20 10 & 20 10 & 20 5 & 10 5 & 10 5 & 10 5 & 10 5 & 10 5 & 10 5 & 10 5 & 10 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20	µg/(kg MS) µg/(kg MS)
e perfluoro-octanoïque (PF Aclonifen Acrinathrine Acrylate de methyle Alachlore Alachlore Aldrine ha-Hexabromocyclododec: Alphaméthrine Aluminium Amétryne Amitraze Amylene hydrate Anthracène Anthracène Anthraquinone Arsenic Atrazine Atrazine déisopropyl Atrazine déséthyl Azaconazole Azaméthiphos Azinphos méthyl Azionys méthyl Azoxystrobine Baryum BDE 196 BDE 197 BDE 198	6560 5347 1688 1310 2707 2708 1101 1103 6651 1812 1370 1104 1308 2582 7102 1458 2013 1376 1368 1369 1107 1109 1108 2014 2015 1110 1111 1951 1396 5989 5990	5 50 10 & 20 10 & 20 20 & 40 1000 1000 5 & 10 & 20 5 & 10 & 20 4 & 8 5 4 & 8 5 & 10 & 20 1000 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 5 & 10 10 & 20 5 & 10 5 & 10 5 & 20 5 & 10 5 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20	μg/(kg MS)
e perfluoro-octanoïque (PF Aclonifen Acrinathrine Acrinathrine Acrylate de methyle Alachlore Aldrine Aldrine ha-Hexabromocyclododec: Alphaméthrine Aluminium Amétryne Amitraze Amylene hydrate Anthanthrene Anthracène Anthracène Anthraquinone Argent Arsenic Atrazine Atrazine déisopropyl Atrazine déséthyl Azaconazole Azaméthiphos Azinphos éthyl Azinphos méthyl Azoxystrobine Baryum BDE 196 BDE 197	6560 5347 1688 1310 2707 2708 1101 1103 6651 1812 1370 1104 1308 2582 7102 1458 2013 1376 1368 1369 1107 1109 1108 2014 2015 1110 1111 1951 1396 5989	5 50 10 & 20 10 & 20 20 & 40 1000 5 & 10 & 20 5 & 10 & 20 4 & 8 5 4 & 8 5 & 10 & 20 1000 1000 10 & 20 10 & 20 4 & 8 0.2 0.1 0.2 4 & 8 20 & 40 10 & 20 10 & 20 10 & 20 10 & 20 5 & 10 5 & 10 5 & 10 5 & 10 5 & 10 5 & 10 5 & 10 5 & 10 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20	µg/(kg MS) µg/(kg MS)

	Code		
Libellé paramètre	SANDRE	LQ	Unité
Fluazinam Fludioxonil	2984 2022	10 & 20 4 & 8	μg/(kg MS)
Flufénoxuron	1676	10 & 20	μg/(kg MS) μg/(kg MS)
Fluométuron	1501	10 & 20	μg/(kg MS)
Fluoranthène	1191	10 & 20	μg/(kg MS)
Fluorène	1623	10 & 20	μg/(kg MS)
Fluridone Flurochloridone	1974 1675	5 & 10 & 20 4 & 8	μg/(kg MS) μg/(kg MS)
Fluroxypyr-meptyl	2547	20 & 40	μg/(kg MS)
Flurprimidol	2024	10 & 20	μg/(kg MS)
Flurtamone	2008	10 & 20	μg/(kg MS)
Flusilazole Flutriafol	1194 1503	5 & 10 10 & 20	μg/(kg MS) μg/(kg MS)
Fonofos	1674	5 & 10 & 20	μg/(kg MS)
Fosthiazate	2744	20 & 40	μg/(kg MS)
Furalaxyl	1908	5 & 10 & 20	μg/(kg MS)
Furathiocarbe Galaxolide	2567 6618	5 & 10 & 20 5 & 10 & 20	μg/(kg MS) μg/(kg MS)
gamma-	0010	3 4 10 4 20	μ _B / (κ _B 1413)
Hexabromocyclododec			
ane	6653	10 & 20	μg/(kg MS)
HCH alpha HCH beta	1200	5 & 10 5 & 10	μg/(kg MS)
HCH beta HCH delta	1201 1202	5 & 10	μg/(kg MS) μg/(kg MS)
HCH epsilon	2046	5 & 10	μg/(kg MS)
HCH gamma	1203	5 & 10	μg/(kg MS)
Heptachlore Heptachlore époxyde	1197	5 & 10 & 20	μg/(kg MS)
cis	1748	5 & 10	μg/(kg MS)
Heptachlore époxyde	1,70	3 4 10	PD/ (UP 1413)
trans	1749	5 & 10	μg/(kg MS)
Heptane (C7)	2674	2	μg/(kg MS)
Heptenophos Hexachlorobenzène	1910 1199	5 & 10 & 20 5	μg/(kg MS) μg/(kg MS)
Hexachlorobutadiène	1652	1	μg/(kg MS)
Hexachloroéthane	1656	10	μg/(kg MS)
	2512		(() 1.45)
Hexachloropentadiène Hexaconazole	2612 1405	2 10 & 20	μg/(kg MS) μg/(kg MS)
Hexaflumuron	1875	10 & 20	μg/(kg MS)
Hexazinone	1673	5 & 10	μg/(kg MS)
Hexythiazox	1876	5 & 10	μg/(kg MS)
Imazaméthabenz méthyl	1911	20 & 40	μg/(kg MS)
Indane	2676	2	μg/(kg MS)
Indène	2677	2	μg/(kg MS)
Indéno(1,2,3-	4004	40000	(() 145)
cd)pyrène Indoxacarbe	1204 5483	10 & 20 5 & 10 & 20	μg/(kg MS) μg/(kg MS)
Iodofenphos	2025	5 & 10 & 20	μg/(kg MS)
Iprodione	1206	10 & 20	μg/(kg MS)
Iprovalicarbe	2951	10 & 20	μg/(kg MS)
Irganox 1076 Irgarol (Cybutryne)	7129 1935	20 & 40 5 & 10 & 20	μg/(kg MS) μg/(kg MS)
Isazofos	1976	4 & 8	μg/(kg MS)
Isobutyl alcool	2579	1000	μg/(kg MS)
Isobutylbenzène	1836	2	μg/(kg MS)
Isodrine Isodurene	1207 2689	4 & 8	μg/(kg MS) μg/(kg MS)
Isofenphos	1829	4 & 8	μg/(kg MS)
Isooctane	1581	2	μg/(kg MS)
Isopentane	2682	1000	μg/(kg MS) μg/(kg MS)
Isopentyl alcool Isopropyl alcool	2590	1000	µg/(Kg (VIS)
	i	i	
[USAN]	2585	1000	μg/(kg MS)
Isopropylbenzène	1633	2	μg/(kg MS)
Isopropylbenzène Isopropyltoluène m	1633 2680	2 2	μg/(kg MS) μg/(kg MS)
Isopropylbenzène Isopropyltoluène m Isopropyltoluène o	1633	2	μg/(kg MS) μg/(kg MS) μg/(kg MS)
Isopropylbenzène Isopropyltoluène m	1633 2680 2681	2 2 2	μg/(kg MS) μg/(kg MS)
Isopropylbenzène Isopropyltoluène m Isopropyltoluène o Isopropyltoluène p Isoproturon Isoxaben	1633 2680 2681 1856 1208 1672	2 2 2 2 20 & 40 10 & 20	μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS)
Isopropylbenzène Isopropyltoluène m Isopropyltoluène o Isopropyltoluène p Isoproturon Isoxaben Isoxadifen-éthyle	1633 2680 2681 1856 1208 1672 2807	2 2 2 2 20 & 40 10 & 20 10 & 20	μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS)
Isopropylbenzène Isopropyltoluène m Isopropyltoluène o Isopropyltoluène p Isoproturon Isoxaben Isoxadifen-éthyle Isoxaflutol Kresoxim méthyl	1633 2680 2681 1856 1208 1672	2 2 2 2 20 & 40 10 & 20	µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS)
Isopropylbenzène Isopropyltoluène m Isopropyltoluène o Isopropyltoluène p Isoproturon Isoxaben Isoxadifen-éthyle Isoxaflutol Kresoxim méthyl Lambda Cyhalothrine	1633 2680 2681 1856 1208 1672 2807 1945 1950	2 2 2 2 20 & 40 10 & 20 10 & 20 5 & 10 & 20 5 & 10 & 20	µg/(kg MS) µg/(kg MS)
Isopropylbenzène Isopropyltoluène m Isopropyltoluène o Isopropyltoluène p Isoproturon Isoxaben Isoxadifen-éthyle Isoxaflutol Kresoxim méthyl Lambda Cyhalothrine Lénacile	1633 2680 2681 1856 1208 1672 2807 1945 1950 1094 1406	2 2 2 2 20 & 40 10 & 20 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20	µg/(kg MS) µg/(kg MS)
Isopropylbenzène Isopropyltoluène m Isopropyltoluène o Isopropyltoluène p Isoproturon Isoxaben Isoxadifen-éthyle Isoxaflutol Kresoxim méthyl Lambda Cyhalothrine Lénacile Linuron	1633 2680 2681 1856 1208 1672 2807 1945 1950 1994 1406 1209	2 2 2 2 2 20 & 40 10 & 20 5 & 10 & 20	µg/(kg MS) µg/(kg MS)
Isopropylbenzène Isopropyltoluène m Isopropyltoluène o Isopropyltoluène p Isoproturon Isoxaben Isoxadifen-éthyle Isoxafitutol Kresoxim méthyl Lambda Cyhalothrine Lénacile Linuron Lithium	1633 2680 2681 1856 1208 1672 2807 1945 1950 1094 1406 1209 1364	2 2 2 2 2 2 20 & 40 10 & 20 5 & 10 & 20	µg/(kg MS) µg/(kg MS)
Isopropylbenzène Isopropyltoluène m Isopropyltoluène o Isopropyltoluène p Isoproturon Isoxaben Isoxadifen-éthyle Isoxaflutol Kresoxim méthyl Lambda Cyhalothrine Lénacile Linuron	1633 2680 2681 1856 1208 1672 2807 1945 1950 1994 1406 1209	2 2 2 2 2 20 & 40 10 & 20 5 & 10 & 20	µg/(kg MS) µg/(kg MS)
Isopropylbenzène Isopropyltoluène m Isopropyltoluène o Isopropyltoluène o Isopropyltoluène p Isoproturon Isoxaben Isoxadifen-éthyle Isoxaflutol Kresoxim méthyl Lambda Cyhalothrine Lénacile Linuron Lithium Lufénuron Malathion Manganèse	1633 2680 2681 1856 1208 1672 2807 1945 1950 1094 1406 1209 1364 2026 1210	2 2 2 2 2 2 20 & 40 10 & 20 5 & 10 & 20 0 & 40 0 .2	μg/(kg MS)
Isopropylbenzène Isopropyltoluène m Isopropyltoluène o Isopropyltoluène p Isoproturon Isoxaben Isoxadifen-éthyle Isoxafitutol Kresoxim méthyl Lambda Cyhalothrine Lénacile Linuron Lithium Lufénuron Malathion Manganèse Mecarbam	1633 2680 2681 1856 1208 1672 2807 1945 1950 1094 1406 1209 1364 2026 1210 1394 5789	2 2 2 2 2 2 20 & 40 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 20 & 40 0.2 10 & 20 5 & 10 & 20 0.2	µg/(kg MS) µg/(kg MS)
Isopropylbenzène Isopropyltoluène m Isopropyltoluène o Isopropyltoluène p Isoproturon Isoxaben Isoxadifen-éthyle Isoxadifen-éthyle Isoxaflutol Kresoxim méthyl Lambda Cyhalothrine Lénacile Linuron Lithium Lufénuron Malathion Manganèse Mecarbam Méfenacet	1633 2680 2681 1856 1208 1672 2807 1945 1950 1094 1406 1209 1364 2026 1210 1394 5789 1968	2 2 2 2 2 2 2 2 2 2 2 2 3 40 10 & 20 5 & 10 & 20 0.2 10 & 20 5 & 10 & 20	μg/(kg MS)
Isopropylbenzène Isopropyltoluène m Isopropyltoluène o Isopropyltoluène p Isoproturon Isoxaben Isoxadifen-éthyle Isoxaflutol Kresoxim méthyl Lambda Cyhalothrine Lénacile Linuron Lithium Lufénuron Malathion Manganèse Mecarbam Méfenacet Méfenpyr diethyl	1633 2680 2681 1856 1208 1672 2807 1945 1950 1094 1406 1209 1364 2026 1210 1394 5789	2 2 2 2 2 2 20 & 40 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 20 & 40 0.2 10 & 20 5 & 10 & 20 0.2	µg/(kg MS) µg/(kg MS)
Isopropylbenzène Isopropyltoluène m Isopropyltoluène o Isopropyltoluène p Isoproturon Isoxaben Isoxadifen-éthyle Isoxadifen-éthyle Isoxaflutol Kresoxim méthyl Lambda Cyhalothrine Lénacile Linuron Lithium Lufénuron Malathion Manganèse Mecarbam Méfenacet	1633 2680 2681 1856 1208 1672 2807 1945 1950 1094 1406 1209 1364 2026 1210 1394 5789 1968 2930	2 2 2 2 2 2 2 2 2 0 & 40 10 & 20 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 20 & 40 0.2 10 & 20 5 & 10 & 20	μg/(kg MS)
Isopropylbenzène Isopropyltoluène m Isopropyltoluène o Isopropyltoluène p Isoproturon Isoxaben Isoxadifen-éthyle Isoxadifen-éthyle Isoxafiutol Kresoxim méthyl Lambda Cyhalothrine Lénacile Linuron Lithium Lufénuron Malathion Manganèse Mecarbam Méfenacet Méfenpyr diethyl Mepanipyrim Mépronil Mercaptodiméthur	1633 2680 2681 1856 1208 1672 2807 1945 1950 1094 1406 1209 1364 2026 1210 1394 5789 1968 2930 5533 1878 1510	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	μg/(kg MS) μg/(kg MS)
Isopropylbenzène Isopropyltoluène m Isopropyltoluène n Isopropyltoluène p Isoproturon Isoxaben Isoxadifen-éthyle Isoxaflutol Kresoxim méthyl Lambda Cyhalothrine Lénacile Linuron Lithium Lufénuron Malathion Manganèse Mecarbam Méfenacet Méfenpyr diethyl Mepanipyrim Mépronil Mercaptodiméthur Mercure	1633 2680 2681 1856 1208 1672 2807 1945 1950 1094 1406 1209 1364 2026 1210 1394 5789 1968 2930 5533 1878 1510 1387	2 2 2 2 2 2 2 2 2 2 2 3 40 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 20 & 40 0.2 10 & 20 5 & 10 & 20 6 & 10 & 20 6 & 10 & 20 6 & 10 & 20 7 & 10 & 20	μg/(kg MS)
Isopropylbenzène Isopropyltoluène m Isopropyltoluène o Isopropyltoluène p Isoproturon Isoxaben Isoxadifen-éthyle Isoxafilutol Kresoxim méthyl Lambda Cyhalothrine Lénacile Linuron Lithium Lufénuron Malathion Manganèse Mecarbam Méfenacet Méfenpyr diethyl Mepanipyrim Mépronil Mercaptodiméthur	1633 2680 2681 1856 1208 1672 2807 1945 1950 1094 1406 1209 1364 2026 1210 1394 5789 1968 2930 5533 1878 1510	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	μg/(kg MS) μg/(kg MS)

BDE 205	5997	5 & 10 & 20	μg/(kg MS)
BDE100	2915	2 & 4	μg/(kg MS)
BDE138	2913	2 & 4	μg/(kg MS)
BDE153	2912	2 & 4	μg/(kg MS)
BDE154	2911	2 & 4	μg/(kg MS)
BDE183	2910	2 & 4	μg/(kg MS)
BDE209	1815	5 & 10 & 20	μg/(kg MS)
BDE28 BDE47	2920 2919	2 & 4	μg/(kg MS)
BDE77	7437	2 & 4	μg/(kg MS) μg/(kg MS)
			F-6/ (··6 ···-/
BDE99	2916	2 & 4	μg/(kg MS)
Beflubutamide	7522	20 & 40	μg/(kg MS)
Bénalaxyl	1687	5 & 10 & 20	μg/(kg MS)
Bendiocarbe	1329	10 & 20	μg/(kg MS)
Benfluraline	1112	4 & 8	μg/(kg MS)
Benoxacor Benthiavalicarbe-isopropyl	2074 7460	4 & 8 10 & 20	μg/(kg MS) μg/(kg MS)
Benthiocarbe	1764	10 & 20	μg/(kg MS)
Benzène	1114	2	μg/(kg MS)
Benzene, 1-ethyl-2-methyl	2717	2	μg/(kg MS)
Benzo (a) Anthracène	1082	10 & 20	μg/(kg MS)
Benzo (a) Pyrène Benzo (b) Fluoranthène	1115 1116	10 & 20 10 & 20	μg/(kg MS) μg/(kg MS)
Benzo (ghi) Pérylène	1118	10 & 20	μg/(kg MS)
Benzo (k) Fluoranthène	1117	10 & 20	μg/(kg MS)
Benzo(c)fluorène	7279	10 & 20	μg/(kg MS)
Benzo(e)pyrène	1460	10 & 20	μg/(kg MS)
Denizo(e)pyrene	1400	10 04 20	HP/ (VE INIS)
Benzyl butyl phtalate	1924	50 & 100	μg/(kg MS)
Beryllium	1377	0.2	mg/(kg MS)
a-Hexabromocyclododeca	6652	10 & 20	μg/(kg MS)
Bifénox Bifenthrine	1119 1120	50 & 100 10 & 20	μg/(kg MS) μg/(kg MS)
Bioresméthrine	1502	10 & 20	μg/(kg MS)
Biphényle	1584	10 & 20	μg/(kg MS)
Bitertanol	1529	10 & 20	μg/(kg MS)
Bore	1362	1 4 9 0	mg/(kg MS)
Boscalid Bromacil	5526 1686	4 & 8 4 & 8	μg/(kg MS) μg/(kg MS)
Bromobenzène	1632	2	μg/(kg MS)
Bromochlorométhane	1121	10	μg/(kg MS)
Bromoforme	1122	10	μg/(kg MS)
Bromophos éthyl	1123	5 & 10 & 20	μg/(kg MS)
Bromophos méthyl	1124	5 & 10 & 20	μg/(kg MS)
Bromopropylate	1685	5 & 10 & 20	μg/(kg MS)
Bromure de méthyle	1530	2	μg/(kg MS)
Bupirimate Butraline	1861 1126	5 & 10 & 20 5 & 10 & 20	μg/(kg MS) μg/(kg MS)
Datraine	1120	3 Q 10 Q 20	μg/ (kg ivis)
Destable and S			
Butylbenzène n	1855	5	μg/(kg MS)
Butylbenzène sec	1610	5	μg/(kg MS)
Butylbenzène sec Butylbenzène tert	1610 1611	5 5	μg/(kg MS) μg/(kg MS)
Butylbenzène sec Butylbenzène tert Cadmium	1610 1611 1388	5 5 0.1	μg/(kg MS) μg/(kg MS) mg/(kg MS)
Butylbenzène sec Butylbenzène tert Cadmium Cadusafos	1610 1611	5 5 0.1 4 & 8	μg/(kg MS) μg/(kg MS) mg/(kg MS) μg/(kg MS)
Butylbenzène sec Butylbenzène tert Cadmium	1610 1611 1388 1863	5 5 0.1	μg/(kg MS) μg/(kg MS) mg/(kg MS)
Butylbenzène sec Butylbenzène tert Cadmium Cadusafos Carbaryl Carbétamide Carbofuran	1610 1611 1388 1863 1463 1333 1130	5 5 0.1 4 & 8 10 & 20 10 & 20 5 & 10	μg/(kg MS) μg/(kg MS) mg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS)
Butylbenzène sec Butylbenzène tert Cadmium Cadusafos Carbaryl Carbétamide Carbofuran Carbophénothion	1610 1611 1388 1863 1463 1333 1130 1131	5 0.1 4 & 8 10 & 20 10 & 20 5 & 10 5 & 10 & 20	μg/(kg MS) μg/(kg MS) mg/(kg MS) μg/(kg MS)
Butylbenzène sec Butylbenzène tert Cadmium Cadusafos Carbaryl Carbétamide Carbofuran Carbophenothion Carbosulfan	1610 1611 1388 1863 1463 1333 1130 1131 1864	5 0.1 4 & 8 10 & 20 10 & 20 5 & 10 5 & 10 & 20 5 & 10 & 20	μg/(kg MS) μg/(kg MS) mg/(kg MS) μg/(kg MS)
Butylbenzène sec Butylbenzène tert Cadmium Cadusafos Carbaryl Carbétamide Carbofuran Carbophénothion Carbosulfan Carbosine	1610 1611 1388 1863 1463 1333 1130 1131 1864 2975	5 0.1 4 & 8 10 & 20 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20	μg/(kg MS) μg/(kg MS) mg/(kg MS) μg/(kg MS)
Butylbenzène sec Butylbenzène tert Cadmium Cadusafos Carbaryl Carbétamide Carbofuran Carbophenothion Carbosulfan	1610 1611 1388 1863 1463 1333 1130 1131 1864	5 0.1 4 & 8 10 & 20 10 & 20 5 & 10 5 & 10 & 20 5 & 10 & 20	μg/(kg MS) μg/(kg MS) mg/(kg MS) μg/(kg MS)
Butylbenzène sec Butylbenzène tert Cadmium Cadusafos Carbaryl Carbétamide Carbofuran Carbophénothion Carbosulfan Carboxine Carfentrazone-ethyl Chinométhionate Chlorbufame	1610 1611 1388 1863 1463 1333 1130 1131 1864 2975 2976 1865 1336	5 5 0.1 4 & 8 10 & 20 10 & 20 5 & 10 & 20 10 & 20 10 & 20	μg/(kg MS) μg/(kg MS) mg/(kg MS) μg/(kg MS)
Butylbenzène sec Butylbenzène tert Cadmium Cadusafos Carbaryl Carbétamide Carbofuran Carbophénothion Carbosulfan Carboxine Carfentrazone-ethyl Chinométhionate Chlorbufame	1610 1611 1388 1863 1463 1333 1130 1131 1864 2975 2976 1865 1336 7010	5 5 0.1 4 & 8 10 & 20 10 & 20 5 & 10 & 20	μg/(kg MS) μg/(kg MS) mg/(kg MS) μg/(kg MS)
Butylbenzène sec Butylbenzène tert Cadmium Cadusafos Carbaryl Carbétamide Carbofuran Carbophenothion Carbosulfan Carboxine Carfentrazone-ethyl Chinométhionate Chlordane alpha Chlordane beta	1610 1611 1388 1863 1463 1333 1130 1131 1864 2975 2976 1865 1336 7010	5 5 0.1 4 & 8 10 & 20 10 & 20 5 & 10 & 20	μg/(kg MS) μg/(kg MS) mg/(kg MS) μg/(kg MS)
Butylbenzène sec Butylbenzène tert Cadmium Cadusafos Carbaryl Carbétamide Carbofuran Carbophénothion Carbosulfan Carboxine Carfentrazone-ethyl Chinométhionate Chlorbufame	1610 1611 1388 1863 1463 1333 1130 1131 1864 2975 2976 1865 1336 7010	5 5 0.1 4 & 8 10 & 20 10 & 20 5 & 10 & 20	μg/(kg MS)
Butylbenzène sec Butylbenzène tert Cadmium Cadusafos Carbaryl Carbétamide Carbofuran Carbophénothion Carbosulfan Carboxine Carfentrazone-ethyl Chinométhionate Chlordane beta Chlordane beta Chlordécone Chlordécone	1610 1611 1388 1863 1463 1333 1130 1131 1864 2975 2976 1865 1336 7010 1757 7527 1866 6577	5 5 0.1 4 & 8 10 & 20 10 & 20 5 & 10 & 20 10 & 20	μg/(kg MS) μg/(kg MS) mg/(kg MS) μg/(kg MS)
Butylbenzène sec Butylbenzène tert Cadmium Cadusafos Carbaryl Carbétamide Carbofuran Carbophenothion Carbosulfan Carboxine Carfentrazone-ethyl Chiométhionate Chlordane alpha Chlordane beta Chlordécol Chlordécone Chlordecone-5b-hydro	1610 1611 1388 1863 1463 1333 1130 1131 1864 2975 2976 1865 7010 1757 7527 1866 6577 5553	5 5 0.1 4 & 8 10 & 20 10 & 20 5 & 10 & 20 10 & 20 10 & 20 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 10 & 20	μg/(kg MS) μg/(kg MS) mg/(kg MS) μg/(kg MS)
Butylbenzène sec Butylbenzène tert Cadmium Cadusafos Carbaryl Carbétamide Carbofuran Carbophenothion Carbosulfan Carboxine Carfentrazone-ethyl Chinométhionate Chlordane alpha Chlordane beta Chlordécol Chlordecone-5b-hydro Chlorefenizon Chlorfenvinphos	1610 1611 1388 1863 1463 1333 1130 1131 1864 2975 2976 1865 7010 1757 7527 1866 6577 5553 1464	5 5 0.1 4 & 8 10 & 20 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 20 & 20 5 & 20 & 20 & 20 5 & 20 & 20	μg/(kg MS)
Butylbenzène sec Butylbenzène tert Cadmium Cadusafos Carbaryl Carbétamide Carbofuran Carbophenothion Carbosulfan Carbosulfan Carbosulfan Carhoxine Carfentrazone-ethyl Chinométhionate Chlorbufame Chlordane alpha Chlordane beta Chlordécol Chlordecone Chlordecone Chlordecone Chlorfenizon Chlorfenizon Chlorfenizon Chlorfenizon	1610 1611 1388 1863 1463 1333 1130 1131 1865 2976 1865 1336 657 7527 1866 6577 5553 1464 2950	5 5 0.1 4 & 8 10 & 20 10 & 20 10 & 20 5 & 10 & 20 13 & 26 10 & 20 10 & 20 5 & 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20	μg/(kg MS)
Butylbenzène sec Butylbenzène tert Cadmium Cadusafos Carbaryl Carbétamide Carbofuran Carbophenothion Carbosulfan Carboxine Carfentrazone-ethyl Chinométhionate Chlordane alpha Chlordane beta Chlordécol Chlordecone-5b-hydro Chlorefenizon Chlorfenvinphos	1610 1611 1388 1863 1463 1333 1130 1131 1864 2975 2976 1865 7010 1757 7527 1866 6577 5553 1464	5 5 0.1 4 & 8 10 & 20 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 20 & 20 5 & 20 & 20 & 20 5 & 20 & 20	μg/(kg MS)
Butylbenzène sec Butylbenzène tert Cadmium Cadusafos Carbaryl Carbétamide Carbofuran Carbophenothion Carbosulfan Carbosulfan Carbosulfan Carboxine Carfentrazone-ethyl Chinométhionate Chlordane alpha Chlordane beta Chlordécol Chlordécone Chlordecone-5b-hydro Chlorfenzion Chlorfenzion Chlorfuazuron Chlorfuazuron Chlorfuazuron Chlorméphos Chlorméphos Chlorméphos	1610 1611 1388 1863 1463 1333 1130 1131 1864 2975 2976 1865 1336 7010 1757 7527 7527 1866 6577 5553 1464 2950	5 5 0.1 4 8 8 10 8 20 5 8 10 8 20 5 8 10 8 20 5 8 10 8 20 5 8 10 8 20 5 8 10 8 20 5 8 10 8 20 5 8 10 8 20 10 8 20 10 8 20 10 8 20 10 8 20 10 8 20 10 8 20 5 8 10 8 20 10 8 20 5 8 10 8 20 10 8 20 5 8 10 8 20 10 8 20 5 8 10 8 20 10 8 20 5 8 10 8 20 10 8 20 5 8 10 8 20 10 8 20 5 8 10 8 20 10 8 20 5 8 10 8 20 10 8 20 10 8 20 5 8 10 8 20 20 10 8 20 20 5 8 10 8 20 20 2000 8 4000	Hg/(kg MS) Hg/(kg MS) Mg/(kg MS) Hg/(kg MS)
Butylbenzène sec Butylbenzène tert Cadmium Cadusafos Carbaryl Carbétamide Carbofuran Carbophenothion Carbosulfan Carbosulfan Carbosulfan Carboxine Carfentrazone-ethyl Chinométhionate Chlordane alpha Chlordane beta Chlordécol Chlordécone Chlordecone-5b-hydro Chlorfenizon Chlorfenizon Chlorfenizon Chlorfenizon Chlorfenizon Chloridazuron Chloridazone Chloridazone Chlorosaccas C10-C13 Chloroaniline-2	1610 1611 1388 1863 1463 1333 1130 1131 1864 2975 2976 1865 7010 1757 7527 1866 6577 5553 1464 2950 1133 1134 11955	5 5 0.1 4 & 8 10 & 20 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10 & 20 & 10	μg/(kg MS)
Butylbenzène sec Butylbenzène tert Cadmium Cadusafos Carbaryl Carbétamide Carbofuran Carbophénothion Carbosulfan Carbosulfan Carboneethyl Chinométhionate Chlordane alpha Chlordane beta Chlordécone Chlordecone-Sb-hydro Chlorefenizon Chlorfunzuron Chlorfluazuron Chloridazone Chlordazone Chlordazone Chlordazone Chlordazone Chlordone Chlordazone Chlordazone Chlordazone Chloroalcanes C10-C13 Chloroaniline-2 Chloroaniline-3	1610 1611 1388 1863 1463 1333 1130 1131 1864 2975 2976 13865 1336 7010 1757 7527 1866 6577 5553 1464 2950 1133 1134 1955 1134 1959 1593 1593	5 5 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 20 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 400 10 & 4	Hg/(kg MS) Hg/(kg MS) Mg/(kg MS) Hg/(kg MS)
Butylbenzène sec Butylbenzène tert Cadmium Cadusafos Carbaryl Carbétamide Carbofuran Carbophénothion Carbosulfan Carbosulfan Carbosulfan Carbosulfan Carbosulfan Carbosulfan Carbosulfan Carbosulfan Chlordethionate Chlordane beta Chlordane beta Chlordécol Chlordécone Chlordecone-5b-hydro Chlorfenvinphos Chlorfenvinphos Chloridazone Chloroaniline-2 Chloroaniline-3 Chloroaniline-4	1610 1611 1388 1863 1463 1333 1130 1131 1864 2975 2976 1865 7010 1757 7527 7527 1866 6577 5553 1464 29133 1134 1955 1592 1591	5 5 0.1 4 & 8 10 & 20 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 & 20 & 40 & 20 & 40 & 20 & 40 & 20 & 40 & 20 & 40 & 20 & 40 & 20 & 40 & 20 & 40 & 20 & 40 & 4	HE/(KE MS) HE/(KE MS) ME/(KE MS) HE/(KE MS)
Butylbenzène sec Butylbenzène tert Cadmium Cadusafos Carbaryl Carbétamide Carbofuran Carbophenothion Carbosulfan Carbosulfan Carbosulfan Carbosulfan Carbosulfan Carbosulfan Carbosulfan Chlordene Chlordane alpha Chlordane beta Chlordécone Chlordecone Chlordecone-Sb-hydro Chlorfenvinphos Chlorfluazuron Chlorméphos Chloroaniline-2 Chloroaniline-2 Chloroaniline-4 Chloroaniline-4	1610 1611 1388 1863 1463 1333 1130 1131 1864 2975 2976 1865 7010 1757 7527 1866 6577 5553 1464 2950 1133 1134 1955 1593 1593 1591 1467	5 5 0.1 4 & 8 10 & 20 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 6 & 20 & 20 & 20 & 20 & 20 & 20 &	HE/(KE MS)
Butylbenzène sec Butylbenzène tert Cadmium Cadusafos Carbaryl Carbétamide Carbofuran Carbophénothion Carbosulfan Carbosulfan Carbosulfan Carbosulfan Carbosulfan Carbosulfan Carbosulfan Carbosulfan Chlordethionate Chlordane beta Chlordane beta Chlordécol Chlordécone Chlordecone-5b-hydro Chlorfenvinphos Chlorfenvinphos Chloridazone Chloroaniline-2 Chloroaniline-3 Chloroaniline-4	1610 1611 1388 1863 1463 1333 1130 1131 1864 2975 2976 1865 7010 1757 7527 7527 1866 6577 5553 1464 29133 1134 1955 1592 1591	5 5 0.1 4 & 8 10 & 20 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 & 20 & 40 & 20 & 40 & 20 & 40 & 20 & 40 & 20 & 40 & 20 & 40 & 20 & 40 & 20 & 40 & 20 & 40 & 4	HE/(KE MS) HE/(KE MS) ME/(KE MS) HE/(KE MS)
Butylbenzène sec Butylbenzène tert Cadmium Cadusafos Carbaryl Carbétamide Carbofuran Carbophénothion Carbosulfan Chlordane beta Chlordane beta Chlordane beta Chlordécol Chlordécone Chlordécone Chlordernizon Chlorfenizon Chlorfenizon Chlorfuazuron Chloridazone Chloridazone Chloroaniline-2 Chloroaniline-3 Chloroaniline-4 Chlorobenzène Chlorobenzène Chlorometha	1610 1611 1388 1863 1463 1333 1130 1131 1864 2975 2976 1865 1336 7010 1757 7527 1866 6577 5553 1464 2950 1133 1134 1955 1592 1591 1467 2016 2016 1135 1341	5 5 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10	HE/(KE MS) HE/(KE MS) ME/(KE MS) HE/(KE MS)
Butylbenzène sec Butylbenzène tert Cadmium Cadusafos Carbaryl Carbétamide Carbofuran Carbophénothion Carbosulfan Chlordetame Chlordane alpha Chlordane beta Chlordécon Chlordécone Chlordecone-5b-hydro Chlordecone-5b-hydro Chlorfenvinphos Chlorfenvinphos Chlorfluazuron Chloridazone Chloroalcanes C10-C13 Chloroaniline-2 Chloroaniline-4 Chlorobromuron oroforme (Trichlorométha	1610 1611 1388 1863 1463 1333 1130 1131 1864 2975 2976 1865 1336 7010 1757 7527 7527 1866 6577 5553 1464 2950 1133 1134 1955 1593 1592 1591 1467 2016 1135	5 5 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10 & 20 10	HE/(KE MS) HE/(KE MS) ME/(KE MS) HE/(KE MS)

Métazachlore	1670 1879	5 & 10 & 20	μg/(kg MS)
Metconazole Méthabenzthiazuron	1216	10 & 20 10 & 20	μg/(kg MS) μg/(kg MS)
Methacrifos	5792	5 & 10 & 20	μg/(kg MS)
Methacrylate de			
methyle Méthanol	2723	1000	μg/(kg MS)
Methanol Méthidathion	2052 1217	5000 20 & 40	μg/(kg MS) μg/(kg MS)
Méthoxychlore	1511	5 & 10 & 20	μg/(kg MS)
Méthyl cyclohexane	5506	2	μg/(kg MS)
Méthyl éthyl cétone	1514	1000	μg/(kg MS)
	4500	4000	((1 . 16)
Méthyl isobutyl cétone Methyl triclosan	1508 6664	1000 5 & 10 & 20	μg/(kg MS) μg/(kg MS)
Méthyl-2-	0004	3 & 10 & 20	μg/(kg ivis)
Fluoranthène	1619	10 & 20	μg/(kg MS)
Méthyl-2-Naphtalène	1618	10 & 20	μg/(kg MS)
Methyl-4			
cyclohexanone-1 Métobromuron	2639 1515	1000 20 & 40	μg/(kg MS)
Métolachlore	1221	4 & 8	μg/(kg MS) μg/(kg MS)
Métoxuron	1222	20 & 40	μg/(kg MS)
Metrafenone	5654	5 & 10 & 20	μg/(kg MS)
Métribuzine	1225	10 & 20	μg/(kg MS)
Mévinphos	1226	5 & 10 & 20	μg/(kg MS)
Mirex Molinate	5438 1707	5 & 10 & 20 5 & 10 & 20	μg/(kg MS)
Molybdène	1395	0.2	μg/(kg MS) mg/(kg MS)
	2000		
Monobutyletain cation	2542	30 & 75	μg/(kg MS)
Monolinuron	1227	10 & 20	μg/(kg MS)
Managardata	7400	40.00	
Monooctyletain cation Monophenyletain	7496	4 & 40	μg/(kg MS)
cation	7497	30	μg/(kg MS)
Monuron	1228	10 & 20	μg/(kg MS)
MTBE	1512	2	μg/(kg MS)
Musc xylène	6342	5 & 10 & 20	μg/(kg MS)
Myclobutanil	1881	10 & 20	μg/(kg MS)
Naphtalène Napropamide	1517 1519	10 & 20 5 & 10 & 20	μg/(kg MS) μg/(kg MS)
n-Butyl acrylate	2712	1000	μg/(kg MS)
n-Butyl Phtalate	1462	50 & 100	μg/(kg MS)
Néburon	1520	10 & 20	μg/(kg MS)
n-Hexane	2675	10	μg/(kg MS)
Nickal			
Nickel	1386	0.2	mg/(kg MS)
Nitrile acrylique	2709	1000	μg/(kg MS)
Nitrile acrylique Nitrofène	2709 1229	1000 5 & 10 & 20	μg/(kg MS) μg/(kg MS)
Nitrile acrylique	2709	1000	μg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés	2709 1229 2684 6598	1000 5 & 10 & 20 2 10 & 20	μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire	2709 1229 2684	1000 5 & 10 & 20 2	µg/(kg MS) µg/(kg MS) µg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon	2709 1229 2684 6598 1669	1000 5 & 10 & 20 2 10 & 20 4 & 8	μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés	2709 1229 2684 6598	1000 5 & 10 & 20 2 10 & 20	μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon  Norflurazon desméthyl n-Pentanol Nuarimol	2709 1229 2684 6598 1669 2737	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20	μg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet	2709 1229 2684 6598 1669 2737 2598 1883	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 1000 5 & 10 & 20	µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her	2709 1229 2684 6598 1669 2737 2598 1883 2609	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 1000 5 & 10 & 20 10 & 20	µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8)	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 1000 5 & 10 & 20 10 & 20 2	µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her	2709 1229 2684 6598 1669 2737 2598 1883 2609	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 1000 5 & 10 & 20 10 & 20	µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocylene Ofurace Orthophénylphénol	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 1000 5 & 10 & 20 2 10 & 20 2 5 & 10 & 20 4 & 8 5 & 10 & 20	µg/(kg MS) µg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofurace Orthophénylphénol Oxadiargyl	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 2068	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 1000 5 & 10 & 20 2 5 & 10 & 20 2 5 & 10 & 20 4 & 8 5 & 10 & 20 2 5 & 10 & 20 2 5 & 10 & 20 2 5 & 10 & 20 2 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 &	µg/(kg MS) µg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofurace Orthophénylphénol Oxadiargyl Oxadiazon	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 2068 1667	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 1000 5 & 10 & 20 2 10 & 20 2 5 & 10 & 20 4 & 8 5 & 10 & 20 2 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20	µg/(kg MS) µg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon  Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofurace Orthophénylphénol Oxadiazon Oxadiazon	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 2668 1667 1666	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 1000 5 & 10 & 20 2 5 & 10 & 20 2 5 & 10 & 20 4 & 8 5 & 10 & 20 5 & 10 & 20	µg/(kg MS) µg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofurace Orthophénylphénol Oxadiargyl Oxadiazon	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 2068 1667	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 1000 5 & 10 & 20 2 10 & 20 2 5 & 10 & 20 4 & 8 5 & 10 & 20 2 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20	µg/(kg MS) µg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofurace Orthophénylphénol Oxadiargyl Oxadiazon Oxadixyl Oxamyl Oxychlordane Oxyde de biphenyle	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 2068 1667 1666 1850 1848 3357	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 1000 5 & 10 & 20 2 2 5 & 10 & 20 2 5 & 10 & 20 4 & 8 5 & 10 & 20 2 5 & 10 & 20 5 & 10 & 20 25 & 5 & 10 & 20 5 & 10 & 20 25 & 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 10 & 20 & 40 5 & 10 & 20 10 & 20	µg/(kg MS) µg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon  Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofurace Orthophénylphénol Oxadiargyl Oxadiazon Oxadixyl Oxamyl Oxychlordane Oxyde de biphenyle	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 2668 1667 1666 1850 1850 1848 3357	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 1000 5 & 10 & 20 2 10 & 20 2 5 & 10 & 20 4 & 8 5 & 10 & 20 2 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20	µg/(kg MS) µg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon  Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofurace Orthophénylphénol Oxadiargyl Oxadiazon Oxadixyl Oxamyl Oxychlordane Oxyfluorfène Paclobutrazole	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 2068 1667 1666 1850 1848 3357 1952	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 1000 5 & 10 & 20 10 & 20 2 10 & 20 2 5 & 10 & 20 4 & 8 5 & 10 & 20 2 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 10 & 20 10 & 20	µg/(kg MS) µg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon  Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofurace Orthophénylphénol Oxadiargyl Oxadiargyl Oxadiazon Oxadixyl Oxamyl Oxychlordane Oxyde de biphenyle Oxyfluorfène Paclobutrazole Parathion éthyl	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 2068 1667 1666 1850 1848 3357 1952 2545	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 1000 5 & 10 & 20 10 & 20 2 5 & 10 & 20 4 & 8 5 & 10 & 20 10 & 20 2 5 & 10 & 20 2 & 4 & 8 5 & 10 & 20 25 & 50 5 & 10 & 20 10 & 20 5 & 10 & 20 10 & 20 10 & 20 5 & 10 & 20 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20	µg/(kg MS) µg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon  Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofurace Orthophénylphénol Oxadiargyl Oxadiazon Oxadixyl Oxamyl Oxychlordane Oxyfluorfène Paclobutrazole	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 2068 1667 1666 1850 1848 3357 1952	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 1000 5 & 10 & 20 10 & 20 2 10 & 20 2 5 & 10 & 20 4 & 8 5 & 10 & 20 2 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 10 & 20 10 & 20	µg/(kg MS) µg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon  Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofurace Orthophénylphénol Oxadiargyl Oxadiazon Oxadixyl Oxamyl Oxychlordane Oxyde de biphenyle Oxyfluorfène Paclobutrazole Parathion éthyl Parathion méthyl PCB 101 PCB 105	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 2668 1666 1850 1848 3357 1952 2545 1232 1233 1242	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 1000 5 & 10 & 20 10 & 20 2 5 & 10 & 20 4 & 8 5 & 10 & 20 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20	µg/(kg MS) µg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon  Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofurace Orthophénylphénol Oxadiargyl Oxadiazon Oxadiayl Oxadiayl Oxadiayl Oxychlordane Oxyde de biphenyle Oxyfluorfène Paclobutrazole Parathion méthyl PCB 101 PCB 105 PCB 105	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 2068 1850 1848 3357 1952 2545 1232 1233 1233 1242 1627 5433	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 1000 5 & 10 & 20 10 & 20 2 10 & 20 2 5 & 10 & 20 4 & 8 5 & 10 & 20 10 & 20 5 & 10 & 20 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 10 & 20 5 & 10 & 20 11 & 20 5 & 10 & 20 11 & 20 5 & 10 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20	µg/(kg MS) µg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofturace Orthophénylphénol Oxadiargyl Oxadiazon Oxadiayl Oxadiyl Oxamyl Oxychlordane Oxyde de biphenyle Oxyfluorfène Paclobutrazole Parathion éthyl Parathion méthyl PCB 101 PCB 105 PCB 114 PCB 118	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 2068 1667 1666 1850 1848 3357 1952 2545 1232 1233 1242 1627 5433 1243	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 1000 5 & 10 & 20 1000 5 & 10 & 20 2 5 & 10 & 20 2 5 & 10 & 20 2 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 10 & 20 11 & 20 12 & 20 13 & 20 14 & 20 15 & 10 & 20 16 & 20 17 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20	µg/(kg MS) µg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofurace Orthophénylphénol Oxadiargyl Oxadiazon Oxadixyl Oxamyl Oxychlordane Oxyde de biphenyle Oxyfluorfène Paclobutrazole Parathion méthyl PCB 101 PCB 105 PCB 114 PCB 118 PCB 118	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 2068 1667 1666 1850 1850 1848 3357 1952 2545 1232 1232 1232 1242 1627 5433 12443 5434	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 1000 5 & 10 & 20 2 2 5 & 10 & 20 2 5 & 10 & 20 2 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 10 & 20 5 & 10 & 20 11 & 20 12 & 20 13 & 20 14 & 20 15 & 10 & 20 16 & 20 17 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20	µg/(kg MS) µg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofturace Orthophénylphénol Oxadiargyl Oxadiazon Oxadiayl Oxadiyl Oxamyl Oxychlordane Oxyde de biphenyle Oxyfluorfène Paclobutrazole Parathion éthyl Parathion méthyl PCB 101 PCB 105 PCB 114 PCB 118	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 2068 1667 1666 1850 1848 3357 1952 2545 1232 1233 1242 1627 5433 1243	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 1000 5 & 10 & 20 1000 5 & 10 & 20 2 5 & 10 & 20 2 5 & 10 & 20 2 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 10 & 20 11 & 20 12 & 20 13 & 20 14 & 20 15 & 10 & 20 16 & 20 17 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20 18 & 20	µg/(kg MS) µg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofturace Orthophénylphénol Oxadiargyl Oxadiazon Oxadiayl Oxamyl Oxychlordane Oxyde de biphenyle Oxyfluorfène Paclobutrazole Parathion éthyl Parathion méthyl PCB 101 PCB 105 PCB 114 PCB 118 PCB 123 PCB 126 PCB 132 PCB 132	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 2068 1667 1666 1848 3357 1952 2545 1232 1233 1242 1627 5433 1243 5434 1089 6463	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 1000 5 & 10 & 20 1000 5 & 10 & 20 2 5 & 10 & 20 2 5 & 10 & 20 2 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 1 & 20 5 & 10 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 &	µg/(kg MS) µg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofurace Orthophénylphénol Oxadiargyl Oxadiazon Oxadiaryl Oxadiazon Oxadixyl Oxychlordane Oxyde de biphenyle Oxyfluorfène Paclobutrazole Parathion méthyl PCB 101 PCB 105 PCB 114 PCB 118 PCB 123 PCB 126 PCB 132 PCB 138 PCB 138	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 2068 1667 1666 1850 1848 3357 1952 2545 1232 1233 1242 1627 5433 1244 1089 6463 1244 1885	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 1000 5 & 10 & 20 2 10 & 20 2 5 & 10 & 20 4 & 8 5 & 10 & 20 2 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 10 & 20 5 & 10 & 20 11 & 20 5 & 10 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20	µg/(kg MS)   µg
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon  Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofurace Orthophénylphénol Oxadiargyl Oxadiargyl Oxadiazon Oxadixyl Oxamyl Oxychlordane Oxyde de biphenyle Oxyfluorfène Paclobutrazole Parathion éthyl PCB 101 PCB 105 PCB 114 PCB 118 PCB 123 PCB 126 PCB 132 PCB 138 PCB 149 PCB 149	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 1666 1850 1667 1666 1850 1232 1242 1627 5433 1242 1627 5433 1242 1627 5434 1089 6463 1244 1885	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 5 & 10 & 20 10 & 20 5 & 10 & 20 2 5 & 10 & 20 4 & 8 5 & 10 & 20 2 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 10 & 20 5 & 10 & 20 5 & 10 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20	µg/(kg MS) µg/(kg MS)
Nitrile acrylique Nitrofène Nonane (19) Nonylphénols linéaire ou ramifiés Norflurazon  Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofurace Orthophénylphénol Oxadiargyl Oxadiargyl Oxadiazon Oxadixyl Oxamyl Oxychlordane Oxyde de biphenyle Oxyfluorfène Paclobutrazole Parathion éthyl Parathion méthyl PCB 101 PCB 105 PCB 114 PCB 118 PCB 123 PCB 126 PCB 132 PCB 138 PCB 149 PCB 153 PCB 156	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 2668 1667 1666 1850 1848 3357 1952 2545 1232 1233 1242 1627 5433 1244 1089 6463 1244 1885 1245 2032	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 1000 5 & 10 & 20 10 & 20 2 5 & 10 & 20 4 & 8 5 & 10 & 20 2 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 10 & 20 5 & 10 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20	µg/(kg MS) µg/(kg MS)
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon  Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofurace Orthophénylphénol Oxadiargyl Oxadiargyl Oxadiazon Oxadixyl Oxamyl Oxychlordane Oxyde de biphenyle Oxyfluorfène Paclobutrazole Parathion éthyl PCB 101 PCB 105 PCB 114 PCB 118 PCB 123 PCB 126 PCB 132 PCB 138 PCB 149 PCB 149	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 1666 1850 1667 1666 1850 1232 1242 1627 5433 1242 1627 5433 1242 1627 5434 1089 6463 1244 1885	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 5 & 10 & 20 10 & 20 5 & 10 & 20 2 5 & 10 & 20 4 & 8 5 & 10 & 20 2 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 10 & 20 5 & 10 & 20 5 & 10 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20 11 & 20	µg/(kg MS)   µg
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofurace Orthophénylphénol Oxadiargyl Oxadiazon Oxadiaryl Oxadiazon Oxadixyl Oxyfluorfène Paclobutrazole Parathion éthyl Parathion méthyl PCB 101 PCB 105 PCB 114 PCB 118 PCB 123 PCB 126 PCB 132 PCB 138 PCB 139 PCB 149 PCB 155 PCB 156 PCB 156	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 2068 1667 1666 1848 3357 1952 2545 1232 1233 1242 1627 5433 1243 5434 1089 6463 1244 1885 1245 2032 5435	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 1000 5 & 10 & 20 1000 5 & 10 & 20 2 5 & 10 & 20 2 5 & 10 & 20 2 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 1 & 20 5 & 10 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 & 20 1 &	µg/(kg MS)   µg
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofurace Orthophénylphénol Oxadiargyl Oxadiargyl Oxadiargyl Oxadiaryl Oxamyl Oxychlordane Oxyde de biphenyle Oxyde de biphenyle Paclobutrazole Parathion éthyl Parathion méthyl PCB 101 PCB 105 PCB 114 PCB 118 PCB 123 PCB 126 PCB 132 PCB 138 PCB 139 PCB 149 PCB 151 PCB 151 PCB 156 PCB 157 PCB 167 PCB 169 PCB 169	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 2668 1667 1666 1850 1848 3357 1952 2545 1232 1233 1242 1627 5433 1244 1089 6463 1244 1885 1245 2032 5435 1245 1209 1626	1000 5 & 10 & 20 2 10 & 20 4 & 8 5 & 10 & 20 1000 5 & 10 & 20 10 & 20 2 5 & 10 & 20 4 & 8 5 & 10 & 20 2 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 10 & 20 5 & 10 & 20 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2 11 & 2	µg/(kg MS)   µg
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofturace Orthophénylphénol Oxadiargyl Oxadiazon Oxadiayyl Oxadiazon Oxadixyl Oxamyl Oxychlordane Oxyde de biphenyle Oxyfluorfène Paclobutrazole Parathion éthyl Parathion méthyl PCB 101 PCB 103 PCB 114 PCB 118 PCB 123 PCB 126 PCB 132 PCB 132 PCB 138 PCB 149 PCB 153 PCB 156 PCB 157 PCB 167 PCB 169 PCB 170 PCB 169 PCB 170	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 2068 1667 1666 1850 1848 3357 1952 2545 1232 1233 1242 1627 5433 1243 5434 1885 1244 1885 1244 1885 1244 1885 1245 2032 5435 5436 1090 1626	1000  5 & 10 & 20  2  10 & 20  4 & 8  5 & 10 & 20  10 & 20  10 & 20  2  5 & 10 & 20  2  5 & 10 & 20  2  5 & 10 & 20  2  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  10 & 20  5 & 10 & 20  10 & 20  11 & 20  12 & 20  13 & 20  14 & 2  15 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2	µg/(kg MS)   µg
Nitrile acrylique Nitrofène Nonane (C9) Nonlyphénols linéaire ou ramifiés Norflurazon Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofurace Orthophénylphénol Oxadiargyl Oxadiazon Oxadiaryl Oxadiazon Oxadiayl Oxyfluordane Oxyde de biphenyle Paclobutrazole Parathion éthyl Parathion méthyl PCB 101 PCB 101 PCB 101 PCB 102 PCB 114 PCB 118 PCB 123 PCB 124 PCB 125 PCB 126 PCB 132 PCB 138 PCB 149 PCB 156 PCB 157 PCB 167 PCB 169 PCB 160 PCB 160 PCB 160 PCB 160 PCB 160 PCB 160 PCB 161 PCB 167 PCB 161 PCB 180 PCB 180 PCB 180	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 2068 1667 1666 1850 1848 3357 1952 2545 1232 1233 1242 1627 5433 1243 5434 1089 6463 1244 1885 1245 1232 2032 5435 5436 1090 1626 1246 5437	1000  5 & 10 & 20  2  10 & 20  4 & 8  5 & 10 & 20  1000  5 & 10 & 20  2  10 & 20  2  5 & 10 & 20  2  5 & 10 & 20  2  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  10 & 20  5 & 10 & 20  11 & 20  5 & 10 & 20  11 & 20  12 & 20  13 & 20  14 & 2  15 & 2  16 & 2  17 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2	µg/(kg MS)   µg
Nitrile acrylique Nitrofène Nonane (C9) Nonylphénols linéaire ou ramifiés Norflurazon  Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofurace Orthophénylphénol Oxadiargyl Oxadiazon Oxadiaryl Oxadiazon Oxydleordene Paclobutrazole Parathion méthyl PCB 101 PCB 105 PCB 114 PCB 118 PCB 123 PCB 126 PCB 132 PCB 138 PCB 149 PCB 157 PCB 156 PCB 157 PCB 167 PCB 169 PCB 170 PCB 169 PCB 180 PCB 180 PCB 189 PCB 189 PCB 189	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 2068 1667 1666 1850 1854 3357 1952 2545 1232 1232 1242 1627 5433 1244 1885 1245 2032 5436 1090 1626 1090 1626 5437 6465	1000  5 & 10 & 20  2  10 & 20  4 & 8  5 & 10 & 20  10 & 20  5 & 10 & 20  2  5 & 10 & 20  2  5 & 10 & 20  2  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  10 & 20  5 & 10 & 20  11 & 2  12 & 2  13 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2  14 & 2	µg/(kg MS)   µg
Nitrile acrylique Nitrofène Nonane (C9) Nonlyphénols linéaire ou ramifiés Norflurazon Norflurazon desméthyl n-Pentanol Nuarimol Octabromodiphénylet her Octane (C8) Octocrylene Ofurace Orthophénylphénol Oxadiargyl Oxadiazon Oxadiaryl Oxadiazon Oxadiayl Oxyfluordane Oxyde de biphenyle Paclobutrazole Parathion éthyl Parathion méthyl PCB 101 PCB 101 PCB 101 PCB 102 PCB 114 PCB 118 PCB 123 PCB 124 PCB 125 PCB 126 PCB 132 PCB 138 PCB 149 PCB 156 PCB 157 PCB 167 PCB 169 PCB 160 PCB 160 PCB 160 PCB 160 PCB 160 PCB 160 PCB 161 PCB 167 PCB 161 PCB 180 PCB 180 PCB 180	2709 1229 2684 6598 1669 2737 2598 1883 2609 2679 6686 2027 2781 2068 1667 1666 1850 1848 3357 1952 2545 1232 1233 1242 1627 5433 1243 5434 1089 6463 1244 1885 1245 1232 2032 5435 5436 1090 1626 1246 5437	1000  5 & 10 & 20  2  10 & 20  4 & 8  5 & 10 & 20  1000  5 & 10 & 20  2  10 & 20  2  5 & 10 & 20  2  5 & 10 & 20  2  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  5 & 10 & 20  10 & 20  5 & 10 & 20  11 & 20  5 & 10 & 20  11 & 20  12 & 20  13 & 20  14 & 2  15 & 2  16 & 2  17 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2  18 & 2	µg/(kg MS)   µg

Chloronitrobenzène-1,4	1470	5 & 10 & 20	μg/(kg MS)
Chloroprène	2611	2	μg/(kg MS)
Chloropropane-2	2695	2	μg/(kg MS)
Chloropropène-3	2065	2	μg/(kg MS)
Chlorotoluène-2	1602	2	μg/(kg MS)
Chlorotoluène-3	1601	2	μg/(kg MS)
Chlorotoluène-4 Chloroxuron	1600 1683	2 10 & 20	μg/(kg MS) μg/(kg MS)
Chlorprophame	1474	4 & 8	μg/(kg MS)
Chlorpyriphos éthyl	1083	5 & 10 & 20	μg/(kg MS)
Chlorpyriphos méthyl	1540	5 & 10 & 20	μg/(kg MS)
Chlorthal dimethyl	2966	5 & 10 & 20	μg/(kg MS)
Chlortoluron	1136	20 & 40	μg/(kg MS)
Chlorure de Benzyle	1579	100	μg/(kg MS)
Chlorure de vinyle	1753	10	μg/(kg MS)
Chrome Chrysène	1389 1476	0.2 10 & 20	mg/(kg MS)
Cinidon-éthyl	2938	50 & 100	μg/(kg MS) μg/(kg MS)
Clodinafop-propargyl	2095	5 & 10 & 20	μg/(kg MS)
Clofentézine	1868	10 & 20	μg/(kg MS)
Clomazone	2017	4 & 8	μg/(kg MS)
Clotrimazole	5360	10 & 20	μg/(kg MS)
Cobalt	1379	0.1	mg/(kg MS)
Coumaphos	1682	5 & 10 & 20	μg/(kg MS)
Crésol-méta	1639	20 & 40	μg/(kg MS)
Crésol-ortho	1640	20 & 40	μg/(kg MS)
Crésol-para	1638	20 & 40	μg/(kg MS)
Cuivre	1392	0.2	mg/(kg MS)
Cyanazine Cyazofamid	1137 5567	10 & 20	μg/(kg MS)
Cyazoramia	5567	10 & 20	μg/(kg MS)
Cyclohexane	1583	2	μg/(kg MS)
Cycluron	1696	5 & 10 & 20	μg/(kg MS)
Cyfluthrine	1681	10 & 20	μg/(kg MS)
Cyperméthrine	1140	4 & 8	μg/(kg MS)
Cyproconazole	1680	10 & 20	μg/(kg MS)
Cyprodinil	1359	2 & 4	μg/(kg MS)
PMU (métabolite du Diuro	1929	10 & 20	μg/(kg MS)
DCPU (métabolite Diuron)	1930	10 & 20	μg/(kg MS)
DDD-o,p' DDD-p,p'	1143 1144	5 & 10 & 20 5 & 10 & 20	μg/(kg MS) μg/(kg MS)
DDE-o,p'	1145	5 & 10 & 20	μg/(kg MS)
DDE-p,p'	1146	5 & 10 & 20	μg/(kg MS)
DDT-o,p'	1147	5 & 10	μg/(kg MS)
DDT-p,p'	1148	5 & 10 & 20	μg/(kg MS)
Décane (C10)	2665	2	μg/(kg MS)
DEHP	6616	50 & 100	μg/(kg MS)
Deltaméthrine	1149	2 & 4	μg/(kg MS)
Déméton S méthyl	1153	50 & 100	μg/(kg MS)
Déméton S méthyl sulfone Déméton-O	1154 1150	10 & 20 16 & 32	μg/(kg MS) μg/(kg MS)
Déméton-S	1152	20 & 40	μg/(kg MS)
Desmediphame	2980	10 & 20	μg/(kg MS)
Desméthylisoproturon	2738	10 & 20	μg/(kg MS)
Desmétryne	1155	5 & 10 & 20	μg/(kg MS)
Diallate	1156	5 & 10 & 20	μg/(kg MS)
Diazinon	1157	5 & 10 & 20	μg/(kg MS)
Dibenzo (ah) Anthracène	1621	10 & 20	μg/(kg MS)
Dibenzo(a,c)anthracene	7105	10 & 20	μg/(kg MS)
Dibenzofuran Dibromochlorométhane	2763 1158	5 & 10 & 20 10	μg/(kg MS) μg/(kg MS)
Dibromochioromethane Dibromoéthane-1,2	1498	10	μg/(kg MS)
Dibromométhane	1513	10	μg/(kg MS)
Dibutyletain cation	7074	6	μg/(kg MS)
Dichlobénil	1679	5 & 10 & 20	μg/(kg MS)
Dichlofenthion	1159	5 & 10 & 20	μg/(kg MS)
Dichloréthane-1,1	1160	2	μg/(kg MS)
Dichloréthane-1,2	1161	10	μg/(kg MS)
Dichloréthylène-1,1	1162	2	μg/(kg MS)
Dichloréthylène-1,2 cis	1456 1727	2	μg/(kg MS)
Dichloréthylène-1,2 trans Dichloroaniline-2,3	1590	20 & 40	μg/(kg MS) μg/(kg MS)
Dichloroaniline-2,4		_J G 70	
		50 & 100	ירוטו און/עע
Dichloroaniline-2,5	1589	50 & 100 50 & 100	μg/(kg MS) μg/(kg MS)
Dichloroaniline-2,5 Dichloroaniline-2,6			μg/(kg MS) μg/(kg MS)
	1589 1588	50 & 100	μg/(kg MS)
Dichloroaniline-2,6 Dichloroaniline-3,4 Dichloroaniline-3,5	1589 1588 1587 1586 1585	50 & 100 20 & 40 20 & 40 20 & 40	μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS)
Dichloroaniline-2,6 Dichloroaniline-3,4 Dichloroaniline-3,5 Dichlorobenzène-1,2	1589 1588 1587 1586 1585 1165	50 & 100 20 & 40 20 & 40 20 & 40 20 & 40	μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS)
Dichloroaniline-2,6 Dichloroaniline-3,4 Dichloroaniline-3,5 Dichlorobenzène-1,2 Dichlorobenzène-1,3	1589 1588 1587 1586 1585 1165 1164	50 & 100 20 & 40 20 & 40 20 & 40 2 & 40 2	μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS)
Dichloroaniline-2,6 Dichloroaniline-3,4 Dichloroaniline-3,5 Dichlorobenzène-1,2 Dichlorobenzène-1,3 Dichlorobenzène-1,4	1589 1588 1587 1586 1585 1165 1164 1166	50 & 100 20 & 40 20 & 40 20 & 40 20 & 40 2 2	μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS)
Dichloroaniline-2,6 Dichloroaniline-3,4 Dichloroaniline-3,5 Dichlorobenzène-1,2 Dichlorobenzène-1,3 Dichlorobenzène-1,4 Dichlorobromométhane	1589 1588 1587 1586 1585 1165 1164 1166 1167	50 & 100 20 & 40 20 & 40 20 & 40 20 & 2 2 2 2 2	μg/(kg MS)
Dichloroaniline-2,6 Dichloroaniline-3,4 Dichloroaniline-3,5 Dichlorobenzène-1,2 Dichlorobenzène-1,3 Dichlorobenzène-1,4	1589 1588 1587 1586 1585 1165 1164 1166	50 & 100 20 & 40 20 & 40 20 & 40 20 & 40 2 2	μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS)
Dichloroaniline-2,6 Dichloroaniline-3,4 Dichloroaniline-3,5 Dichlorobenzène-1,2 Dichlorobenzène-1,3 Dichlorobenzène-1,4 Dichlorobromométhane	1589 1588 1587 1586 1585 1165 1164 1166 1167	50 & 100 20 & 40 20 & 40 20 & 40 20 & 2 2 2 2 2	μg/(kg MS)
Dichloroaniline-2,6 Dichloroaniline-3,4 Dichloroaniline-3,5 Dichlorobenzène-1,2 Dichlorobenzène-1,3 Dichlorobenzène-1,4 Dichlorobromométhane Dichlorométhane	1589 1588 1587 1586 1585 1165 1164 1166 1167 1168	50 & 100 20 & 40 20 & 40 20 & 40 2 & 2 2 2 2 10	µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS)
Dichloroaniline-2,6 Dichloroaniline-3,4 Dichloroaniline-3,5 Dichlorobenzène-1,2 Dichlorobenzène-1,3 Dichlorobenzène-1,4 Dichlorobromométhane	1589 1588 1587 1586 1585 1165 1164 1166 1167	50 & 100 20 & 40 20 & 40 20 & 40 20 & 2 2 2 2 2	µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS)
Dichloroaniline-2,6 Dichloroaniline-3,4 Dichloroaniline-3,5 Dichlorobenzène-1,2 Dichlorobenzène-1,3 Dichlorobenzène-1,4 Dichlorobromométhane Dichlorométhane	1589 1588 1587 1586 1585 1165 1164 1166 1167 1168	50 & 100 20 & 40 20 & 40 20 & 40 2 2 2 2 2 10	µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS)
Dichloroaniline-2,6 Dichloroaniline-3,4 Dichloroaniline-3,5 Dichlorobenzène-1,2 Dichlorobenzène-1,3 Dichlorobenzène-1,4 Dichlorobromométhane Dichlorométhane Dichloroitrobenzène-2,3 Dichloronitrobenzène-2,3	1589 1588 1587 1586 1585 1165 1164 1166 1167 1168	50 & 100 20 & 40 20 & 40 20 & 40 20 & 40 2 2 2 2 10 5 & 10 & 20 5 & 10 & 20	µg/(kg MS) µg/(kg MS)
Dichloroaniline-2,6 Dichloroaniline-3,4 Dichloroaniline-3,5 Dichlorobenzène-1,2 Dichlorobenzène-1,3 Dichlorobenzène-1,4 Dichlorobromométhane Dichlorométhane Dichloroitrobenzène-2,3 Dichloronitrobenzène-2,4 Dichloronitrobenzène-2,5	1589 1588 1587 1586 1585 1165 1164 1166 1167 1168 1617 1616 1615	50 & 100 20 & 40 20 & 40 20 & 40 2 & 2 2 2 10 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20	µg/(kg MS) µg/(kg MS)

PCB 28	1239	1 & 2	μg/(kg MS)
		2	
PCB 31	1886	1 & 2	μg/(kg MS)
DCD 3F	1240	2	//I NAC\
PCB 35	1240	1 & 2	μg/(kg MS)
PCB 44	1628	1 & 2	μg/(kg MS)
PCB 50	8260	1&2	μg/(kg MS)
PCB 52	1241	1 & 2	μg/(kg MS)
PCB 77	1091	1 & 2	μg/(kg MS)
PCB 81	5432	1 & 2	μg/(kg MS)
Penconazole	1762	4 & 8	μg/(kg MS)
Pendiméthaline	1234	5 & 10 & 20	μg/(kg MS)
Pentabromodiphényl			
éther (congénère 119)	8259	1 & 2	μg/(kg MS)
Pentachloroaniline	5808	5 & 10 & 20	μg/(kg MS)
Pentachlorobenzène	1888	5 & 10 & 20	μg/(kg MS)
Pentachlorophénol	1235	50 & 100	μg/(kg MS)
Pentane (C5) Penthiopyrad	2686 7509	10 20 & 40	μg/(kg MS) μg/(kg MS)
Perméthrine	1523	5 & 10 & 20	μg/(kg MS)
Pérylène	1620	10 & 20	μg/(kg MS)
Phénamiphos	1499	10 & 20	μg/(kg MS)
Phénanthrène	1524	10 & 20	μg/(kg MS)
Phenmédiphame	1236	20 & 40	μg/(kg MS)
Phenthoate	5813	5 & 10 & 20	μg/(kg MS)
Phorate	1525	5 & 10 & 20	μg/(kg MS)
Phorate sulfone	7149	4	μg/(kg MS)
Phosalone	1237	5	μg/(kg MS)
Phosphamidon	1238	20	μg/(kg MS)
Phoxime	1665	20	μg/(kg MS)
Blacker I B CC C	4.0-	FC 0 :	
Phtalate de diméthyle	1489	50 & 100 25 & 50	μg/(kg MS)
Phtalimide	7587		μg/(kg MS)
Picoxystrobine Piperonil butoxide	2669 1709	5 & 10 & 20 1 & 2	μg/(kg MS)
Pirimicarbe	1528	5 & 10 & 20	μg/(kg MS) μg/(kg MS)
Plomb	1382	0.1	mg/(kg MS)
Pretilachlore	1949	5 & 10 & 20	μg/(kg MS)
Prochloraze	1253	5 & 10 & 20	μg/(kg MS)
Procymidone	1664	5 & 10 & 20	μg/(kg MS)
Profénofos	1889	5 & 10 & 20	μg/(kg MS)
Promécarbe	1710	10 & 20	μg/(kg MS)
Prométon	1711	5 & 10 & 20	μg/(kg MS)
Prométryne	1254	4 & 8	μg/(kg MS)
Propachlore	1712	4 & 8	μg/(kg MS)
Propanil	1532	4 & 8	μg/(kg MS)
Propaquizafop	1972	100	μg/(kg MS)
Propargite Propazine	1255 1256	10 & 20 10 & 20	μg/(kg MS) μg/(kg MS)
Propétamphos	1533	5 & 10 & 20	μg/(kg MS)
Prophame	1534	15 & 30	μg/(kg MS)
Propiconazole	1257	5 & 10	μg/(kg MS)
Propoxur	1535	5 & 10 & 20	μg/(kg MS)
Propylbenzène	1837	2	μg/(kg MS)
Proquinazid	7422	10 & 20	μg/(kg MS)
Prosulfocarbe	1092	10 & 20	μg/(kg MS)
Prothiofos	5824	32 & 64	μg/(kg MS)
Pyraclostrobine	2576	10 & 20	μg/(kg MS)
Pyraflufen-ethyl	5509	10 & 20	μg/(kg MS)
Pyrazophos	1258	4 & 8	μg/(kg MS)
Pyrène Pyridabène	1537	10 & 20	μg/(kg MS)
Pyridabene	1890 1259	10 & 20 20 & 40	μg/(kg MS) μg/(kg MS)
Pyriténox	1663	20 & 40	μg/(kg IVIS) μg/(kg MS)
Pyriméthanil	1432	10 & 20	μg/(kg MS)
Pyrimiphos éthyl	1260	5 & 10 & 20	μg/(kg MS)
	1200		μg/(kg MS)
Pyrimiphos méthyl	1261	5 & 10 & 20	
Pyrimiphos méthyl Pyriproxyfène	1261 5499	5 & 10 & 20	μg/(kg MS)
Pyrimiphos méthyl Pyriproxyfène Quinalphos	1261 5499 1891	5 & 10 & 20 5 & 10 & 20	μg/(kg MS) μg/(kg MS)
Pyrimiphos méthyl Pyriproxyfène Quinalphos Quinoxyfen	1261 5499 1891 2028	5 & 10 & 20 5 & 10 & 20 5 & 10 & 20	μg/(kg MS) μg/(kg MS) μg/(kg MS)
Pyrimiphos méthyl Pyriproxyfène Quinalphos Quinoxyfen Quintozène	1261 5499 1891 2028 1538	5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20	μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS)
Pyrimiphos méthyl Pyriproxyfène Quinalphos Quinoxyfen Quintozène Quizalofop éthyl	1261 5499 1891 2028 1538 2070	5 & 10 & 20 5 & 10 & 20	μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS)
Pyrimiphos méthyl Pyriproxyfène Quinalphos Quinoxyfen Quintozène Quizalofop éthyl Resmethrine	1261 5499 1891 2028 1538 2070 2859	5 & 10 & 20 5 & 10 & 20	µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS)
Pyrimiphos méthyl Pyriproxyfène Quinalphos Quinoxyfen Quintozène Quizalofop éthyl Resmethrine Roténone	1261 5499 1891 2028 1538 2070	5 & 10 & 20 5 & 10 & 20	µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS)
Pyrimiphos méthyl Pyriproxyfène Quinalphos Quinoxyfen Quintozène Quizalofop éthyl Resmethrine	1261 5499 1891 2028 1538 2070 2859 2029	5 & 10 & 20 5 & 10 & 20 20 & 40	µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS)
Pyrimiphos méthyl Pyriproxyfène Quinalphos Quinoxyfen Quintozène Quizalofop éthyl Resmethrine Roténone Sébuthylazine	1261 5499 1891 2028 1538 2070 2859 2029 1923	5 & 10 & 20 5 & 10 & 20 20 & 40 10 & 20	µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS)
Pyrimiphos méthyl Pyriproxyfène Quinalphos Quinoxyfen Quintozène Quizalofop éthyl Resmethrine Roténone Sébuthylazine Secbumeton	1261 5499 1891 2028 1538 2070 2859 2029 1923 1262	5 & 10 & 20 5 & 10 & 20 20 & 40 10 & 20 5 & 10 & 20	µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS)
Pyrimiphos méthyl Pyriproxyfène Quinalphos Quinoxyfen Quintozène Quizalofop éthyl Resmethrine Roténone Sébuthylazine Secbumeton Sélénium	1261 5499 1891 2028 1538 2070 2859 2029 1923 1262 1385	5 & 10 & 20 5 & 10 & 20 20 & 40 10 & 20 5 & 10 & 20	µg/(kg MS) µg/(kg MS)
Pyrimiphos méthyl Pyriproxyfène Quinalphos Quinoxyfen Quinoxyfen Quintozène Quizalofop éthyl Resmethrine Roténone Sébuthylazine Secbumeton Sélénium Siduron Silthiopham Simazine	1261 5499 1891 2028 1538 2070 2859 2029 1923 1262 1385 1385 5609 1263	5 & 10 & 20 5 & 10 & 20 20 & 40 10 & 20 5 & 10 & 20 0.2 10 & 20 5 & 10 & 20 10 & 20	µg/(kg MS) µg/(kg MS)
Pyrimiphos méthyl Pyriproxyfène Quinalphos Quinoxyfen Quinoxyfen Quintozène Quizalofop éthyl Resmethrine Roténone Sébuthylazine Secbumeton Sélénium Siduron Silthiopham Simazine Simétryne	1261 5499 1891 2028 1538 2070 2859 2029 1923 1262 1385 1893 5609 1263 5477	5 & 10 & 20 5 & 10 & 20 20 & 40 10 & 20 5 & 10 & 20 0.2 10 & 20 5 & 10 & 20 0.2 10 & 20 5 & 10 & 20	µg/(kg MS) µg/(kg MS)
Pyrimiphos méthyl Pyriproxyfène Quinalphos Quinoxyfen Quintozène Quizalofop éthyl Resmethrine Roténone Sébuthylazine Secbumeton Sélénium Siduron Silthiopham Simazine Simétryne Styrène	1261 5499 1891 2028 1538 2070 2859 2029 1923 1262 1385 1385 5609 1263	5 & 10 & 20 5 & 10 & 20 20 & 40 10 & 20 5 & 10 & 20 0.2 10 & 20 5 & 10 & 20 10 & 20	µg/(kg MS) µg/(kg MS)
Pyrimiphos méthyl Pyriproxyfène Quinalphos Quinoxyfen Quinoxyfen Quintozène Quizalofop éthyl Resmethrine Roténone Sébuthylazine Secbumeton Sélénium Siduron Silthiopham Simazine Simétryne Styrène Sulfonate de	1261 5499 1891 2028 1538 2070 2859 2029 1923 1262 1385 1893 5609 1263 5477	5 & 10 & 20 5 & 10 & 20 20 & 40 10 & 20 5 & 10 & 20 0.2 10 & 20 5 & 10 & 20 0.2 10 & 20 5 & 10 & 20	µg/(kg MS) µg/(kg MS)
Pyrimiphos méthyl Pyriproxyfène Quinalphos Quinoxyfen Quinoxyfen Quintozène Quizalofop éthyl Resmethrine Roténone Sébuthylazine Secbumeton Sélénium Siduron Silthiopham Simazine Simétryne Styrène Sulfonate de perfluorooctane (PFOS	1261 5499 1891 2028 1538 2070 2859 2029 1923 1262 1385 1262 1385 5609 1263 5477 1541	5 & 10 & 20 5 & 10 & 20 20 & 40 10 & 20 5 & 10 & 20	µg/(kg MS) µg/(kg MS)
Pyrimiphos méthyl Pyriproxyfène Quinalphos Quinoxyfen Quinoxyfen Quintozène Quizalofop éthyl Resmethrine Roténone Sébuthylazine Secbumeton Sélénium Siduron Silthiopham Simazine Simétryne Styrène Sulfonate de perfluorooctane (PFOS anion)	1261 5499 1891 2028 1538 2070 2859 2029 1923 1262 1385 1893 5609 1263 5477 1541	5 & 10 & 20 5 & 10 & 20 20 & 40 10 & 20 5 & 10 & 20 0.2 10 & 20 5 & 10 & 20 5 & 50 & 100 2	µg/(kg MS) µg/(kg MS)
Pyrimiphos méthyl Pyriproxyfène Quinalphos Quinoxyfen Quintozène Quintozène Quizalofop éthyl Resmethrine Roténone Sébuthylazine Secbumeton Sélénium Siduron Silthiopham Simazine Simétryne Styrène Sulfonate de perfluorooctane (PFOS anion) Sulfotep	1261 5499 1891 2028 1538 2070 2859 2029 1923 1262 1385 1893 5609 1263 5477 1541	5 & 10 & 20 5 & 10 & 20 20 & 40 10 & 20 5 & 10 & 20 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 &	µg/(kg MS) µg/(kg MS)
Pyrimiphos méthyl Pyriproxyfène Quinalphos Quinoxyfen Quinoxyfen Quizalofop éthyl Resmethrine Roténone Sébuthylazine Secbumeton Sélénium Siduron Silthiopham Simazine Simétryne Styrène Sulfonate de perfluorooctane (PFOS anion) Sulfotep Taufluvalinate	1261 5499 1891 2028 1538 2070 2859 2029 1923 1262 1385 1893 5609 1263 5477 1541 6561 1894 1193	5 & 10 & 20 5 & 10 & 20 20 & 40 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 10 & 20 5 & 10 & 20	µg/(kg MS) µg/(kg MS)
Pyrimiphos méthyl Pyriproxyfène Quinalphos Quinoxyfen Quintozène Quintozène Quizalofop éthyl Resmethrine Roténone Sébuthylazine Secbumeton Sélénium Siduron Silthiopham Simazine Simétryne Styrène Sulfonate de perfluorooctane (PFOS anion) Sulfotep	1261 5499 1891 2028 1538 2070 2859 2029 1923 1262 1385 1893 5609 1263 5477 1541	5 & 10 & 20 5 & 10 & 20 20 & 40 10 & 20 5 & 10 & 20 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 10 & 20 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 &	µg/(kg MS) µg/(kg MS)

Dichloropropylene-1,3 Cis   1834   10	5111	4655	4.0	(() 1.45)
Dichloropropane-2,2   2081   2   μg/(kg MS Dichloropropylene-1,3 Cis   1834   10   μg/(kg MS Dichloropropylene-1,3 Tran   1835   10   μg/(kg MS Dichloropropylene-2,3 Tran   1835   10   μg/(kg MS Dichloropropylene-2,3   1653   10   μg/(kg MS Dichloropropylene-1,3 Tran   1835   10   μg/(kg MS Dichloropropylene-1,3 Tran   1717   5 & 10 & 20   μg/(kg MS Dichloropropylene-1,3 Tran   1717   5 & 10 & 20   μg/(kg MS Dichloropropylene-1,3 Tran   1717   5 & 10 & 20   μg/(kg MS Dichloropropylene-1,3 Tran   1717   5 & 10 & 20   μg/(kg MS Dichloropropylene-1,3 Tran   1717   5 & 10 & 20   μg/(kg MS Dichloropropylene-1,3 Tran   1717   5 & 10 & 20   μg/(kg MS Dichloropropylene-1,3 Tran   1717   5 & 10 & 20   μg/(kg MS Dichloropropylene-1,3 Tran   1717   5 & 10 & 20   μg/(kg MS Dichloropropylene-1,3 Tran   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   1718   171				
Dichloropropylène-1,3   12082   2   μg/kg MS   Dichloropropylène-1,3   1834   10   μg/kg MS   Dichloropropylène-1,3   1834   10   μg/kg MS   Dichloropropylène-2,3   1653   10   μg/kg MS   Dicofol méthyl   1171   5 & 10 & 20   μg/kg MS   Dicofol méthyl   1171   5 & 10 & 20   μg/kg MS   Dichloropropylène   1173   5 & 10 & 20   μg/kg MS   Dichlorocarbe   1402   10 & 20   μg/kg MS   Diéthofencarbe   1402   10 & 20   μg/kg MS   Diéthylencarbe   1402   10 & 20   μg/kg MS   Diéthylencarbe   1527   50 & 100   μg/kg MS   Diéthylencarbe   1905   50 & 100   μg/kg MS   Diffubenzuron   1488   10 & 20   μg/kg MS   Disobutyl phthalate   5325   50 & 100   μg/kg MS   Disobutyl phthalate   6658   0000 & 2000   μg/kg MS   Diméthoron   1870   5 & 10 & 20   μg/kg MS   Diméthoron   1870   5 & 10 & 20   μg/kg MS   Diméthoron   1870   5 & 10 & 20   μg/kg MS   Diméthoron   1403   10 & 20   μg/kg MS   Diméthorore   2546   4 & 8   μg/kg MS   Diméthorore   1403   10 & 20   μg/kg MS   Diméthylphénol-2,4   1641   20 & 40   μg/kg MS   Diméthylphénol-2,4   1641   20 & 40   μg/kg MS   Diméthylphénol-2,4   1578   5 & 10 & 20   μg/kg MS   Dinitrotoluène-2,6   1577   5 & 10 & 20   μg/kg MS   Dinitrotoluène-2,6   1577   5 & 10 & 20   μg/kg MS   Diphenylamine   5478   5 & 10 & 20   μg/kg MS   Diphenylamine   5478   5 & 10 & 20   μg/kg MS   Diphenylamine   5478   5 & 10 & 20   μg/kg MS   Diphenylamine   5478   5 & 10 & 20   μg/kg MS   Diphenylamine   5478   5 & 10 & 20   μg/kg MS   Diphenylamine   5478   5 & 10 & 20   μg/kg MS   Diphenylamine   5478   5 & 10 & 20   μg/kg MS   Diphenylamine   5478   5 & 10 & 20   μg/kg MS   Endosulfan beta   1179   5 & 10 & 20   μg/kg MS   Diphenylamine   5478   5 & 10 & 20   μg/kg MS   Endosulfan beta   1178   5 & 10 & 20   μg/kg MS   Endosulfan beta   1179   20 & 40   μg/kg MS   Endosulfan beta   1179   5 & 10 & 20   μg/kg MS   Ethyl betyl-cetone   2635   10000   μg/kg MS   Ethyl be			1	
Dichloropropylene-1,3 Tram		2082	2	μg/(kg MS)
Diclofopmethyl		1834	10	μg/(kg MS)
Diclofop methyl		1835	10	μg/(kg MS)
Dicofol   1172   5 & 10 & 20   μg/(kg MS Dickhofencarbe   1402   10 & 20   μg/(kg MS Dickhofencarbe   1402   10 & 20   μg/(kg MS Dickhofencarbe   1402   10 & 20   μg/(kg MS Dickhofencarbe   1527   50 & 100   μg/(kg MS Dickhofencarbe   1905   50 & 100   μg/(kg MS Diffubenzuron   1488   10 & 20   μg/(kg MS Disodecyl phthalate   5325   50 & 100   μg/(kg MS Disodecyl phthalate   6658   2000 & 2000   μg/(kg MS Disodecyl phthalate   6658   2000 & 2000   μg/(kg MS Diméturon   1870   5 & 10 & 20   μg/(kg MS Diméturon   1870   5 & 10 & 20   μg/(kg MS Diméthonamide   1678   4 & 8   μg/(kg MS Diméthoate   1175   50 & 100   μg/(kg MS Diméthoate   1403   10 & 20   μg/(kg MS Diméthoate   1403   10 & 20   μg/(kg MS Diméthoate   1473   10 & 20   μg/(kg MS Diméthoate-2,4   1578   5 & 10 & 20   μg/(kg MS Dimitrotoluène-2,4   1578   5 & 10 & 20   μg/(kg MS Dimitrotoluène-2,4   1578   5 & 10 & 20   μg/(kg MS Diphenylamine   5478   5 & 10 & 20   μg/(kg MS Diphenylamine   5478   5 & 10 & 20   μg/(kg MS Diphenylamine   5478   5 & 10 & 20   μg/(kg MS Diphenylamine   5478   5 & 10 & 20   μg/(kg MS Diphenylamine   1177   20 & 40   μg/(kg MS Diphenylamine   1177   20 & 40   μg/(kg MS Diphenylamine   1181   10 & 20   μg/(kg MS Diphenylamine   1185   20 & 40   μg/(kg MS Diphenylamine   1185   20 & 40   μg/(kg MS Diphenylamine   1185   20 &				μg/(kg MS)
Diethrofencarbe   1402   10 & 20   μg/(kg MS Diéthyl phtalate   1527   50 & 100   μg/(kg MS Diéthyl phtalate   1527   50 & 100   μg/(kg MS Diéthyl phtalate   1527   50 & 100   μg/(kg MS Difénoconazole   1905   50 & 100   μg/(kg MS Diffubenzuron   1488   10 & 20   μg/(kg MS Diffubenzuron   1870   50 & 100   μg/(kg MS Disononyl phtalate   6658   0000 & 2000   μg/(kg MS Diméthocyl phthalate   6658   0000 & 2000   μg/(kg MS Diméthonoryl phtalate   6215   000 & 1000   μg/(kg MS Diméthonoryl phtalate   1175   50 & 100   μg/(kg MS Diméthonoryhe   1403   10 & 20   μg/(kg MS Diméthonoryhe   1403   10 & 20   μg/(kg MS Diméthylphénol-2,4   1641   20 & 40   μg/(kg MS Diméthylphénol-2,4   1641   20 & 40   μg/(kg MS Diméthylphénol-2,4   1641   20 & 40   μg/(kg MS Diméthylphénol-2,4   1578   5 & 10 & 20   μg/(kg MS Dinitrotoluène-2,6   1577   5 & 10 & 20   μg/(kg MS Dinitrotoluène-2,6   1577   5 & 10 & 20   μg/(kg MS Dinitrotoluène-2,6   1577   5 & 10 & 20   μg/(kg MS Dinitrotoluène-3,6   1578   5 & 10 & 20   μg/(kg MS Dinitrotoluène-3,6   1577   20 & 40   μg/(kg MS Dinitrotoluène-3,6   1574   1580   1000   μg/(kg MS Dinitrotoluène-3,6   1574   1580   1000   μg/(kg MS Dinitrotoluène-3,6   1574   1580   1000   μg/(kg MS Dinitrotoluène-3,6   1577   20 & 40   μg/(kg MS Dinitrotoluène-3,6   1574   10 & 20   μg/(kg MS Dinitrotoluène-3,6   1574   10 & 20   μg/(kg MS Dinitrotoluène-3,6   1577   20 & 40   μg/(kg MS Dinitrotoluène-3,6   1578   3 & 10 & 20   μg/(kg MS Dinitrotoluène-3,6   1578   3 & 10 & 20   μg/(kg MS Dinitrotoluène-3,6   1578   3 & 10 & 20   μg/(kg MS Dinitrotolu				
Diéthofencarbe   1402   10 & 20   μg/(kg MS				
Diéthyl phtalate				
Diethylcetone				
Difénoconazole	Dietilyi piitalate	1327	30 & 100	μg/ (kg ivi3)
Difénoconazole	Diethylcetone	2637	1000	ug/(kg MS)
Diffubenzuron				P-8/ (8)
Difflufénicanil   1814   2 & 4   μg/(kg MS	Difénoconazole	1905		μg/(kg MS)
Diisobutyl phthalate   5325   50 & 100   μg/(kg MS	Diflubenzuron	1488	10 & 20	μg/(kg MS)
Diisobutyl phthalate   5325   50 & 100   μg/(kg MS				
Diisodecyl phthalate	Diflufénicanil	1814	2 & 4	μg/(kg MS)
Diisodecyl phthalate	Diiaahudul uhdhalada	F22F	FO 9 100	
Diisononyl phtalate				
Diméfuron	Disouecyi piithalate	0036	0000 & 2000	μg/(kg ivis)
Diméfuron	Diisononyl phtalate	6215	000 & 1000	ug/(kg MS)
Dimétachlore	,			1.0, (0 11.0)
Dimétachlore	Diméfuron	1870	5 & 10 & 20	μg/(kg MS)
Diméthénamide				
Diméthoate   1175   50 & 100   μg/(kg MS				μg/(kg MS)
Diméthomorphe				μg/(kg MS)
Diméthylphénol-2,4   1641   20 & 40   μg/(kg MS				μg/(kg MS)
Dimétilan   1698   20 & 40   μg/(kg MS   dimoxystrobine   5748   10 & 20   μg/(kg MS   Diniconazole   1871   10 & 20   μg/(kg MS   Dinitrotoluène-2,4   1578   5 & 10 & 20   μg/(kg MS   Dinitrotoluène-2,6   1577   5 & 10 & 20   μg/(kg MS   Dinitrotoluène-2,6   1577   5 & 10 & 20   μg/(kg MS   Dioctyletain cation   7494   6   μg/(kg MS   Dioxane-1,4   1580   1000   μg/(kg MS   Diphenyletain cation   7495   10   μg/(kg MS   Diphenyletain cation   7495   10   μg/(kg MS   Diphenyletain cation   1177   20 & 40   μg/(kg MS   Diphenyletain cation   1177   20 & 40   μg/(kg MS   Diuron   1177   20 & 40   μg/(kg MS   Durene   2688   2   μg/(kg MS   Durene   2688   2   μg/(kg MS   Endosulfan alpha   1178   5 & 10 & 20   μg/(kg MS   Endosulfan sulfate   1742   5 & 10 & 20   μg/(kg MS   Endosulfan sulfate   1742   5 & 10 & 20   μg/(kg MS   Endosulfan sulfate   1742   5 & 10 & 20   μg/(kg MS   Epoxiconazole   1744   10 & 20   μg/(kg MS   Epoxiconazole   1744   10 & 20   μg/(kg MS   Esfenvalérate   1809   20 & 40   μg/(kg MS   Ethanol   1745   1000   μg/(kg MS   Ethanol   1745   1000   μg/(kg MS   Ethanol   1745   1000   μg/(kg MS   Ethion   1183   5 & 10 & 20   μg/(kg MS   Ethyl-butyl-cetone   2635   1000   μg/(kg MS   Fénazaquin   2742   4 & 8   μg/(kg MS   Fénazaquin   2742   4 & 8   μg/(kg MS   Fénazaquin   2742   4 & 8   μg/(kg MS   Fenbuconazole   1906   10 & 20   μg/(kg MS   Fenbuconazole   1906   10 & 20   μg/(kg MS   Fenbuconazole   1906   10 & 20   μg/(kg MS   Fenbuconazole   1967   20 & 40   μg/(kg MS   Fenbuconazole   1967   20 & 40   μg/(kg MS   Fenbuconazole   1967   20 & 40   μg/(kg MS   Fenoxycarbe   1967   20 &				
dimoxystrobine   5748   10 & 20   μg/(kg MS     Diniconazole   1871   10 & 20   μg/(kg MS     Dinitrotoluène-2,4   1578   5 & 10 & 20   μg/(kg MS     Dinitrotoluène-2,5   1577   5 & 10 & 20   μg/(kg MS     Dioctyletain cation   7494   6   μg/(kg MS     Dioxane-1,4   1580   1000   μg/(kg MS     Diphenylamine   5478   5 & 10 & 20   μg/(kg MS     Diphenylamine   5478   5 & 10 & 20   μg/(kg MS     Diphenyletain cation   7495   10   μg/(kg MS     Diuron   1177   20 & 40   μg/(kg MS     Durene   2688   2   μg/(kg MS     Endosulfan alpha   1178   5 & 10 & 20   μg/(kg MS     Endosulfan sulfate   1179   5 & 10 & 20   μg/(kg MS     Endosulfan sulfate   1742   5 & 10 & 20   μg/(kg MS     Endrine   1181   10 & 20   μg/(kg MS     Epoxiconazole   1744   10 & 20   μg/(kg MS     Epoxiconazole   1744   10 & 20   μg/(kg MS     Esfenvalérate   1809   20 & 40   μg/(kg MS     Ethanol   1745   1000   μg/(kg MS     Ethion   1183   5 & 10 & 20   μg/(kg MS     Ethion   1183   5 & 10 & 20   μg/(kg MS     Ethion   1183   5 & 10 & 20   μg/(kg MS     Ethion   1183   5 & 10 & 20   μg/(kg MS     Ethion   1183   5 & 10 & 20   μg/(kg MS     Ethion   1183   5 & 10 & 20   μg/(kg MS     Ethion   1183   5 & 10 & 20   μg/(kg MS     Ethion   1183   5 & 10 & 20   μg/(kg MS     Ethion   1183   5 & 10 & 20   μg/(kg MS     Ethion   1183   5 & 10 & 20   μg/(kg MS     Ethion   1183   5 & 10 & 20   μg/(kg MS     Ethion   1183   5 & 10 & 20   μg/(kg MS     Ethion   1185   20 & 40   μg/(kg MS     Ethion   1185   20 & 40   μg/(kg MS     Fénarimol   1187   5 & 10 & 20   μg/(kg MS     Fénitrothion   1187   5 & 10 & 20   μg/(kg MS     Fénitrothion   1187   5 & 10 & 20   μg/(kg MS     Fénoxaprop éthyl   1973   5 & 10 & 20   μg/(kg MS     Fénoxaprop éthyl   1973   5 & 10 & 20   μg/(kg MS     Fénoxaprop éthyl   1973   5 & 10 & 20   μg/(kg MS     Fénoxaprop éthyl   1973   5 & 10 & 20   μg/(kg M				
Dinitrotoluène-2,4   1578   5 & 10 & 20   μg/(kg MS Dinitrotoluène-2,6   1577   5 & 10 & 20   μg/(kg MS Diotrotoluène-2,6   1577   5 & 10 & 20   μg/(kg MS Diotrotoluène-2,6   1577   5 & 10 & 20   μg/(kg MS Dioxane-1,4   1580   1000   μg/(kg MS Diphenylamine   5478   5 & 10 & 20   μg/(kg MS Diphenylamine   5478   5 & 10 & 20   μg/(kg MS Diphenylamine   1177   20 & 40   μg/(kg MS Diuron   1178   5 & 10 & 20   μg/(kg MS Diuron   1179   5 & 10 & 20   μg/(kg MS Diuron   1179   5 & 10 & 20   μg/(kg MS Diuron   1179   5 & 10 & 20   μg/(kg MS Diuron   1181   10 & 20   μg/(kg MS Diuron   1182   5 & 10 & 20   μg/(kg MS Diuron   1182   5 & 10 & 20   μg/(kg MS Diuron   1182   5 & 10 & 20   μg/(kg MS Diuron   1183				
Dinitrotoluène-2,4   1578   5 & 10 & 20   μg/(kg MS				
Dinitrotoluène-2,6   1577   5 & 10 & 20   μg/(kg MS				
Dioctyletain cation   7494   6   μg/(kg MS				
Dioxane-1,4				
Diphenylamine				
Diphenyletain cation   7495   10   μg/(kg MS   Diuron   1177   20 & 40   μg/(kg MS   Dodécane (C12)   1554   10   μg/(kg MS   Durene   2688   2   μg/(kg MS   Endosulfan alpha   1178   5 & 10 & 20   μg/(kg MS   Endosulfan beta   1179   5 & 10 & 20   μg/(kg MS   Endosulfan sulfate   1742   5 & 10 & 20   μg/(kg MS   Endosulfan sulfate   1742   5 & 10 & 20   μg/(kg MS   Endrine   1181   10 & 20   μg/(kg MS   Epoxiconazole   1744   10 & 20   μg/(kg MS   Epoxiconazole   1744   10 & 20   μg/(kg MS   Epoxiconazole   1809   20 & 40   μg/(kg MS   Etain   1380   0.2   mg/(kg MS   Ethanol   1745   1000   μg/(kg MS   Ethanol   1745   1000   μg/(kg MS   Ethion   1183   5 & 10 & 20   μg/(kg MS   Ethion   1183   5 & 10 & 20   μg/(kg MS   Ethion   1183   5 & 10 & 20   μg/(kg MS   Ethion   1183   5 & 10 & 20   μg/(kg MS   Ethyl-butyl-cetone   2673   2   μg/(kg MS   Ethyl-butyl-cetone   2635   1000   μg/(kg MS   Ethyl-butyl-cetone   2020   20 & 40   μg/(kg MS   Ethyl-butyl-cetone   2057   10 & 20   μg/(kg MS   Fénarimol   1185   20 & 40   μg/(kg MS   Fénarimol   1185   20 & 40   μg/(kg MS   Fénarimol   1186   5 & 10 & 20   μg/(kg MS   Fénarimol   1187   5 & 10 & 20   μg/(kg MS   Fenbuconazole   1906   10 & 20   μg/(kg MS   Fenothrine   2061   16 & 32   μg/(kg MS   Fénoxaprop éthyl   1973   5 & 10 & 20   μg/(kg MS   Fénoxaprop éthyl   1973   5 & 10 & 20   μg/(kg MS   Fénoxaprop éthyl   1973   5 & 10 & 20   μg/(kg MS   Fénoxycarbe   1967   20 & 40   μg/(kg MS   Fenopyroximate   5630   10 & 20   μg/(kg MS   Fenpyroximate   5630   10 & 20   μg/(kg MS   Fenditor)   μg/(kg MS   Fenditor)   1188   5 & 10 & 20   μg/(kg MS   Fenditor)   1188   5 & 10 & 20   μg/(kg MS   Fenditor)   1188   5 & 10 & 20   μg/(kg MS   Fenditor)   1266   16 & 30   μg/(kg MS   Fenditor)				
Diuron				
Durene   2688   2   μg/(kg MS		1177	20 & 40	μg/(kg MS)
Endosulfan alpha   1178   5 & 10 & 20   μg/(kg MS	Dodécane (C12)	1554	10	μg/(kg MS)
Endosulfan beta   1179   5 & 10 & 20   μg/(kg MS	Durene	2688	2	μg/(kg MS)
Endosulfan sulfate	Endosulfan alpha	1178	5 & 10 & 20	μg/(kg MS)
Endrine		1179	5 & 10 & 20	μg/(kg MS)
Epoxiconazole				μg/(kg MS)
EPTC				
Esfenvalérate				
Etain   1380   0.2   mg/(kg MS				
Ethanol				
Ethidimuron         1763         20 & 40         μg/(kg MS)           Ethion         1183         5 & 10 & 20         μg/(kg MS)           Ethofumésate         1184         5 & 10 & 20         μg/(kg MS)           Ethoprophos         1495         4 & 8         μg/(kg MS)           Ethyl tert-butyl ether         2673         2         μg/(kg MS)           Ethyl-butyl-cetone         2635         1000         μg/(kg MS)           Ethyl-butyl-cetone         2635         1000         μg/(kg MS)           Famoxadone         2020         20 & 40         μg/(kg MS)           Fénarimdone         2057         10 & 20         μg/(kg MS)           Fénazaquin         2742         4 & 8         μg/(kg MS)           Fenbuconazole         1906         10 & 20         μg/(kg MS)           Fenfurame         1843         20 & 40         μg/(kg MS)           Fenothrine         1843         20 & 40         μg/(kg MS)           Fenothrine         2061         16 & 32         μg/(kg MS)           Fenothrine         2061         16 & 32         μg/(kg MS)           Fénoxaprop éthyl         1973         5 & 10 & 20         μg/(kg MS)           Fénoxycarbe         1967 <th></th> <th></th> <th></th> <th></th>				
Ethion	Ethanor	1743	1000	μ ₆ / (κ ₆ 1415)
Ethion	Ethidimuron	1763	20 & 40	μg/(kg MS)
Ethofumésate         1184         5 & 10 & 20         μg/(kg MS)           Ethoprophos         1495         4 & 8         μg/(kg MS)           Ethyl tert-butyl ether         2673         2         μg/(kg MS)           Ethyl-butyl-cetone         2635         1000         μg/(kg MS)           Etrimfos         5760         5 & 10 & 20         μg/(kg MS)           Famoxadone         2020         20 & 40         μg/(kg MS)           Fénarimol         1185         20 & 40         μg/(kg MS)           Fénaraquin         2742         4 & 8         μg/(kg MS)           Fenbuconazole         1906         10 & 20         μg/(kg MS)           Fenfurame         1843         20 & 40         μg/(kg MS)           Fenfutrothion         1187         5 & 10 & 20         μg/(kg MS)           Fenothrine         2061         16 & 32         μg/(kg MS)           Fénoxaprop éthyl         1973         5 & 10 & 20         μg/(kg MS)           Fénoxycarbe         1967         20 & 40         μg/(kg MS)           Fenpropathrine         1188         5 & 10 & 20         μg/(kg MS)           Fenprovoximate         5630         10 & 20         μg/(kg MS)				
Ethoprophos	Ethion	1183	5 & 10 & 20	μg/(kg MS)
Ethoprophos	Fals of the Control	1104	F 0 10 0 00	/// * 40*
Ethyl tert-butyl ether   2673   2   μg/(kg MS	Etnotumesate	1184	⊃ & 1U & 20	μg/(Kg IVIS)
Ethyl tert-butyl ether   2673   2   μg/(kg MS	Fthonrophos	1495	4 & Q	IIB/(ka MC)
Ethylbenzène   1497   2   μg/(kg MS	Linopropilos	1433	+ 0.0	HP/ (VR INIO)
Ethylbenzène   1497   2   μg/(kg MS	Ethyl tert-butyl ether	2673	2	μg/(kg MS)
Ethyl-butyl-cetone   2635   1000   μg/(kg MS				
Etrimfos   5760   5 & 10 & 20   μg/(kg MS				μg/(kg MS)
Famoxadone   2020   20 & 40   μg/(kg MS				μg/(kg MS)
Fénamidone         2057         10 & 20         μg/(kg MS)           Fénarimol         1185         20 & 40         μg/(kg MS)           Fénazaquin         2742         4 & 8         μg/(kg MS)           Fenbuconazole         1906         10 & 20         μg/(kg MS)           Fenchlorphos         1186         5 & 10 & 20         μg/(kg MS)           Fenfurame         1843         20 & 40         μg/(kg MS)           Fénitrothion         1187         5 & 10 & 20         μg/(kg MS)           Fenothrine         2061         16 & 32         μg/(kg MS)           Fénoxaprop éthyl         1973         5 & 10 & 20         μg/(kg MS)           Fénoxycarbe         1967         20 & 40         μg/(kg MS)           Fenpropathrine         1188         5 & 10 & 20         μg/(kg MS)           Fenpyroximate         5630         10 & 20         μg/(kg MS)	Etrimfos	5760	5 & 10 & 20	μg/(kg MS)
Fénamidone         2057         10 & 20         μg/(kg MS)           Fénarimol         1185         20 & 40         μg/(kg MS)           Fénazaquin         2742         4 & 8         μg/(kg MS)           Fenbuconazole         1906         10 & 20         μg/(kg MS)           Fenchlorphos         1186         5 & 10 & 20         μg/(kg MS)           Fenfurame         1843         20 & 40         μg/(kg MS)           Fénitrothion         1187         5 & 10 & 20         μg/(kg MS)           Fenothrine         2061         16 & 32         μg/(kg MS)           Fénoxaprop éthyl         1973         5 & 10 & 20         μg/(kg MS)           Fénoxycarbe         1967         20 & 40         μg/(kg MS)           Fenpropathrine         1188         5 & 10 & 20         μg/(kg MS)           Fenpyroximate         5630         10 & 20         μg/(kg MS)	Faurende	2022	20.0 :0	///
Fénazimol   1185   20 & 40   μg/(kg MS     Fénazaquin   2742   4 & 8   μg/(kg MS     Fenbuconazole   1906   10 & 20   μg/(kg MS     Fenchlorphos   1186   5 & 10 & 20   μg/(kg MS     Fenfurame   1843   20 & 40   μg/(kg MS     Fénitrothion   1187   5 & 10 & 20   μg/(kg MS     Fenothrine   2061   16 & 32   μg/(kg MS     Fénoxaprop éthyl   1973   5 & 10 & 20   μg/(kg MS     Fénoxycarbe   1967   20 & 40   μg/(kg MS     Fenpropathrine   1188   5 & 10 & 20   μg/(kg MS     Fenpropathrine   1188   5 & 10 & 20   μg/(kg MS     Fenpropathrine   1188   5 & 10 & 20   μg/(kg MS     Fenproximate   5630   10 & 20   μg/(kg MS				
Fénazaquin   2742   4 & 8   μg/(kg MS     Fenbuconazole   1906   10 & 20   μg/(kg MS     Fenchlorphos   1186   5 & 10 & 20   μg/(kg MS     Fenfurame   1843   20 & 40   μg/(kg MS     Fénitrothion   1187   5 & 10 & 20   μg/(kg MS     Fénothrine   2061   16 & 32   μg/(kg MS     Fénoxaprop éthyl   1973   5 & 10 & 20   μg/(kg MS     Fénoxycarbe   1967   20 & 40   μg/(kg MS     Fenpropathrine   1188   5 & 10 & 20   μg/(kg MS     Fenprovimate   5630   10 & 20   μg/(kg MS     Fenprovimate   5630   10 & 20   μg/(kg MS     Fenprovimate   5630   10 & 20   μg/(kg MS     Fenproximate   5630   10 & 20   μg/(kg MS     Fenpro				
Fenbuconazole   1906   10 & 20   μg/(kg MS				
Fenchlorphos   1186   5 & 10 & 20   μg/(kg MS	•			μg/(kg MS)
Fenfurame				, 5, 1, 5 2/
Fénitrothion	Fenchlorphos	1186	5 & 10 & 20	μg/(kg MS)
Fénitrothion			1 7	
Fenothrine   2061   16 & 32   μg/(kg MS	Fenfurame	1843	20 & 40	μg/(kg MS)
Fenothrine   2061   16 & 32   μg/(kg MS	EAutenatht	1107	E 0 10 0 22	ua//! * *C`
Fénoxaprop éthyl   1973   5 & 10 & 20   μg/(kg MS   Fénoxycarbe   1967   20 & 40   μg/(kg MS   Fenpropathrine   1188   5 & 10 & 20   μg/(kg MS   Fenpyroximate   5630   10 & 20   μg/(kg MS   Fenpyrox				
Fénoxycarbe   1967   20 & 40   μg/(kg MS				hg/(rg INI2)
Fenpropathrine				
Fenpyroximate         5630         10 & 20         μg/(kg MS)				
				μg/(kg MS)
Fentilion 1190 5 & 10 & 20 µg/(kg lvis	Fenthion	1190	5 & 10 & 20	μg/(kg MS)
				μg/(kg MS)
Fer 1393 5 mg/(kg MS	Fer		5	mg/(kg MS)
				μg/(kg MS)
				μg/(kg MS)
Fluazifop-P-butyl 1404 5 & 10 & 20 μg/(kg MS	Fluazifop-P-butyl	1404	5 & 10 & 20	μg/(kg MS)
			<u> </u>	

Tébutame	1661	4 & 8	μg/(kg MS)
Tecnazène Téflubenzuron	5413 1897	5 & 10 & 20	μg/(kg MS)
Tellure	2559	10 & 20 0.2	μg/(kg MS) mg/(kg MS)
Téméphos	1898	10 & 20	μg/(kg MS)
Terbacile	1659	4 & 8	μg/(kg MS)
Terbuméton	1266	5 & 10	μg/(kg MS)
Terbuphos	1267	5 & 10 & 20 5 & 10	μg/(kg MS)
Terbuthylazine Terbutryne	1268 1269	4 & 8	μg/(kg MS) μg/(kg MS)
tert-Butyl alcool	2583	1000	μg/(kg MS)
Tetrabutyletain	1936	4	μg/(kg MS)
Tétrachloréthane-			
1,1,1,2	1270	10	μg/(kg MS)
Tétrachloréthane- 1,1,2,2	1271	10	μg/(kg MS)
Tétrachloréthylène	1272	2	μg/(kg MS)
Tétrachlorobenzène-			1-0/(0-7
1,2,3,4	2010	1 & 2	μg/(kg MS)
Tétrachlorobenzène-	2525		(// 146)
1,2,3,5	2536	1 & 2	μg/(kg MS)
Tétrachlorobenzène-		2	
1,2,4,5	1631	5 & 10 & 20	μg/(kg MS)
Tétrachloropropane-			10,10
1,1,1,2	2704	2	μg/(kg MS)
Tétrachloropropane-	2705	10	
1,1,1,3 Tétrachlorure de C	2705 1276	10	μg/(kg MS) μg/(kg MS)
Tétrachlorvinphos	1276	5 & 10 & 20	μg/(kg MS)
Tétraconazole	1660	5 & 10 & 20	μg/(kg MS)
Tétradifon	1900	5 & 10 & 20	μg/(kg MS)
Tétrahydrofurane	1582	1000	μg/(kg MS)
Tetramethrin	5921	5 & 10 & 20	μg/(kg MS)
Tétraphénylétain	5249	6	μg/(kg MS)
Tetrasul	5837	5 & 10 & 20	μg/(kg MS)
Thallium Thiafluamide	2555 1940	0.1 5 & 10 & 20	mg/(kg MS)
Thiazasulfuron	1714	10 & 20	μg/(kg MS) μg/(kg MS)
Thiométon	2071	20 & 40	μg/(kg MS)
Titane	1373	1	mg/(kg MS)
Toluène	1278	2	μg/(kg MS)
Tralométhrine	1658	4 & 8	μg/(kg MS)
trans-Nonachlor	7097	5 & 10 & 20	μg/(kg MS)
Triadiméfon	1544	5 & 10 & 20	μg/(kg MS)
Triallate Tributyletain cation	1281 2879	5 & 10 & 20 1 & 25	μg/(kg MS)
Tributylphosphate	1847	4 & 8	μg/(kg MS) μg/(kg MS)
Trichloréthane-1,1,1	1284	2	μg/(kg MS)
Trichloréthane-1,1,2	1285	10	μg/(kg MS)
Trichloréthylène	1286	2	μg/(kg MS)
Trichloroaniline-2,4,5	2732	50 & 100	μg/(kg MS)
Trichloroaniline-2,4,6	1595	50 & 100	μg/(kg MS)
Trichlorobenzène-1,2,3	1630	2	μg/(kg MS)
Trichlorobenzène-1,2,4	1283	2	μg/(kg MS)
Trichlorobenzène-1,3,5	1629	2	μg/(kg MS)
Trichlorofluorométhan e	1195	1	μg/(kg MS)
Trichloropropane-1,2,3	1854	10	μg/(kg MS)
Trichlorotrifluoroethan			
e	6506	2	μg/(kg MS)
Triclocarban Triclosan	6989 5430	10 & 20 5 & 10 & 20	μg/(kg MS) μg/(kg MS)
Tricyclohexyletain	J+3U	2 × 10 × 20	46/ (vg IVI3)
cation	2885	6	μg/(kg MS)
Trifloxystrobine	2678	5 & 10 & 20	μg/(kg MS)
Triflumizole	5843	50 & 100	μg/(kg MS)
Triflumuron	1902	10 & 20	μg/(kg MS)
Trifluraline Triméthylbenzène-	1289	5 & 10 & 20	μg/(kg MS)
1,2,3	1857	2	μg/(kg MS)
Triméthylbenzène-	1609	2	
1,2,4 Triméthylbenzène-			μg/(kg MS)
1,3,5 Trioctyletain cation	1509 2886	6	μg/(kg MS)
Triphenylene	7124	10 & 20	μg/(kg MS) μg/(kg MS)
Triphenyletain cation	6372	6	μg/(kg MS)
Undecane (C11)	2690	10	μg/(kg MS)
Uranium	1361	0.2	mg/(kg MS)
Vanadium	1384	0.2	mg/(kg MS)
Vinclozoline	1291	5 & 10 & 20	μg/(kg MS)
Xylène-meta	1293	2	μg/(kg MS)
Xylène-ortho Xylène-para	1292 1294	2	μg/(kg MS) μg/(kg MS)
Zinc	1383	0.4	mg/(kg MS)
Zoxamide	2858	5 & 10 & 20	μg/(kg MS)

III. <u>Comptes rendus des campagnes physico-chimiques et phytoplanctoniques</u>

#### **DONNEES GENERALES PLAN D'EAU**

Plan d'eau : Nantua Types (naturel, artificiel ...): Naturel Organisme / opérateur :

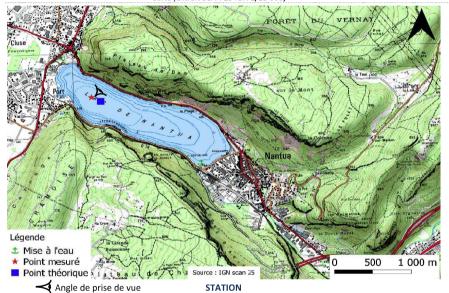
Organisme demandeur:

STE: Lionel Bochu & Cédric Guillet Agence de l'Eau RMC

14/03/2022 Date: Code lac: V2515003

Campagne: 1 Marché n°: 200000016

Page 1/6


#### **LOCALISATION PLAN D'EAU**

Commune : Nantua (01) Type:

Lac marnant : lacs naturels de moyenne montagne calcaire, profonds non

Temps de séjour : 251 jours Superficie du plan d'eau : 133 ha Profondeur maximale: 42 m

Carte (extrait SCAN 25 IGN 1/25 000)





## Relevé phytoplanctonique et physico-chimique en plan d'eau

#### **DONNEES GENERALES PLAN D'EAU**

Plan d'eau : Nantua Date: 14/03/22 Types (naturel, artificiel ...): Code lac: V2515003 Naturel Organisme / opérateur : STE : Lionel Bochu & Campagne: 1 Cédric Guillet

Marché n°: 200000016 Organisme demandeur: Agence de l'Eau RMC

Page 2/6

Carte IGN

**STATION** Coordonnée de la station : Système de Géolocalisation Portable

Lambert 93: 899018 6565955 475 m

WGS 84 (syst.internationnal GPS ° ' "): 5°34'46.84" E 46°9'50.97" N

41 m Profondeur:

Météo: 1- temps sec ensoleillé 2- faiblement nuageux 3- temps humide 6- neige

4- pluie fine 5- orage-pluie forte

7- gel 8- fortement nuageux

Patm.: 969 hPa

Vent: 3- fort

Conditions d'observation :

Surface de l'eau : 1- lisse 2- faiblement agitée 3- agitée 4- très agitée

Hauteur de vagues :

Bloom algal: NON

Hauteur de bande : Cote échelle : Marnage: NON

Campagne

1

campagne de fin d'hiver : homothermie du plan d'eau avant démarrage de l'activité biologique

#### REMARQUES ET OBSERVATIONS

#### Contact

Mairie de Nantua

#### Observations:

Profils verticaux assez homogènes sur l'ensemble de la colonne d'eau Petit pic de chlorophylle ( $4\mu g/l$ ) entre 5 et 10 m.

#### Remarques:

#### **DONNEES GENERALES PLAN D'EAU** Plan d'eau : Nantua 14/03/22 Date: Types (naturel, artificiel ...): Naturel Code lac: V2515003 Organisme / opérateur : Campagne: 1 STE : Lionel Bochu & Cédric Guillet Marché n°: 200000016 Organisme demandeur: Agence de l'Eau RMC Page 3/6 PRELEVEMENTS ZONE EUPHOTIQUE Prélèvement pour analyses physico-chimiques et phytoplancton 11:40 Heure de relevé : Profondeur: 0 à 16,3 m Volume prélevé : 10 L Matériel employé : Tuyau intégrateur 20 m Nbre de prélèvements : 2 Chlorophylle: OUI Phytoplancton: OUI Ajout de lugol : 5 ml Prélèvement pour analyses micropolluants OUI Heure de relevé : 12:10 Profondeur: 0 à 16,3 m Prélèvement : 1 prélèvement de 1 litre tous les mètres Volume prélevé : 16 L Nombre de prélèvements 16 Matériel employé : Bouteille téflon 5,3L PRELEVEMENTS DE FOND OUI Prélèvement pour analyses physico-chimiques OUI Prélèvement pour analyses micropolluants OUI Heure de relevé : 11:30 Profondeur: 39 m Volume prélevé : 20 L Nbre de prélèvements: 4 Matériel employé : Bouteille téflon 5,3 L **REMISE DES ECHANTILLONS** Code prélèvement de fond : 6913424750907935 784319 Bon de transport : Code prélèvement ZE: 784275 Bon de transport : 6913424750696665 Chronopost CARSO Dépôt : TNT Ville : Chambéry Date: 14/03/22 Heure: 15:30 Réception au laboratoire le : 15/03/22

## Relevé phytoplanctonique et physico-chimique en plan d'eau

#### **DONNEES PHYSICO-CHIMIQUES**

Plan d'eau : Nantua 14/03/22 Date: Types (naturel, artificiel ...): Naturel Code lac: V2515003

Organisme / opérateur : Campagne: 1 STE : Lionel Bochu & Cédric Guillet

Marché n°: 200000016 Organisme demandeur: Agence de l'Eau RMC 4/6

Page

#### **TRANSPARENCE**

Disque Secchi = 6,5 m Zone euphotique (x 2,5 secchi) = 16,3 m

#### PROFIL VERTICAL

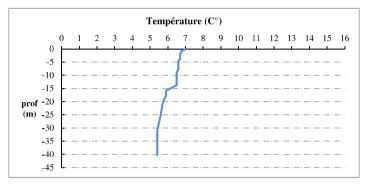
Moyen de mesure utilisé : in situ à chaque profondeur en surface dans un récipient

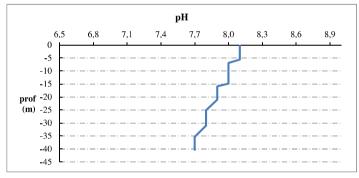
Prof.	Temp	pН	Cond.	02	02	Chloro a	Heure
(m)	(°C)		(μS/cm 25°)	(%)	(mg/l)	μg/l	
-0,1	7,0	8,1	377	92	10,7	1,3	11:20
-0,7	6,8	8,1	374	98	11,4	1,7	
-1,7	6,7	8,1	374	98	11,5	1,9	
-2,6	6,7	8,1	374	98	11,5	2,6	
-3,7	6,7	8,1	374	99	11,5	3,2	
-3,7	6,7	8,1	374	99	11,5	3,1	
-4,6	6,6	8,1	374	99	11,6	3,4	
-5,6	6,6	8,1	374	99	11,6	3,8	
-6,9	6,6	8,0	375	98	11,6	4,1	
-7,8	6,6	8,0	375	98	11,5	4,0	
-8,9	6,5	8,0	375	98	11,5	4,0	
-9,4	6,5	8,0	375	98	11,5	4,0	
-10,7	6,5	8,0	375	98	11,5	4,0	
-11,7	6,5	8,0	375	98	11,5	3,7	
-12,7	6,5	8,0	375	98	11,5	3,7	
-13,8	6,5	8,0	375	98	11,5	3,9	
-14,8	6,2	8,0	376	96	11,4	2,8	
-15,9	5,9	7,9	377	94	11,2	2,4	
-17,0	5,9	7,9	377	93	11,1	2,4	
-17,9	5,9	7,9	377	92	11,0	2,5	
-19,0	5,8	7,9	377	91	10,9	2,3	
-21,0	5,7	7,9	377	90	10,8	2,1	
-25,1	5,6	7,8	377	88	10,6	1,8	
-31,0	5,4	7,8	378	85	10,2	1,2	
-35,3	5,4	7,7	378	81	9,8	1,0	
-40,4	5,4	7,7	378	79	9,5		
					·		
	(m) -0,1 -0,7 -1,7 -2,6 -3,7 -3,7 -4,6 -5,6 -6,9 -7,8 -8,9 -9,4 -10,7 -11,7 -12,7 -13,8 -14,8 -15,9 -17,0 -17,9 -19,0 -21,0 -25,1 -31,0 -35,3	(m) (°C) -0,1 7,0 -0,7 6,8 -1,7 6,7 -2,6 6,7 -3,7 6,7 -3,7 6,7 -4,6 6,6 -5,6 6,6 -6,9 6,6 -7,8 6,6 -8,9 6,5 -10,7 6,5 -11,7 6,5 -12,7 6,5 -13,8 6,5 -14,8 6,2 -15,9 5,9 -17,0 5,9 -17,0 5,9 -17,9 5,9 -19,0 5,8 -21,0 5,7 -25,1 5,6 -31,0 5,4 -35,3 5,4	(m) (°C) 8,1 -0,1 7,0 8,1 -0,7 6,8 8,1 -1,7 6,7 8,1 -2,6 6,7 8,1 -3,7 6,7 8,1 -3,7 6,7 8,1 -4,6 6,6 8,1 -5,6 6,6 8,1 -6,9 6,6 8,0 -7,8 6,6 8,0 -7,8 6,5 8,0 -10,7 6,5 8,0 -11,7 6,5 8,0 -11,7 6,5 8,0 -12,7 6,5 8,0 -14,8 6,2 8,0 -14,8 6,2 8,0 -15,9 5,9 7,9 -17,0 5,9 7,9 -17,0 5,9 7,9 -17,9 5,9 7,9 -19,0 5,8 7,9 -25,1 5,6 7,8 -31,0 5,4 7,8	(m) (°C) (μS/cm 25°) -0,1 7,0 8,1 377 -0,7 6,8 8,1 374 -1,7 6,7 8,1 374 -2,6 6,7 8,1 374 -3,7 6,7 8,1 374 -3,7 6,7 8,1 374 -4,6 6,6 8,1 374 -5,6 6,6 8,1 374 -6,9 6,6 8,0 375 -7,8 6,5 8,0 375 -7,8 6,5 8,0 375 -10,7 6,5 8,0 375 -11,7 6,5 8,0 375 -12,7 6,5 8,0 375 -12,7 6,5 8,0 375 -12,7 6,5 8,0 375 -14,8 6,2 8,0 375 -14,8 6,2 8,0 376 -15,9 5,9 7,9 377 -17,0 5,9 7,9 377 -17,0 5,9 7,9 377 -17,0 5,9 7,9 377 -17,0 5,8 7,9 377 -19,0 5,8 7,9 377 -21,0 5,7 7,9 377 -25,1 5,6 7,8 378 -31,0 5,4 7,8 378 -35,3 5,4 7,7 378	(m) (°C) (µS/cm 25°) (%)  -0,1 7,0 8,1 377 92  -0,7 6,8 8,1 374 98  -1,7 6,7 8,1 374 98  -2,6 6,7 8,1 374 99  -3,7 6,7 8,1 374 99  -3,7 6,7 8,1 374 99  -4,6 6,6 8,1 374 99  -5,6 6,6 8,1 374 99  -6,9 6,6 8,0 375 98  -8,9 6,5 8,0 375 98  -10,7 6,5 8,0 375 98  -10,7 6,5 8,0 375 98  -11,7 6,5 8,0 375 98  -12,7 6,5 8,0 375 98  -11,7 6,5 8,0 375 98  -12,7 6,5 8,0 375 98  -14,8 6,2 8,0 375 98  -14,8 6,2 8,0 376 96  -15,9 5,9 7,9 377 94  -17,0 5,9 7,9 377 92  -19,0 5,8 7,9 377 91  -21,0 5,7 7,9 377 90  -25,1 5,6 7,8 378 88  -31,0 5,4 7,8 378 85	(m)         (°C)         (µs/cm 25°)         (%)         (mg/l)           -0,1         7,0         8,1         377         92         10,7           -0,7         6,8         8,1         374         98         11,4           -1,7         6,7         8,1         374         98         11,5           -2,6         6,7         8,1         374         98         11,5           -3,7         6,7         8,1         374         99         11,5           -3,7         6,6         8,1         374         99         11,5           -4,6         6,6         8,1         374         99         11,6           -5,6         6,6         8,1         374         99         11,6           -5,6         6,6         8,0         375         98         11,5           -8,9         6,6         8,0         375         98         11,5           -8,9         6,5         8,0         375         98         11,5           -10,7         6,5         8,0         375         98         11,5           -10,7         6,5         8,0         375         98         11,5	(m)         (°C)         (μs/cm 25°)         (%)         (mg/l)         μg/l           -0,1         7,0         8,1         377         92         10,7         1,3           -0,7         6,8         8,1         374         98         11,4         1,7           -1,7         6,7         8,1         374         98         11,5         1,9           -2,6         6,7         8,1         374         98         11,5         2,6           -3,7         6,7         8,1         374         99         11,5         3,2           -3,7         6,7         8,1         374         99         11,5         3,1           -4,6         6,6         8,1         374         99         11,6         3,4           -5,6         6,6         8,1         374         99         11,6         3,8           -6,9         6,6         8,0         375         98         11,5         4,0           -8,9         6,5         8,0         375         98         11,5         4,0           -9,4         6,5         8,0         375         98         11,5         4,0           -10,7         6,5<

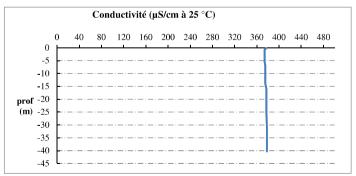
## **DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE**

 Plan d'eau :
 Nantua
 Date :
 14/03/22

 Types (naturel, artificiel ...) :
 Naturel
 Code lac :
 V2515003


 Organisme / opérateur :
 STE : Lionel Bochu & Cédric Guillet
 Campagne : 1


 Organisme demandeur :
 Agence de l'Eau RMC


 Marché n° :
 200000016

 Page 5/6



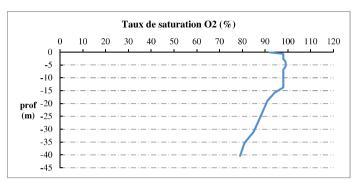


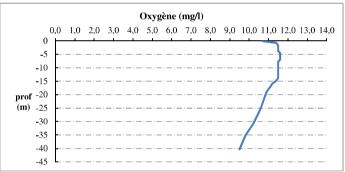


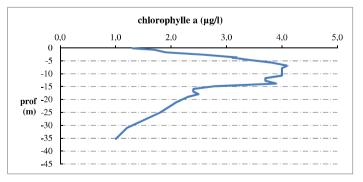


### Reieve pnytopianctonique et pnysico-chimique en pian d'eau

### **DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE**


 Plan d'eau :
 Nantua
 Date :
 14/03/22


 Types (naturel, artificiel ...) :
 Naturel
 Code lac :
 V2515003


Organisme / opérateur : STE : Lionel Bochu & Cédric Guillet Campagne : 1

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 200000016

 Page 6/6







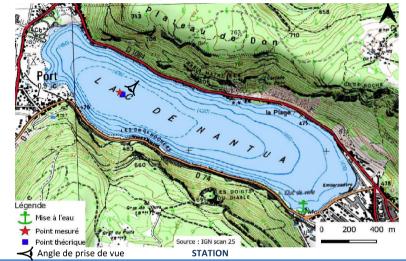
#### **DONNEES GENERALES PLAN D'EAU**

Plan d'eau : Date: 01/06/2022 Types (naturel, artificiel ...): Code lac: V2515003 Naturel

Organisme / opérateur : STE : Lionel Bochu & Marthe Moiron

Organisme demandeur: Agence de l'Eau RMC Marché n°: 200000016

1/6


#### **LOCALISATION PLAN D'EAU**

Commune : Nantua (01) Type: Lac marnant : non lacs naturels de moyenne montagne calcaire, profonds

Temps de séjour : 251 jours

Superficie du plan d'eau : 133 ha Profondeur maximale: 42 m

Carte (extrait SCAN 25 IGN 1/25 000)







## Relevé phytoplanctonique et physico-chimique en plan d'eau

<b>DONNEES GENE</b>	RAL	ES I	PLAN	D'EAU							
Plan d'eau : Types (naturel, artific Organisme / opérate Organisme demande	ur:	.) :		Nantua Nature STE : Li Agence	el ionel E				Marthe Moiron	Date: Code lac: Campagne: Marché n°: Page	
						ST	ATIC	NC			<b>-,</b> -
Coordonnée de la sta	ition	:				Syste	ème	de	Géolocalisation Portable		Carte IGN

Lambert 93: 899112 6565913 alt.: 475 m 5°34'51.2" E WGS 84 (syst.internationnal GPS ° ' "): 46°9'49.5" N 42 m Profondeur: 3- temps humide Météo: 1- temps sec ensoleillé 2- faiblement nuageux 4- pluie fine 5- orage-pluie forte 6- neige 7- gel 8- fortement nuageux 960 hPa Patm.: Vent : 0- nul 1- faible 2- moyen 3- fort Conditions d'observation : Surface de l'eau : 2- faiblement agitée 1- lisse 3- agitée 4- très agitée Hauteur de vagues : 0,02 m Bloom algal: NON Marnage: NON Hauteur de bande : 0 m Côte échelle :

campagne printanière de croissance du phytoplancton : mise en place de la Campagne thermocline

#### **REMARQUES ET OBSERVATIONS**

## Contact préalable :

Mairie de Nantua

#### Observation:

Début de stratification thermique

Petit pic de sursaturation en oxygène à 10 m de profondeur - Pic de chlorophylle (3  $\mu g/I$ ) à 10 m Pic de chlorophylle entre 9 et 10m de profondeur

Les prélèvements des IML ont été réalisés le 13/04/2022

**DONNEES GENERALES PLAN D'EAU** 

Plan d'eau :		lantua		Date :	01/06/22
Types (naturel, artificiel	•	laturel	8.4 10 10.4 - 1	Code lac :	V2515003
Organisme / opérateur :		TE : Lionel Bochu &	Marthe Moi		
Organisme demandeur :	P	sgence de l'Eau RMC		Page	: 200000016 3/6
	P	RELEVEMENTS ZON	E EUPHOTIQU	_	ŕ
Prélèvement pour analy	ses physico-c	himiques et phytop	lancton		
Heure de relevé :	12:10				
Profondeur :	0 à 7,8 m				
Volume prélevé :	7 L		rélèvements :	3	
Matériel employé :	Tuyau intégrat	eur 10 m			
Chlorophylle :	OUI				
Phytoplancton :	OUI	Ajout de lugol :	5 m	il	
Prélèvement pour analy	ses micropol	luants			OU
Houre de relevé :	12.40				
Heure de relevé :	12:40				
Profondeur : Prélèvement :	0 à 7,8 m	élévement tous les 75	cm		
				•	
Volume prélevé :	12 L	Nbre de prélèvement	ts: 10	1	
Matériel employé :	Bouteille téflo	II 1, Z L			
		PRELEVEMENTS	DE FOND		ou
Prélèvement pour analy	ses physico-c	himiques			OU
Prélèvement pour analy	ses micropol	luants			OU
Heure de relevé :	12:00				
Profondeur :	40 m				
Volume prélevé :	16 L	Nhre de n	rélèvements :	3	
•	Bouteille téfloi		relevements.	,	
<u>Remarques prélèvement :</u>					
		REMISE DES ECHA	ANTILLONS		
Code prélèvement de fond		784320 Bon de tra	ncnort :	6919057001023054	
Code prélèvement ZE :		784276 Bon de tra		6919057001023034	
Code preievement ZE :	L	704270 DOII GE U	япэрогі.	0313037001023048	
Dépôt: TNT	Chronopost	CARSO Vill	le : Chambéry		
Date: 01/06/22	•	leure : 18:			
Réception au laboratoire le		02/06/22			
		,,			

## Relevé phytoplanctonique et physico-chimique en plan d'eau

**DONNEES PHYSICO-CHIMIQUES** 

Plan d'eau :NantuaDate :01/06/22Types (naturel, artificiel ...) :NaturelCode lac :V2515003

Organisme / opérateur : STE : Lionel Bochu & Marthe Moiron Campagne : 2

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 200000016

**Page** 4/6

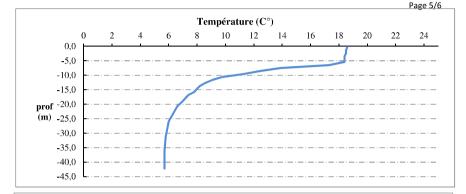
#### TRANSPARENCE

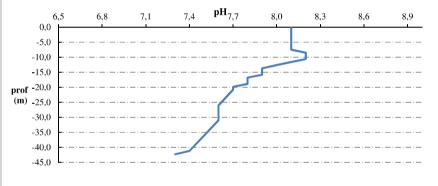
Disque Secchi = 3,1 m Zone euphotique (x 2,5 secchi) = 7,8 m

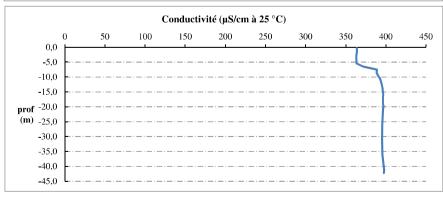
#### PROFIL VERTICAL

Moyen de mesure utilisé : in situ à chaque profondeur en surface dans un récipient

Type de pvlt	Prof.	Temp	pН	Cond.	02	02	Chloro a	Heure
ype de pvit	(m)	(°C)		(μS/cm 25°)	(%)	(mg/l)	μg/l	
	-0,1	18,6	8,1	364	102	9,5	0,9	11:40
	-1,4	18,5	8,1	364	103	9,6	1,0	
	-2,4	18,5	8,1	363	103	9,7	1,1	
Plvt zone	-3,4	18,4	8,1	363	103	9,7	1,1	
euph.	-4,4	18,4	8,1	363	103	9,7	1,1	
	-5,4	18,4	8,1	363	103	9,7	1,3	
	-6,5	17,3	8,1	372	108	10,3	1,7	
	-7,5	13,9	8,1	389	111	11,4	1,9	
	-8,5	12,5	8,2	388	110	11,7	2,4	
	-9,6	11,2	8,2	390	107	11,7	2,9	
	-10,6	9,8	8,2	393	102	11,6	2,7	
	-11,6	9,1	8,1	394	97	11,2	1,9	
	-12,6	8,6	8,0	395	92	10,8	1,7	
	-13,7	8,2	7,9	396	88	10,4	1,4	
	-14,7	8,0	7,9	396	86	10,1	1,3	
	-15,8	7,8	7,9	397	84	9,9	1,1	
	-16,8	7,4	7,8	396	82	9,8	1,2	
	-17,8	7,2	7,8	396	80	9,6	1,1	
	-18,9	7,0	7,8	396	77	9,3	1,0	
	-19,8	6,8	7,7	397	74	9,0	1,3	
	-20,8	6,6	7,7	397	72	8,8	1,2	
	-26,0	6,0	7,6	396	69	8,5	0,9	
	-31,0	5,8	7,6	395	63	7,9	0,9	
	-36,1	5,7	7,5	396	59	7,4	0,8	
	-41,2	5,7	7,4	398	47	5,9	0,9	
	-42,3	5,7	7,3	398	41	5,1		
	72,3	3,,	,,5	350	71	3,1		
						ļ		
						·		


### **DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE**


 Plan d'eau :
 Nantua
 Date :
 01/06/22


 Types (naturel, artificiel ...) :
 Naturel
 Code lac :
 V2515003

 Organisme / opérateur :
 STE : Lionel Bochu & Marthe Moiron
 Campagne : 2

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° :
 200000016







## Relevé phytoplanctonique et physico-chimique en plan d'eau

01/06/22

Date:

## **DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE**

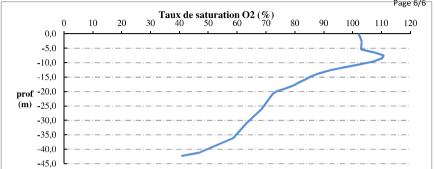
Plan d'eau:

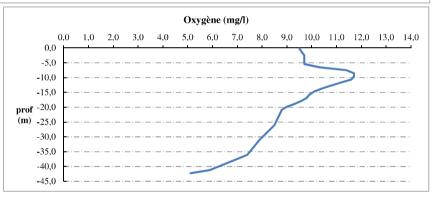
Types (naturel, artificiel ...):

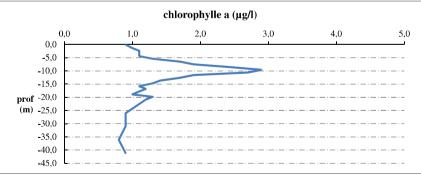
Organisme / opérateur:

Organisme demandeur:

Agence de l'Eau RMC


Naturel


Code lac: V2515003


Campagne: 2

Marché n°: 200000016

Page 6/6







#### **DONNEES GENERALES PLAN D'EAU**

 Plan d'eau :
 Nantua
 Date :
 19/08/2022

 Types (naturel, artificiel ...) :
 Naturel
 Code lac :
 V2515003

Organisme / opérateur : STE : Marthe Moiron Claire Perrier Campagne : 3

Organisme demandeur : Agence de l'Eau RMC Marché n° : 200000016

Page 1/6

#### **LOCALISATION PLAN D'EAU**

Commune: Nantua (01) Type: N4

Lac marnant : non lacs naturels de moyenne montagne calcaire,

Temps de séjour : 251 jours profonds

Superficie du plan d'eau : 133 ha Profondeur maximale : 42 m

Carte (extrait SCAN 25 IGN 1/25 000)

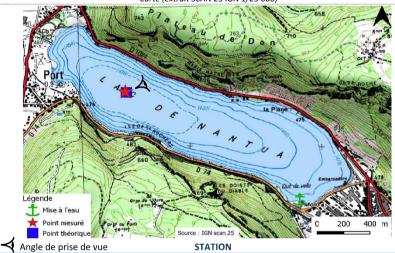



Photo du site :



## Relevé phytoplanctonique et physico-chimique en plan d'eau

#### **DONNEES GENERALES PLAN D'EAU**

 Plan d'eau :
 Nantua
 Date :
 19/08/22

 Types (naturel, artificiel ...) :
 Naturel
 Code lac :
 V2515003

Organisme / opérateur : STE : Marthe Moiron Claire Perrier Campagne : 3

Organisme demandeur :Agence de l'Eau RMCMarché n° : 200000016Page2/6

#### STATION

Lambert 93: X: 899126 Y: 6565900 alt.: 475 m

WGS 84 (syst.internationnal GPS ° ' "): 5°34'51.8" E 46°9'49.1" N

Profondeur: 43 m

Météo: 1- temps sec ensoleillé 2- faiblement nuageux 3- temps humide

4- pluie fine 5- orage-pluie forte 6- neige

Système de Géolocalisation Portable

Carte IGN

7- gel 8- fortement nuageux

P atm. : 961 hPa

Vent: 0- nul 1- faible 2- moyen 3- fort

Conditions d'observation :

Coordonnée de la station :

Surface de l'eau : 1- lisse 2- faiblement agitée 3- agitée 4- très agitée

Hauteur de vagues : 0,05 m

Bloom algal : NON

Marnage : NON Hauteur de bande : 0 m Côte échelle :

Campagne

campagne estivale : thermocline bien installée, deuxième phase de croissance des

phytoplancton

#### REMARQUES ET OBSERVATIONS

#### Contact préalable :

Mairie de Nantua

### Observation:

échauffement de la couche de surface (23°C)

Pic de sursaturation en oxygène à 10 m de profondeur (136% sat)

Pic de chlorophylle entre 11 et 12m de profondeur

#### Remarques:

Problème livraison : livré à J+3 à la place du samedi car absence du destinataire

& non prise en charge d'une des deux glacières

<b>DONNEES GENERA</b>	LES PLAN	D'EAU					
Plan d'eau : Types (naturel, artificiel :	) :	Nantua Naturel				Date : Code lac :	19/08/22 V2515003
Organisme / opérateur : Organisme demandeur :		STE : Marthe N Agence de l'E		Claire Perrier		Campagne Marché n° :	20000016
		PRELEVEME	NTS ZONE	EUPHOTIQUE	i	Page	3/6
Prélèvement pour ana	lyses physico	o-chimiques e	et phytopl	ancton			
Heure de relevé : Profondeur : Volume prélevé :	10:50 <b>0 à 11,25 m</b> 7 l	Ì	Nbre de pr	élèvements :	2		
Matériel employé :	Tuyau intégi	rateur 15 m					
Chlorophylle:	OUI	]					
Phytoplancton :	OUI	Ajout	de lugol :	5 ml			
Prélèvement pour ana	lyses microp	olluants					OUI
Heure de relevé : Profondeur : Prélèvement : Volume prélevé : Matériel employé :	10:50 <b>0 à 11,25 m</b> 1 tous les 1 12 l Bouteille téf	ı m -	Nbre de pr	élèvements :	13		
		PRELEV	/EMENTS	DE FOND			OUI
Prélèvement pour ana	lyses physico	o-chimiques					OUI
Prélèvement pour ana	lyses microp	olluants					OUI
Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	10:30 <b>41 m</b> 15 l Bouteille téf	) -	Nbre de pr	élèvements :	3		
Remarques prélèvement	<u>:</u>						
		REMISE	DES ECHA	NTILLONS			
Code prélèvement zone c Code prélèvement de for			Bon de tra Bon de tra	•		XY415845438 XY415845441	
Dépôt : TNT Date : 19/08/22 Réception au laboratoire		CARSO Heure : 22/08/22		e : Chambéry 30 Dépôt pour li Livraison le lu		aboratoire le s	amedi,

## Relevé phytoplanctonique et physico-chimique en plan d'eau

## **DONNEES PHYSICO-CHIMIQUES**

Plan d'eau :NantuaDate :19/08/22Types (naturel, artificiel ...) :NaturelCode lac :V2515003

Organisme / opérateur : STE : Marthe Moiron Claire Perrier Campagne : 3

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 200000016

 Page
 4/6

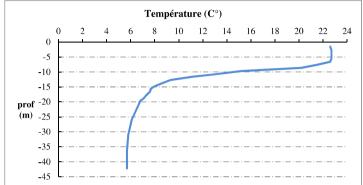
TRANSPARENCE

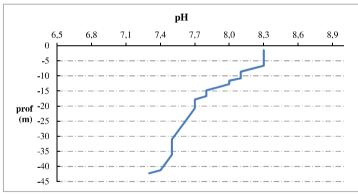
Disque Secchi = 4,5 m Zone euphotique (x 2,5 secchi) = 11,3 m

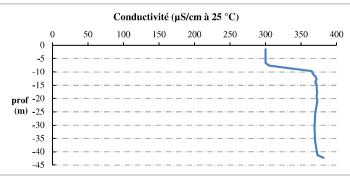
## PROFIL VERTICAL

loyen de mes		,		aque profondeur		·,	ans un récipie	
ype de pvlt	Prof.	Temp	pH	Cond.	02	02	Chloro a	Heure
ype de pvit	(m)	(°C)		(μS/cm 25°)	(%)	(mg/l)	μg/l	
	-1,4	22,6	8,3	300	113	9,2	0,6	10:15
Ĺ	-2,7	22,7	8,3	300	113	9,2	0,6	
L	-3,6	22,7	8,3	300	113	9,2	0,6	
	-4,6	22,7	8,3	300	113	9,2	0,7	
Plvt zone	-5,5	22,7	8,3	300	113	9,2	0,7	
euph.	-6,6	22,6	8,3	300	113	9,2	0,8	
	-7,6	21,5	8,2	305	114	9,5	0,9	
ļ	-8,6	20,2	8,1	332	125	10,7	1,0	
į	-9,7	15,2	8,1	365	136	12,9	1,0	
į_	-10,8	13,0	8,1	367	123	12,3	4,8	
	-11,6	11,2	8,0	370	109	11,3	8,6	
	-12,7	9,3	8,0	372	98	10,6	3,1	
	-13,8	8,6	7,9	370	84	9,3	0,9	
	-14,8	8,0	7,8	372	81	9,1	1,0	
[	-15,6	7,7	7,8	372	78	8,8	1,0	
	-16,7	7,6	7,8	372	76	8,6	1,0	
	-17,8	7,3	7,7	373	74	8,4	1,0	
	-18,8	7,1	7,7	372	72	8,2	0,7	
	-19,7	6,8	7,7	372	68	7,9	0,6	
	-20,7	6,7	7,7	373	66	7,6	0,3	
	-25,9	6,1	7,6	370	54	6,4	0,0	
	-31,1	5,8	7,5	369	40	4,8	0,0	
	-36,2	5,7	7,5	370	28	3,3	0,0	
	-41,3	5,7	7,4	373	7	0,8	0,1	
	-42,3	5,7	7,3	382	2	0,3		
[								
						i		

## **DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE**


 Plan d'eau :
 Nantua
 Date :
 19/08/22

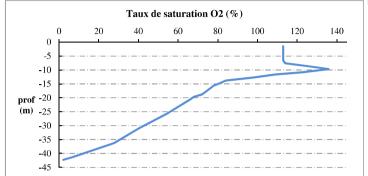

 Types (naturel, artificiel ...) :
 Naturel
 Code lac :
 V2515003

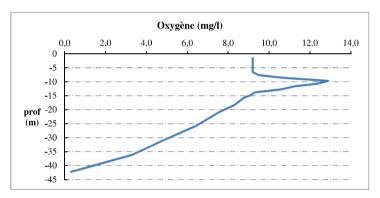

 Organisme / opérateur :
 STE : Marthe Moiron
 Claire Perrier
 Campagne : 3

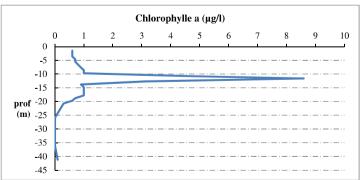
 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° :
 200000016

 Page 5/6







## Relevé phytoplanctonique et physico-chimique en plan d'eau

## **DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE**

Plan d'eau : Nantua Date : 19/08/22
Types (naturel, artificiel ...) : Naturel Code lac : V2515003
Organisme / opérateur : STE : Marthe Moiron Claire Perrier Campagne : 3
Organisme demandeur : Agence de l'Eau RMC Marché n° : 200000016







#### **DONNEES GENERALES PLAN D'EAU**

 Plan d'eau :
 Nantua
 Date :
 17/10/2022

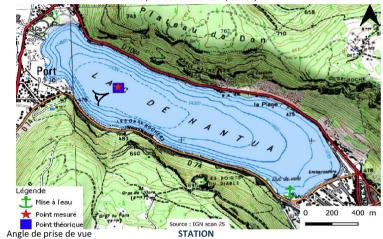
 Types (naturel, artificiel ...) :
 Naturel
 Code lac :
 V2515003

 Organisme / opérateur :
 STE : Cédric Guillet & Marthe Moiron
 Campagne : 4

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 200000016

Page 1/7

#### **LOCALISATION PLAN D'EAU**


 Commune :
 Nantua (01)
 Type :
 N4

 Lac marnant :
 non
 lacs naturels de moyenne montagne calcaire, profonds

 Temps de séjour :
 251 jours

Temps de sejour : 251 jou Superficie du plan d'eau : 133 ha Profondeur maximale : 42 m

Carte (extrait SCAN 25 IGN 1/25 000)





## Relevé phytoplanctonique et physico-chimique en plan d'eau

#### **DONNEES GENERALES PLAN D'EAU**

Plan d'eau :NantuaDate :17/10/22Types (naturel, artificiel ...) :NaturelCode lac :V2515003

 Organisme / opérateur :
 STE : Cédric Guillet & Marthe Moiron
 Campagne : 4

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 200000

Agence de l'Eau RMC Marché n°: 200000016
Page 2/7

STATION

Coordonnée de la station :	Sys	stème de Géoloc	Carte IGN			
ambert 93 :	X :	899130	Y :	6565905	alt. :	475 m
NGS 84 (syst.internationnal GPS ° ' "):	,	5°34'51.9" E		46°9'49.2" N		

Profondeur : 42 m

Météo: 1- temps sec ensoleillé 2- faiblement nuageux 3- temps humide

4- pluie fine 5- orage-pluie forte 6- neige

7- gel 8- fortement nuageux

P atm. : 968 hPa

Vent: 0- nul 1- faible 2- moyen 3- fort

Conditions d'observation :

Surface de l'eau : 1- lisse 2- faiblement agitée 3- agitée 4- très agitée

Hauteur de vagues : 0 m

Bloom algal : NON

Marnage: NON Hauteur de bande: 0 m Côte échelle: nd

Campagne 4 campagne de fin d'été : fin de stratification avant baisse de la température

#### REMARQUES ET OBSERVATIONS

#### Contact préalable :

Mairie de Nantua

#### Observation:

Thermocline toujours bien en place.

Oxygénation optimale sur les 9 premiers mètres puis désoxygénation progressive pour atteindre l'anoxie au fond du plan d'eau.

#### Remarques :

Prélèvement de sédiments au point de plus grande profondeur

#### Relevé phytoplanctonique et physico-chimique en plan d'eau **DONNEES GENERALES PLAN D'EAU** Plan d'eau : Nantua 17/10/22 Date: Types (naturel, artificiel ...): Naturel Code lac: V2515003 Organisme / opérateur : STE : Cédric Guillet & Campagne: 4 Marthe Moiron Organisme demandeur: Marché n°: 200000016 Agence de l'Eau RMC Page 3/7 PRELEVEMENTS ZONE EUPHOTIQUE Prélèvement pour analyses physico-chimiques et phytoplancton OUI Heure de relevé : 12:20 Profondeur: 0 à 22 m Volume prélevé : 13 L Nbre de prélèvements: 2 Matériel employé : Tuyau intégrateur 27 m Chlorophylle: OUI Phytoplancton: OUI Aiout de lugol : 5 ml OUI Prélèvement pour analyses micropolluants Heure de relevé : 12:10 Profondeur: 0 à 22 m Prélèvement : 1 pvlt tous les mètres Volume prélevé : 23 L Nbre de prélèvements: 23

Matériel employé : Bouteille téflon 1,2L
PRELEVEMENTS DE FOND

Prélèvement pour analyses physico-chimiques OUI
Prélèvement pour analyses micropolluants OUI

OUI

Heure de relevé : 11:40
Profondeur : 40 m

**Volume prélevé :** 16 L Nbre de prélèvements : 3

Matériel employé : Bouteille téflon 5,3L

Remarques prélèvement :

 Code prélèvement zone euphotique:
 784278 Bon de transport :
 6919057001966889

 Code prélèvement de fond :
 784322 Bon de transport :
 6913424501106559

 Dépôt :
 TNT
 Chrono
 CARSO
 Ville : Chambéry

 Date :
 17/10/22
 Heure :
 15:40

Réception au laboratoire le : 18/10/22

## Relevé phytoplanctonique et physico-chimique en plan d'eau

#### **DONNEES PHYSICO-CHIMIQUES**

 Plan d'eau :
 Nantua
 Date :
 17/10/22

 Types (naturel, artificiel ...) :
 Naturel
 Code lac :
 V2515003

Organisme / opérateur : STE : Cédric Guillet & Marthe Moiron Campagne : 4

Organisme demandeur :Agence de l'Eau RMCMarché n° : 200000016

Page 4/7

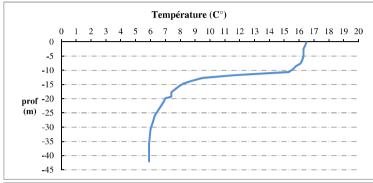
#### TRANSPARENCE

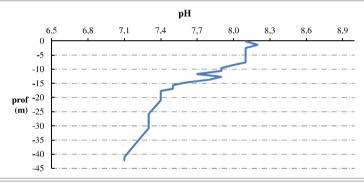
Disque Secchi = 8,8 m Zone euphotique (x 2,5 secchi) = 22 m

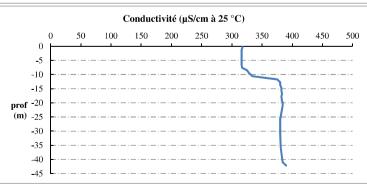
#### PROFIL VERTICAL

	Prof.	Temp	pН	Cond.	02	02	Chloro a	Heure
Type de pvlt	(m)	(°C)		(μS/cm 25°)	(%)	(mg/l)	μg/l	
_	-0,1	16,5	8,1	318	99	9,3	0,2	11:30
	-1,4	16,4	8,2	316	103	9,6	0,6	
	-2,5	16,3	8,1	316	103	9,7	0,5	
	-3,4	16,3	8,1	316	103	9,7	1,0	
	-4,6	16,3	8,1	316	103	9,7	0,9	
_	-5,0	16,3	8,1	316	103	9,7	1,0	
	-6,6	16,2	8,1	316	103	9,7	1,0	
	-7,6	16,1	8,1	317	103	9,6	0,9	
	-8,5	15,8	8,0	325	99	9,4	0,8	
	-9,6	15,6	7,9	329	96	9,2	0,7	
Plvt zone — euph. —	-10,6	15,3	7,9	334	93	8,9	0,6	
eupii.	-11,7	11,7	7,7	375	84	8,7	0,6	
	-12,7	9,5	7,9	380	94	10,3	2,8	
	-13,7	8,8	7,8	380	92	10,1	1,9	
	-14,7	8,2	7,6	382	74	8,3	0,5	
	-15,7	7,9	7,5	382	66	7,5	0,4	
	-16,9	7,6	7,5	383	59	6,8	0,3	
_	-17,7	7,4	7,4	382	55	6,3	0,2	
	-19,3	7,4	7,4	383	52	6,0	0,1	
	-19,8	7,0	7,4	384	49	5,7	0,1	
	-21,0	6,9	7,4	384	47	5,4	0,0	
	-25,8	6,3	7,3	380	41	4,8	0,0	
	-30,8	6,0	7,3	380	30	3,5	0,0	
	-35,9	5,9	7,2	381	18	2,2	0,0	
	-41,0	5,9	7,1	384	9	1,1	0,0	
	-42,2	5,9	7,1	390	7	0,9		
						ł		
						†		

## **DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE**


 Plan d'eau :
 Nantua
 Date :
 17/10/22


 Types (naturel, artificiel ...) :
 Naturel
 Code lac :
 V2515003


 Organisme / opérateur :
 STE : Cédric Guillet & Marthe Moiron
 Campagne : 4

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° :
 200000016

Page 5/7

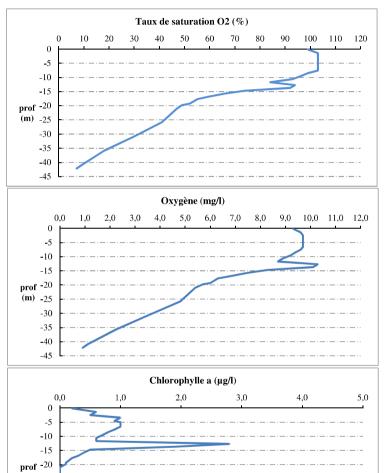






## Relevé phytoplanctonique et physico-chimique en plan d'eau

## **DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE**


 Plan d'eau :
 Nantua
 Date :
 17/10/22

 Types (naturel, artificiel ...) :
 Naturel
 Code lac :
 V2515003

 Organisme / opérateur :
 STE : Cédric Guillet & Marthe Moiron
 Campagne : 4

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° :
 200000016

 Page 6/7



(m) -25

-30 -35

-40

-45

## Prélèvement de sédiments pour analyses physico-chimiques

 Plan d'eau :
 Nantua
 Date :
 17/10/22

 Types (naturel, artificiel ...) :
 Naturel
 Code lac :
 V251500

 Organisme / opérateur :
 STE : Cédric Guillet & Marthe Moiron
 Campagne :
 4

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° :
 2000000

 Page
 7/7

#### **CONDITIONS DU MILIEU**

1- temps sec ensoleillé 4- pluie fine 7- gel Météo 2- faiblement nuageux 5- orage-pluie forte 8- fortement nuageu 3- temps humide 6- neige Vent: 0- nul 2- moyen 4- brise 1- faible 3- fort 5- brise modéré Surface de l'eau : 1- lisse 2- faiblement agitée 3- agitée 4- très agitée

Période estimé favorable à :

mort et sédimentation du plancton sédimentation de MES de toute nature



#### MATERIEL

benne Ekmann	pelle à main	Autre :			
	PRELEVE	MENTS			
Localisation générale de la zone	e de prélèvement (X, Y Lambe	ert 93)			
(correspond au point de plus gi			X: 899130	Υ:	6565905
Pélèvements	1	. 2	3	4	5
Profondeur (en m)	4:	2 42	42		
Epaisseur échantillonnée					
récents (< 2cm)	х	. X	Х		
anciens (> 2cm)					
Granulométrie dominante					
graviers					
sables					
limons	х	X	X		
vases	Х	X	X		
argile					
Aspect du sédiments					
homogène	х	X	Х		
hétérogène					
couleur		Gris/vert/	marron		
odeur	NC	NO NO	NON NON		
Présence de débris végétaux n	on décomposés NC	N NO	N NON		
Présence d'hydrocarbures	NC	NO NO	NON NON		
Présence d'autres débris	NC	NO NO	N NON		

#### REMISE DES ECHANTILLONS

S.T.E Sciences Techniques de l'Environnement

0.400		
0/22 5003		
) 00016		
77		
ıx		
4		
•		
65905		
5		

# IV. <u>Fichiers relevés IBML</u>

UNITE D'OBSERVAT	ION MACROPH	IYTES Nantua		SCRIPTION G	
Nom du plan d'eau : Organisme :	losaïque Enviro				V2515003 de REICH / Mathias
N°Unité d'observation :	1		jj/mm/aaaa) :		26/07/2022
Heure début (hh:mm) :	15:0		Heure de fin (	hh:mm) :	18:30
Coordonnées GPS du F	Point central de	e l'unité :	Lambert 93		
				X:	899099.579
				y:	6565544.601
Transparence mesurée au	disque de Seccl	ni (m) :	7.00	Niveaux des	eaux (m) :
Orientation / vents domina	ints :		sous le vent		
	Typologie d	es rives au r	niveau de l'unité d'o	bservation	
Noter la fréquence des élé	éments observ		ire,2, rare, 3 , présen préciser	t, 4 abondant,	5, très abondant, "autre" : à
Numéro du type de rive do	minant :	<u> </u>	4		
<u>, , , , , , , , , , , , , , , , , , , </u>		: "Zones hu	ımides caractéristic	ues"	
Tourbières					
Landes tourbeuses / humide	es				
Marais / Marécages Plan d'eau proche (<50m de	e la rive\				
Prairies inondées / humides	,				
Mégaphorbiaie / Végétation		ouradons			
Forêt hygrophile / Bois mare					
Autre**					
Type 2 : "Zenes ris	ulaires colonie	sáce nar une	vágátation arhusti	vo ot arboross	onto non humido"
Forêts feuillus et mixtes	ruiaires colofiis	ees par une	végétation arbusti 	ve et arboreso	ente non numue
Forêts de conifères					
Arbustes et buissons					
Lande / Lande à Ericacées					
Autre**					
Adilo					
Type 3 : "Zones rivul	aires non coloi	nisées par u	ne végétation arbus	stive et arbore	scente non humide"
Friches					
Hautes herbes					
Rives rocheuses					
Plages / Sol nu					
Autre**					
Autre					
Type 4 : "Z	ones artificialis	sées ou subi	issant des pression	s anthropique	es visibles"
Ports					
Mouillages					
Jetées					
Urbanisation	laina				
Entretien de la végétation riv	/uiaire				
Zones déboisées Litière					
Décharge	-		1		
Remblais			1		
Murs					
Digues					
Revêtements artificiels			1		
Plages aménagées					
Zone de baignade					
Chemins et routes		5			
Ouvrages de génie civil					
Agriculture					
Autre**					
Pourcentage du Type 1 (%) : 8 Type 2 (%) :	1	de rive repré	senté par ce type s Type 3 (%) : Type 4 (%) :	ur l'ensemble 92	du plan d'eau :
Largeur de la zone littorale	e "euphotique"	:	b "réduite"		
		Commenta	ires / Précisions		

UNITE	D'OBSERVAT	ION MACROF	HYTES		DESCRIPTION	N I OCALE	
Nom du plan		- Sit All (Sito)	Nantua		Code :	V2515003	
Organisme :		osaïque Envir		Opérateur :		lde REICH / Mathias	
N°Unité d'ob		1	Date (jj/r	nm/aaaa) :		26/07/2022	
Heure début			:00	Heure de fir	<u>ា</u> (hh:mm) :	18:30	
Coordonnées	s GPS du Poi	nt central de l	'unité :	Lambert 93			
					x :	899099.5794	
					y:	6565544.601	
			Conditions	d'observation			
Vent :	faible						
	soleil						
Surface de l'é		faibleme	nt agitée	Hauteur des va	aques (m) :	0.30	
Culture up 1		TOMOTOTIC		on de la rive	<b></b>	0.00	
<b>Description</b> of	<mark>le la zone riv</mark> e	<mark>eraine</mark> (Cf. Fic	he 1/1)				
Occupation du	ı sol dominant	e:			Route		
Végétation do					Herbacée		
<b>Description</b> of	<mark>le la berge</mark> (C	f. Fiche 1/1)					
Decription du	ı talus :						
Hauteur (m) :		3.00					
Impacts huma	ains visibles :	oui					
Indices d'éros	ion :	oui					
Type de subst	rat dominant :				T		
Type de végét	tation dominar	nte:	Arborée				
_							
Substrats	<b>:</b> [ <b>V</b> : Vase; <b>T</b>	_		e ; <b>S</b> : Sables, g Débris organiqu		lloux, pierres, galets ; <b>B</b> :	
Description	de la plage						
Largeur (m) :				0.0	0		
Impacts huma	ains visibles :	NA	Type de subs	NA			
Indices d'éros	ion :	NA	Type de végétation dominante : NA				
<b>Description</b> of	le la zone litte	orale					
Largeur explo			Type de subtr	at dominant :		С	
Longueur exp	lorée(m):	100	Impacts huma	ains visibles :		oui	
Type de végé	ype de végétation aquatique dominante : hydrophytes						
			Commentair	es / Précisions			

* indiquer la superficie de (des) l'herbier(s), la profondeur, le type de subtrat, la présence de fleurs, de fruits, etc. Substrat dominant : [V : vase; T : Terre, argile, marne, tourbe; R : Racines, branchages; S : Sables, graviers; C : Cailloux, pierres, galets; B : Blocs, dalles; D : Débris organiques]

TAXONS	Abondance	Observations complémentaires (*)	١
FISCRA	2		l
TOYSPX	1		ľ
SPISPX	3		ŀ
MOUSPX	1		I
JUGATR	3		ŀ
RHYRIP	2		1
AMBFLU	2		Ī.
CINFON	2		I
LYNSPX	2		I

	Fissidens crassipes
	Tolypothrix Kützing e
	Spirogyra sp. Link
	Mougeotia sp. C.Aga
	Jungermannia atrovi
	Rhynchostegium ripa
	Amblystegium fluviat
ĺ	Cinclidotus fontinaloi
	Lyngbya C.Agardh e
_	

	UNITE D'OBSERVATION	MACROPHYTES		RELEVE I	DE RIVE	
	Nom du plan d'eau :	Nantua		Code :	V2515003	
es '	Organisme :	osaïque Environnement / ST	Opérateur :	Mathilde REICH / Mathias		
g e	N°Unité d'observation :	1 Date (jj/r	nm/aaaa) :	26/07/2022		
	Heure début (hh:mm) :	15:00	Heure de fin	<b>fin</b> (hh:mm) : 18:30		
ιga						
ovi						
ipa iat		Commentaires /	Précisions			
aloi n e		Relevé de la zone littora	ale en plusieurs f	ois		

LINITE D'ORCEDVAT	ION MACROE	DUVTER	DE	SCRIPTION (	CENEDALE
UNITE D'OBSERVAT Nom du plan d'eau :	ION WIACKUP	Nantua		SCRIPTION ( Code :	V2515003
Organisme :	osaïque Envir	onnement / S			ilde REICH / Mathias
N°Unité d'observation :	2	Date (	jj/mm/aaaa) :		27/07/2022
Heure début (hh:mm) : Coordonnées GPS du F		30 do l'unitó :	Heure de fin ( Lambert 93	hh:mm) : 	11:45
Coordonnees or 5 du r	onit central t	de l'ullite .	Lambert 33	x:	900126.362
					6565188.034
				y:	0303100.034
				ì	
Transparence mesurée au	•	chi (m) :	6.50	Niveaux de	s eaux (m) :
Orientation / vents domina	ants :		sans objet		
	Typologie	des rives au i	niveau de l'unité d'o	bservation	
Noter la fréquence des éle	éments obser		are,2, rare, 3 , prése préciser	nt, 4 abondan	t, 5, très abondant, "autre" :
Numéro du type de rive do			4	_	
<del>-</del>	Туре	1 : "Zones hu	umides caractéristic	ques"	
Tourbières	<u> </u>				
Landes tourbeuses / humid	es				-
Marais / Marécages	o la rivo\				1
Plan d'eau proche (<50m d Prairies inondées / humides					1
Mégaphorbiaie / Végétation		touradone			1
Forêt hygrophile / Bois mar					
Autre**	Juguan (aulii	Jaussaid)			
Type 2 : "Zones riv	ulaires colon	isées par une	végétation arbusti	ve et arbores	scente non humide"
Forêts feuillus et mixtes					
Forêts de conifères					
Arbustes et buissons					
Lande / Lande à Ericacées					
Autre**					
Type 3 : "Zones rivula	aires non colo	onisées par u	ne végétation arbus	stive et arbor	escente non humide"
Friches					
Hautes herbes					
Rives rocheuses					
		-			
Plages / Sol nu					
Autre**					
Type 4 : "Zo	ones artificial	isées ou sub	issant des pression	s anthropiqu	ies visibles"
Ports	oneo artinolal			o unun opiqu	ico vicibico
Mouillages			1		
Jetées			1		
Urbanisation			1		
Entretien de la végétation riv	vulaire		1		
Zones déboisées	v ulali C				
Litière			1		
Décharge Remblais			1		
Remblais			1		
Murs			-		
Digues			-		
Revêtements artificiels			-		
Plages aménagées			-		
Zone de baignade		_			
Chemins et routes		5	-		
Ouvrages de génie civil					
Agriculture					
Autre**			,		
	ı linéaire total	l de rive repré	ésenté par ce type s	ur l'ensembl	e du plan d'eau :
Type 1 (%) : 8			Type 3 (%):		H
Type 2 (%) :	l		Type 4 (%) :	92	
Largeur de la zone littorale	e "euphotique	e" :	b "réduite"		
				•	
		Commenta	aires / Précisions		

UNITE D'OBSERVATION MACROPHYTES					DESCRIPTIO	NLOCALE	
Nom du plan		WIACKUP	Nantua		Code :	V2515003	
Organisme :	u eau .	osaïque Envir		Onérateur :		de REICH / Mathias	
N°Unité d'ob	servation :	2		mm/aaaa) :	- Watin	27/07/2022	
Heure début			30	Heure de fir	(hh:mm) :	11:45	
		nt central de	'unité :	Lambert 93	<b>l</b> ` ′		
				'	x :	900126.3621	
					y:	6565188.034	
			Conditions	d'observation			
Vent :	nul						
		1					
Météo :	soleil	1:-					
Surface de l'	eau :	IIS	Se Doccrintia	Hauteur des va on de la rive	igues (m) :		
Description (	de la zone riv	eraine (Cf. Fic		on de la rive			
•	u sol dominant	,	10 17 17		Route		
Végétation de					Arborée		
	de la berge (C	f. Fiche 1/1)			7 20. 20		
Decription du	u talus :	,					
Hauteur (m) :		3.00					
Impacts hum	ains visibles :	oui					
Indices d'éros	ion :	oui					
Type de subs	trat dominant :				Т		
Type de végé	tation dominar	nte :	Arborée				
Substrats	: [ <b>V</b> : Vase; <b>1</b>			e ; <b>S</b> : Sables, g : Débris organiqu		lloux, pierres, galets ; <b>B</b> :	
Description	de la plage			<u> </u>			
Largeur (m) :				0.2	0		
Impacts hum	ains visibles :	oui	Type de subs	trat dominant :		С	
Indices d'éros	ion :	oui	Type de végétation dominante : Arborée				
<b>Description</b> (	de la zone litt	orale					
Largeur explo			Type de subtr	at dominant :		С	
Longueur exp	` '		Impacts humains visibles : oui				
Type de végé	tation aquatiqu	ue dominante :		hydrophytes			
			Commentair	es / Précisions			

* indiquer la superficie de (des) l'herbier(s), la profondeur, le type de subtrat, la présence de fleurs, de fruits, etc. Substrat dominant : [V : vase; T: Terre, argile, marne, tourbe; R: Racines, branchages; S: Sables, graviers; C : Cailloux, pierres, galets; B : Blocs, dalles; D : Débris organiques]

TAXONS	Abondance	Observations complémentaires (*)	
FISCRA	2		l
AMBTEN	1		l
SPISPX	3		l
OEDSPX	1		l
RHYRIP	2		l
BULSPX	1		l
LYNSPX	1		l
PELEND	1		l
CARELA	1		l
FILULM	1		l
LYSVUL	1		l
RUBCAE	2		l
ANGSYL	1		l
IRIPSE	1		l
CARPEN	1		l
AGRSTO	1		l
LYCEUR	1		l
VAEOFF	1		l
CHIPOL	3		l
			l
			l
			l
			l
			l

Fissidens crassipes Organisme: Spirogyra sp. Link Oedogonium Link ex Rhynchostegium ripa Bulbochaete C.Agar Lyngbya C.Agardh e Pellia endiviifolia (Di Carex elata All., 178 Filipendula ulmaria ( Lysimachia vulgaris Rubus caesius L., 17 Angelica sylvestris L Iris pseudacorus L., 1 Carex pendula Huds. Agrostis stolonifera L. Lycopus europaeus L Chiloscyphus polyant

**UNITE D'OBSERVATION MACROPHYTES** RELEVE DE RIVE Nom du plan d'eau : Nantua Code: V2515003 Mathilde REICH / Mathias osaïque Environnement / ST Opérateur : Amblystegium tenax N°Unité d'observation : 27/07/2022 Date (jj/mm/aaaa): Heure début (hh:mm) : 8:37 Heure de fin (hh:mm) : 9:25

Commentaires / Précisions

Pour mieux affirmer Valeriana officinalis L Ses missions, le Cemagref devient Irstea



UNITE D'OBSERVAT	TION MACROE	DHYTES	DE	SCRIPTION G	ENEDALE		
Nom du plan d'eau :	ION MACKOR	Nantua	U	Code :	V2515003		
Organisme :	osaïque Envir	onnement / S7	Opérateur :	Mathilde REICH / Mathias			
N°Unité d'observation :	3		(jj/mm/aaaa) :		27/07/2022		
Heure début (hh:mm) :		:45	Heure de fin (	hh:mm) :	15:30		
Coordonnées GPS du	Point central of	de l'unité :	Lambert 93				
				x :	900591,681		
				y:	6565620,898		
Transparence mesurée au	disque de Sec	chi (m) :	6,50	Niveaux des	s eaux (m) :		
Orientation / vents domina		( )	protégé	1	( )		
Orionation, vonto domini			protogo	1			
	Typologie	des rives au i	niveau de l'unité d'o	bservation			
Noter la fréquence des éle		vés : 1, très ra	are,2, rare, 3 , présen		5, très abondant, "autre" : à		
N			oréciser 				
Numéro du type de rive de		1 · "Zones hi	umides caractéristic	l nues"			
Tourbières	Турс	T. Zonesin	umacs caracteristic	ques			
Landes tourbeuses / humic	ries						
Marais / Marécages	· · ·						
Plan d'eau proche (<50m d	de la rive)						
Prairies inondées / humide							
Mégaphorbiaie / Végétation		touradons					
Forêt hygrophile / Bois mar				1			
Autre**							
Type 2 : "Zones riv	vulaires colon	isées par une	e végétation arbusti	ve et arbores	cente non humide"		
Forêts feuillus et mixtes							
Forêts de conifères							
Arbustes et buissons							
Lande / Lande à Ericacées							
Autre**							
Type 3 : "Zones rivul	laires non colo	onisées par u I	ne végétation arbus	stive et arbore	scente non humide"		
Friches							
Hautes herbes							
Rives rocheuses							
Plages / Sol nu							
Autre**							
Tuno 4 . "7	Zanas artificial	licáco ou cub	iccont des pression	o onthroniau	oo visibles"		
	.ones artificial	isees ou sub	issant des pression ]	is antinopique	es visibles		
Ports							
Mouillages			-				
Jetées			-				
Urbanisation			-				
Entretien de la végétation ri	vulaire		-				
Zones déboisées							
Litière							
Décharge							
Remblais							
Murs							
Digues							
Revêtements artificiels							
Plages aménagées							
Zone de baignade							
Chemins et routes		5					
Ouvrages de génie civil							
Agriculture							
Autre**							
	u linéaire tota	l de rive repré	ésenté par ce type s	ur l'ensemble	du plan d'eau :		
Type 1 (%) : 8			Type 3 (%):				
Type 2 (%) :			Type 4 (%):	92			
l argour de la zone litteral	a "aunhatiaus	<b>.</b> " .	b "réduite"	Ī			
Largeur de la zone littoral	e eupriorique		D Tedulle	1			
		Commenta	aires / Précisions				

UNITE D'OBSERVAT	HYTES	DESCRIPTION LOCALE					
Nom du plan d'eau :		Nantua	Code: V2515003				
Organisme :	osaïque Envir		Opérateur :		Ide REICH / Mathias		
N°Unité d'observation :	3		mm/aaaa) :		27/07/2022		
Heure début (hh:mm) :	12:	:45	Heure de fi	n (hh:mm) :	15:30		
Coordonnées GPS du Poi	int central de l	'unité :	Lambert 93				
				x:	900591,6812		
				y:	6565620,898		
		Conditions	d'observation				
Vent : moyen							
Météo : soleil	1						
Surface de l'eau :	agi	tée	Hauteur des v	agues (m):	0,20		
			on de la rive				
Description de la zone riv	eraine (Cf. Fic	he 1/1)					
Occupation du sol dominan	te:	Route et piste cyclable					
Végétation dominante :		Herbacée					
Description de la berge (Cf. Fiche 1/1)							
Decription du talus :							
Hauteur (m) :	2,00						
Impacts humains visibles :	oui						
Indices d'érosion :	non						
Type de substrat dominant	:			В			
Type de végétation domina	nte :			Arborée			
Substrats: [ V : Vase; ]			e ; <b>S</b> : Sables, ç : Débris organiq		illoux, pierres, galets ; <b>B</b> :		
Description de la plage							
Largeur (m) :			0,0	00			
Impacts humains visibles :	NA	Type de subs	trat dominant :		NA		
Indices d'érosion :	NA	Type de végé	tation dominant	e:	NA		
Description de la zone litt	orale						
Largeur explorée (m) :		Type de subti	rat dominant :		С		
Longueur explorée(m) :		Impacts huma			oui		
Type de végétation aquatiq	ue dominante :	Commentair	hélophytes es / Précisions				

* indiquer la superficie de (des) l'herbier(s), la profondeur, le type de subtrat, la présence de fleurs, de fruits, etc. Substrat dominant : [V : vase; T : Terre, argile, marne, tourbe; R : Racines, branchages; S : Sables, graviers; C : Cailloux, pierres, galets; B : Blocs, dalles; D : Débris organiques]

TAXONS	Abondance	Observations complémentaires (*)
CINRIP	3	
AMBFLU	2	
LYSVUL	1	
PHRAUS	3	
RUBCAE	2	
RHYRIP	2	
OEDSPX	1	
DIASPX	1	
GOPSPX	2	
FONANT	2	
CASSEP	1	
TOYSPX	2	
HOMSPX	1	
MOUSPX	2	
SPISPX	1	
ENCSPX	1	

	ž
Cinclidotus riparius (	
Amblystegium fluviat	Z
Lysimachia vulgaris l	H
Phragmites australis	
Rubus caesius L., 17	
Rhynchostegium ripa	
Oedogonium Link ex	
Diatoma Bory de St-	
Gomphonema Ehren	
Fontinalis antipyretic	
Calystegia sepium (L	
Tolypothrix Kützing e	
Homoeothrix (Thuret	
Mougeotia sp. C.Aga	
Spirogyra sp. Link	
Encyonema Kützing,	

**UNITE D'OBSERVATION MACROPHYTES** RELEVE DE RIVE V2515003 lom du plan d'eau : Nantua Code: Mathilde REICH / Mathias rganisme : osaïque Environnement / ST Opérateur : l°Unité d'observation : Date (jj/mm/aaaa) : 27/07/2022 leure début (hh:mm) : 12:45 Heure de fin (hh:mm) : 13:30

Commentaires / Précisions

Pour mieux affirmer ses missions, le Cemagref devient Irstea



# V. <u>Inventaires diatomiques IBDLACS</u>

Fiches prélèvements

Diatomées en plan d'eau - Données soutenant la b *Donnée obligatoire pour le référencement de l'opération	iologie - IRSTEA-AFB - v1.0 - oct. 2017
IDENTIFICATION DE L'OPER	ATION DE PREI EVEMENT
Localisation	ATION DE l'RELEVEINERT
Code opération	
Département	Ain
Code station*	V2515003
Libellé station	
Nom du plan d'eau	Nantua
Code point*	
Date*	26/07/2022
Intervenants	
Code producteur*	44 159 466 000 033
1	
Nom producteur Code préleveur*	Sciences et Techniques de l'Environnement 44 159 466 000 033
·	
Nom préleveur Code déterminateur*	Sciences et Techniques de l'Environnement 83212248500028
Nom déterminateur	ECOMA
Coordonnées	
Coordonnées X (LB 93)*	899100
Coordonnées Y (LB 93)*	6565544
Unité d'observation	
UO hors protocole macrophytes	oui
Numéro d'unité d'observation*	1
Numéro du type de rive dominant	Type 4 : "Zones artificialisées ou subissant
, i	des pressions anthropiques visibles"
DDELEVEN AENIT CLIE	A CUIDCED AT DUID
PRELEVEMENT SUF	DIA22-0286
Numéro d'inventaire Omnidia associé Type de substrat dur	Pierres, galets
Colmatage	Léger colmatage
Profondeur maximale de la zone d'échantillonnage	
PRELEVEMENT SUR S	
Numéro d'inventaire Omnidia associé	UBSTRAT VEGETAL
Type biologique végétal	
Nombre de tiges	
Nom latin du taxon	
Profondeur maximale de la zone d'échantillonnage	
_	
PHYSICO-CHIMIE I Température (°C)	25,1°C
O ₂ dissous (mg/L)	8.3
Conductivité (µS/cm)	153
Saturation en O ₂ ( %)	104
pH	8.05
1	
INFORMATIONS CO	MPLEMENTAIRES
Impacts humains visibles	oui
Distance à la rive (m)	1
Transparence disque de secchi (m)	7
Transparence déterminable au niveau de l'UO	oui
22	TAIDES
COMMEN	ITAIRES
absence de substrat végétal	

	ologie - IRSTEA-AFB - v1.0 - oct. 2017					
*Donnée obligatoire pour le référencement de l'opération						
IDENTIFICATION DE L'OPERA	TION DE PRELEVEMENT					
Localisation						
Code opération						
Département	Ain					
Code station*	V2515003					
Libellé station						
Nom du plan d'eau	Nantua					
Code point*						
Date*	27/07/2022					
Intervenants						
Code producteur*	44 159 466 000 033					
Nom producteur	Sciences et Techniques de l'Environnement					
Code préleveur*	44 159 466 000 033					
Nom préleveur	Sciences et Techniques de l'Environnement					
Code déterminateur*	83212248500028					
Nom déterminateur	ECOMA					
Coordonnées						
Coordonnées X (LB 93)*	900126					
Coordonnées Y (LB 93)*	6565188					
Unité d'observation						
UO hors protocole macrophytes	non					
Numéro d'unité d'observation*	2					
	Type 4: "Zones artificialisées ou subissant					
Numéro du type de rive dominant	des pressions anthropiques visibles"					
	and present and an open question and a					
PRELEVEMENT SUR	SUBSTRAT DUR					
Numéro d'inventaire Omnidia associé	DIA22-0287					
Type de substrat dur	Pierres, galets					
Colmatage	Léger colmatage					
Profondeur maximale de la zone d'échantillonnage	Léger colmatage 0.5					
Profondeur maximale de la zone d'échantillonnage	0.5					
Profondeur maximale de la zone d'échantillonnage PRELEVEMENT SUR SU	0.5					
Profondeur maximale de la zone d'échantillonnage  PRELEVEMENT SUR SU  Numéro d'inventaire Omnidia associé	0.5					
Profondeur maximale de la zone d'échantillonnage  PRELEVEMENT SUR SU  Numéro d'inventaire Omnidia associé  Type biologique végétal	0.5					
Profondeur maximale de la zone d'échantillonnage  PRELEVEMENT SUR SU  Numéro d'inventaire Omnidia associé  Type biologique végétal  Nombre de tiges	0.5					
Profondeur maximale de la zone d'échantillonnage  PRELEVEMENT SUR SU  Numéro d'inventaire Omnidia associé  Type biologique végétal  Nombre de tiges  Nom latin du taxon	0.5					
Profondeur maximale de la zone d'échantillonnage  PRELEVEMENT SUR SU  Numéro d'inventaire Omnidia associé  Type biologique végétal  Nombre de tiges  Nom latin du taxon  Profondeur maximale de la zone d'échantillonnage	0.5  BSTRAT VEGETAL					
Profondeur maximale de la zone d'échantillonnage  PRELEVEMENT SUR SU  Numéro d'inventaire Omnidia associé  Type biologique végétal  Nombre de tiges  Nom latin du taxon  Profondeur maximale de la zone d'échantillonnage  PHYSICO-CHIMIE D	0.5  BSTRAT VEGETAL  U PLAN D'EAU					
Profondeur maximale de la zone d'échantillonnage  PRELEVEMENT SUR SU  Numéro d'inventaire Omnidia associé  Type biologique végétal  Nombre de tiges  Nom latin du taxon  Profondeur maximale de la zone d'échantillonnage  PHYSICO-CHIMIE D  Température (°C)	U PLAN D'EAU					
Profondeur maximale de la zone d'échantillonnage  PRELEVEMENT SUR SU  Numéro d'inventaire Omnidia associé  Type biologique végétal  Nombre de tiges  Nom latin du taxon  Profondeur maximale de la zone d'échantillonnage  PHYSICO-CHIMIE D  Température (°C)  O ₂ dissous (mg/L)	U PLAN D'EAU 24 8.12					
Profondeur maximale de la zone d'échantillonnage  PRELEVEMENT SUR SU.  Numéro d'inventaire Omnidia associé  Type biologique végétal  Nombre de tiges  Nom latin du taxon  Profondeur maximale de la zone d'échantillonnage  PHYSICO-CHIMIE D  Température (°C)  O ₂ dissous (mg/L)  Conductivité (µS/cm)	D.5  BSTRAT VEGETAL  U PLAN D'EAU  24  8.12  155					
Profondeur maximale de la zone d'échantillonnage  PRELEVEMENT SUR SU.  Numéro d'inventaire Omnidia associé  Type biologique végétal  Nombre de tiges  Nom latin du taxon  Profondeur maximale de la zone d'échantillonnage  PHYSICO-CHIMIE D  Température (°C)  O ₂ dissous (mg/L)  Conductivité (µS/cm)  Saturation en O ₂ ( %)	0.5  BSTRAT VEGETAL  U PLAN D'EAU  24  8.12  155  102.1					
Profondeur maximale de la zone d'échantillonnage  PRELEVEMENT SUR SU.  Numéro d'inventaire Omnidia associé  Type biologique végétal  Nombre de tiges  Nom latin du taxon  Profondeur maximale de la zone d'échantillonnage  PHYSICO-CHIMIE D  Température (°C)  O ₂ dissous (mg/L)  Conductivité (µS/cm)	U PLAN D'EAU 24 8.12 155					
Profondeur maximale de la zone d'échantillonnage  PRELEVEMENT SUR SU  Numéro d'inventaire Omnidia associé  Type biologique végétal  Nombre de tiges  Nom latin du taxon  Profondeur maximale de la zone d'échantillonnage  PHYSICO-CHIMIE D  Température (°C)  O ₂ dissous (mg/L)  Conductivité (µS/cm)  Saturation en O ₂ ( %)  pH	0.5  BSTRAT VEGETAL  U PLAN D'EAU  24  8.12  155  102.1  8.15					
Profondeur maximale de la zone d'échantillonnage  PRELEVEMENT SUR SU  Numéro d'inventaire Omnidia associé  Type biologique végétal  Nombre de tiges  Nom latin du taxon  Profondeur maximale de la zone d'échantillonnage  PHYSICO-CHIMIE D  Température (°C)  O ₂ dissous (mg/L)  Conductivité (µS/cm)  Saturation en O ₂ ( %)  pH	0.5  BSTRAT VEGETAL  U PLAN D'EAU  24  8.12  155  102.1  8.15					
Profondeur maximale de la zone d'échantillonnage  PRELEVEMENT SUR SU  Numéro d'inventaire Omnidia associé  Type biologique végétal  Nombre de tiges  Nom latin du taxon  Profondeur maximale de la zone d'échantillonnage  PHYSICO-CHIMIE D  Température (°C)  O ₂ dissous (mg/L)  Conductivité (µS/cm)  Saturation en O ₂ ( %)  pH	0.5  BSTRAT VEGETAL  U PLAN D'EAU  24  8.12  155  102.1  8.15  PLEMENTAIRES					
Profondeur maximale de la zone d'échantillonnage  PRELEVEMENT SUR SU  Numéro d'inventaire Omnidia associé  Type biologique végétal  Nombre de tiges  Nom latin du taxon  Profondeur maximale de la zone d'échantillonnage  PHYSICO-CHIMIE D  Température (°C)  O ₂ dissous (mg/L)  Conductivité (µS/cm)  Saturation en O ₂ ( %)  pH  INFORMATIONS CON	0.5  BSTRAT VEGETAL  U PLAN D'EAU  24  8.12  155  102.1  8.15  PPLEMENTAIRES  Oui					
Profondeur maximale de la zone d'échantillonnage  PRELEVEMENT SUR SU.  Numéro d'inventaire Omnidia associé  Type biologique végétal  Nombre de tiges  Nom latin du taxon  Profondeur maximale de la zone d'échantillonnage  PHYSICO-CHIMIE D  Température (°C)  O, dissous (mg/L)  Conductivité (µS/cm)  Saturation en O, (%)  pH  INFORMATIONS CON  Impacts humains visibles  Distance à la rive (m)	0.5  BSTRAT VEGETAL  U PLAN D'EAU  24  8.12  155  102.1  8.15  PLEMENTAIRES  oui  1.5					
Profondeur maximale de la zone d'échantillonnage  PRELEVEMENT SUR SU.  Numéro d'inventaire Omnidia associé  Type biologique végétal  Nombre de tiges  Nom latin du taxon  Profondeur maximale de la zone d'échantillonnage  PHYSICO-CHIMIE D  Température (°C)  O, dissous (mg/L)  Conductivité (µS/cm)  Saturation en O, (%) pH  INFORMATIONS CON  Impacts humains visibles  Distance à la rive (m)  Transparence disque de secchi (m)	0.5  BSTRAT VEGETAL  U PLAN D'EAU  24  8.12  155  102.1  8.15  IPLEMENTAIRES  oui  1.5  6.5					
Profondeur maximale de la zone d'échantillonnage  PRELEVEMENT SUR SU.  Numéro d'inventaire Omnidia associé  Type biologique végétal  Nombre de tiges  Nom latin du taxon  Profondeur maximale de la zone d'échantillonnage  PHYSICO-CHIMIE D  Température (°C)  O, dissous (mg/L)  Conductivité (µS/cm)  Saturation en O, (%) pH  INFORMATIONS CON  Impacts humains visibles  Distance à la rive (m)  Transparence disque de secchi (m)	D.5   BSTRAT VEGETAL					
Profondeur maximale de la zone d'échantillonnage  PRELEVEMENT SUR SU  Numéro d'inventaire Omnidia associé  Type biologique végétal  Nombre de tiges  Nom latin du taxon  Profondeur maximale de la zone d'échantillonnage  PHYSICO-CHIMIE D  Température (°C)  O ₂ dissous (mg/L)  Conductivité (µS/cm)  Saturation en O ₂ ( %)  pH  INFORMATIONS CON  Impacts humains visibles  Distance à la rive (m)  Transparence disque de secchi (m)  Transparence déterminable au niveau de l'UO	D.5   BSTRAT VEGETAL					

Diatomées en plan d'eau - Données soutenant la bio	logie - IRSTEA-AFB - v1.0 - oct. 2017					
*Donnée obligatoire pour le référencement de l'opération						
IDENTIFICATION DE L'OPERATION DE PRELEVEMENT						
Localisation						
Code opération						
Département	Ain					
Code station*	V2515003					
Libellé station						
Nom du plan d'eau	Nantua					
Code point*						
Date*	27/07/2022					
Intervenants						
Code producteur*	44 159 466 000 033					
Nom producteur	Sciences et Techniques de l'Environnement					
Code préleveur*	44 159 466 000 033					
Nom préleveur	Sciences et Techniques de l'Environnement					
Code déterminateur*	83212248500028					
Nom déterminateur	ECOMA					
Coordonnées						
Coordonnées X (LB 93)*	900592					
Coordonnées Y (LB 93)*	6565620					
, ,						
Unité d'observation						
UO hors protocole macrophytes Numéro d'unité d'observation*	non					
Numero d'unite d'observation*	3					
Numéro du type de rive dominant	Type 4 : "Zones artificialisées ou subissant des					
	pressions anthropiques visibles"					
PRELEVEMENT SUF	S STIRSTRAT DUR					
Numéro d'inventaire Omnidia associé	DIA22-0288					
Type de substrat dur	Pierres, galets					
Colmatage	Pas de colmatage					
Profondeur maximale de la zone d'échantillonnage	0,4					
PRELEVEMENT SUR S						
Numéro d'inventaire Omnidia associé	DIA22-0289					
Type biologique végétal	Hélophytes					
Nombre de tiges	12					
Nom latin du taxon	Phragmites australis					
Profondeur maximale de la zone d'échantillonnage	0,4					
PHYSICO-CHIMIE	ΝΙΙ ΡΙ ΔΝ Π'ΕΔΙΙ					
Température (°C)	24,2					
O ₂ dissous (mg/L)	8,24					
Conductivité (µS/cm)	152					
Saturation en O ₂ (%)	103,6					
рН	8,11					
INFORMATIONS CO						
Impacts humains visibles	oui					
Distance à la rive (m)	1,3					
Transparence disque de secchi (m)	6,5					
Transparence déterminable au niveau de l'UO	oui					

COMMENTAIRES

ST	F -	iuin	23-	Page	73	sur	78
J. I.	L .	IUIII	20	I usc	/ )	Jui	/ U

## **Listes floristiques**

	Bassin		RIV				
	Plan d'eau	Nantua					
	Code Lac		V251	153			
	Nom	DIA22-286	DIA22-287	DIA22-288	DIA22-289		
	Date	26/7/222	27/7/222	27/7/222	27/7/222		
	Libellé station	UO1 Min	UO2 Min	UO3 Min	UO3 Vég		
Espèces de diatomées	Code (*IBD ▼	% 🔻	% 🔻	% 🔻	%		
Achnanthidium minutissimum (Kützing) Czarnecki	ADMI*	17.62	18.49	11.72	35.5		
Encyonema bonapartei HeudrE. C.E. Wetzel & Ecto	EBNA	1.9	16.55	18.7	1.5		
Achnanthidium straubianum (Lange-Bertalot)Lange	ADSB*	1.95	12.9	1.97	2.5		
Pantocsekiella costei (Druart et F. Straub) K.T. Kiss	PCOS*	12.62	4.87	2.99	1.25		
Navicula cryptotenella Lange-Bertalot var. cryptote	NCTE*	4.5	6.33	4.99	3.75		
Encyonopsis minuta Krammer & Reichardt	ECPM*	6.9	4.38	2.99	3.5		
Encyonopsis subminuta Krammer & Reichardt	ESUM*	5	3.41	2.99	5.75		
Encyonopsis microcephala (Grunow) Krammer var.	ENCM*	5.95	3.16	4.99	1.75		
Gomphonema lateripunctatum Reichardt & Lange-	GLAT*		1.95	2.99	1.75		
Amphora pediculus (Kützing) Grunow var. pediculu	APED*	1.43	3.89	4.24			
Cymbella neoleptoceros Krammer	CNLP*	2.38		5.99			
Encyonema reichardtii (Krammer) D.G. Mann in Ro	ENRE*	4.76	2.92				
Amphora indistincta Levkov	AMID*	1.43	4.62	1.25			
Achnanthidium affine (Grun) Czarnecki	ACAF*	3.81		2.24	0.75		
Encyonopsis krammeri Reichardt	ECKR*	0.95		4.49	1		
Achnanthidium rivulare Potapova &Ponader	ADRI*	3.57	1.22	1.25			
FRAGILARIA H.C. Lyngbye	FRAG	3.37	0.97	0.5	4.25		
Denticula tenuis Kützing var. tenuis	DTEN*	0.71	1.95	2.24	7.23		
Achnanthidium catenatum (Bily & Marvan) Lange-I	ADCT*	2.14	1.95	2.24			
Achnanthidium pyrenaicum (Hustedt) Kobayasi	ADPY*	2.38	0.49	1			
Cymbella vulgata Krammer var. vulgata	CVUL*	2.50	0.45	-	3.75		
Gomphonema hebridense Gregory	GHEB*				3.75		
Gomphonema vibrio Ehrenberg var. vibrio	GVIB		1.46		1.5		
Navicula cryptotenelloides Lange-Bertalot var. cryp	NCTO*	0.48	1.40		1.25		
Achnanthidium lineare W.Smith	ACLI*	0.46	1.7	1	1.25		
		0.49	1.7	0.5	1.5		
Navicula subalpina Reichardt	NSBN NDIC*	0.48	0.40				
Nitzschia dissipata subsp. dissipata (Kützing) Grun	NDIS*	0.95	0.49	0.5	0.5		
Achnanthidium druartii Rimet & Couté in Rimet &	ADRU	1.9			0.5		
Gomphonema elegantissimum Reichardt & Lange-	GELG*		0.40	0.5	2.25		
Cymbella lange-bertalotii Krammer	CLBE	2.12	0.49	0.5	1		
Nitzschia lacuum Lange-Bertalot	NILA*	0.48		1	0.5		
Navicula capitatoradiata Germain	NCPR*	0.95		0.5	0.5		
Pseudostaurosira sopotensis (Witkowski & Lange-E				1	0.5		
Ulnaria ulna (Nitzsch) Compère var. ulna	UULN*				1.5		
Brachysira neoexilis Lange-Bertalot	BNEO*	0.48		0.5	0.5		
Sellaphora stroemii (Hustedt) Kobayasi in Mayama	SSTM*	0.48		1			
Discostella pseudostelligera (Hustedt) Houk & Klee	DPSG*	0.95		0.5			
Achnanthidium zhakovschikovii M. Potapova	AZHA		0.49		0.75		
Cymbella parva (W. Sm.) Kirchner in Cohn var. parv	CPAR*				1		
Encyonopsis horticola Van de Vijver, Lange-Bertalo	EHOR			1			
Fragilaria microvaucheriae C.E. Wetzel et Ector	FMIV				1		
Navicula sancti-naumii Levkov et Metzeltin	NSNM	0.48		0.5			

	Bassin		RIV	IC	
	Plan d'eau		Nan	tua	
	Code Lac		V251	153	
	Nom	DIA22-286	DIA22-287	DIA22-288	DIA22-289
	Date	26/7/222	27/7/222	27/7/222	27/7/222
	Libellé station	UO1 Min	UO2 Min	UO3 Min	UO3 Vég
Espèces de diatomées	Code (*IBD ▼	% 🔻	% 🔻	% 🔻	% ~
GOMPHONEMA C.G. Ehrenberg	GOMP		0.97		
Gomphonema minusculum Krasske	GMIS		0.97		
Cyclotella distinguenda Hustedt	CDTG*	0.95			
Adlafia bryophila (Petersen) Lange-Bertalot in Mos	ABRY*			0.5	
Cocconeis euglypta Ehrenberg	CEUG*				0.5
Cymbella excisa Kützing	CAEX*				0.5
Cymbella subcistula Krammer	CSCI*				0.5
Encyonema ventricosum (Kützing) Grunow in Schm	ENVE*			0.5	
Encyonopsis cesatii (Rabenhorst) Krammer var. ces	ECES*				0.5
Eunotia auriculata Grunow in Van Heurck	EAUR			0.5	
EUNOTIA C.G. Ehrenberg	EUNO				0.5
Fallacia subhamulata (Grunow in Van Heurck) D.G.	FSBH*			0.5	
Fragilaria tenera var. lemanensis Druart, Lavigne e	FTLE			İ	0.5
Geissleria hinziae Novais et Ector	GHIZ				0.5
Gomphonema acidoclinatiforme Metzeltin & Lange	GACD				0.5
Lindavia radiosa (Grunow) De Toni et Forti var. rad	LRAD*			0.5	
Navicula tripunctata (O.F.Müller) Bory var. tripunct	NTPT*				0.5
Navicula wildii Lange-Bertalot	NWIL			0.5	
Nitzschia gessneri Hustedt	NGES*			0.5	
Nitzschia palea (Kützing) W.Smith var. palea	NPAL*				0.5
Pantocsekiella ocellata (Pantocsek) K.T. Kiss et Ács	POCL*			0.5	
Platessa conspicua (A.Mayer) Lange-Bertalot	PTCO*				0.5
PUNCTASTRIATA D.M. Williams & F.E. Round	PUNC			0.5	
Sellaphora pseudoarvensis (Hustedt) C.E. Wetzel e	SPDV			0.5	
Planothidium rostratoholarcticum Lange-Bertalot ε			0.49	İ	
Tryblionella angustatula (Lange-Bertalot) Cantonat	TATU*		0.49		
Achnanthidium eutrophilum (Lange-Bertalot)Lange	ADEU*	0.48			
Achnanthidium neomicrocephalum Lange-Bertalot	ADNM*	0.48			
Amphipleura pellucida Kützing	APEL*	0.48			
Gomphonema pumilum (Grunow) Reichardt et Lar	GPUM*	0.48		İ	
Nitzschia capitellata Hustedt in A. Schmidt et al. vc		0.48			
Punctastriata lancettula (Schumann) Hamilton & Si		0.48			
Navicula gottlandica Grunow in Van Heurck	NGOT				0.25
Denticula kuetzingii Grunow	DKUE*		0.24		
Diversité	77	35	29	40	41

# VI. Comptes-rendus des campagnes IML

		Desc	ription des	= prélèveme	ents réali	sés			
				Ì					
Nom du lac :	Nantua		Remarques : con	nme attendu, auc	une hydrophy	te flottante dans	le lac, excepté	une petite zone	e de nénuphars proche du point 8 ( $pprox$ 15n
Code lac :	V2515003		La température d	de surface moyer	ne est de 9,5°0	C.			
Opérateurs :	Claire Perrier et C	Cédric Guillet							
Date :	13/04/2022								
CONDITIONS DE	PRELEVEMENT								
Météo :	ensoleillé		Echantillon	Sub. théorique	Sub. observé	Profondeur (m)	Coord. X (L93)	Coord. Y (L93)	Commentaires / obs.
	fai. ^t nuageux		1	GA	GA	0,5	900302	6565040	
	humide		2	GA	GA	0,85	899759	6565302	
	pluie fine		3	GA	GA	0,6	899496	6565394	
	orage		4	BD	BD	0,6	899304	6565532	
	fort. ^t nuageux	Х	5	GA	GA	0,5	898948	6565615	
	crépuscule		6	GA+HE	GA+HE	0,7	898645	6565962	présence de litières
			7	VA+HE	VA+HE	0,75	898560	6566161	
<u>Limpidité :</u>	Limpide	Х	8	BD+HE	BD+HE	1	898696	6566451	présence de branchages
	Trouble +		9	GA	GA	1	899060	6566256	2 Ephemera relâchée (voir photos)
	Trouble ++		10	BD	BD	0,9	899353	6566072	
			11	GA	GA	0,6	899831	6565902	
Visibilité du sub	strat :		12	GA	GA	0,7	900230	6565831	
	Bonne	Х	13	BD	BD	0,8	900587	6565621	
	Moyenne		14	GA	GA	0,7	900738	6565412	
	Faible		15	GA	GA	0,6	900842	6565193	
	Non visible								
Signes d'émerge	ence :		Légende substrats :	VA = vase (<0.002n	nm); SL = sable (>	2mm); GR = graviers	(2mm-2cm); GA	= galets (2-20cm)	; BD = bloc-dalle (>20cm)
	oui	Х		He = hélophytes					
	non								
Marnage :									
	oui								
	non	Х							
si oui h estim. :									
cote (en m):									
si connue									

Informations hydrologiques du plan d'eau	
Region	Auvergne Rhône Alpes
Numero_Dept	1
Nom_Dept	Ain
code_lac	V2515003
Nom_Lac	Nantua
Typologie nationale DCE	lacs naturels de moyenne
	montagne, calcaire, profonds (N4)
Type Lac (Naturel, Artif., Reserv.)	Naturel
Superficie (ha)	133
Profondeur max théorique (m)	42
Temps de séjour (j)	251
Altitude (m)	475
Cote maximale 2020-2021	NC
Mois cote maximale 2020-2021	NC
Cote minimale 2020-2021	NC
Mois cote minimale 2020-2021	NC
Cote jour du prélèvement (m)	NC
Durée d'immersion permanente jour du prélèvement (j)	NC