

Agence de l'Eau Rhône-Méditerranée et Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône- Méditerranée et Corse - Réservoir du Grand-Large (69) -Rapport de données brutes -Suivi annuel 2009

photo 1 : vue sur le réservoir du Grand-Large (S.T.E., 9 mars 2009) Rapport n° 08-283/2010-PE2009-11 – Mai 2010

co-traitants

SOMMAIRE

1. PREAMBULE	1
1.1. CADRE DU PROGRAMME DE SUIVI	1
1.2. PRESENTATION DU PLAN D'EAU ET LOCALISATION	
1.3. CONTENU DU SUIVI 2009	
2. RESULTATS DES INVESTIGATIONS	5
2.1. INVESTIGATIONS PHYSICOCHIMIQUES	5
2.1.1. ANALYSES DES EAUX DU LAC	
2.1.1.1. Profils verticaux et évolutions saisonnières	5
2.1.1.2. Paramètres de constitution et typologie du lac	
2.1.1.3. Résultats des analyses physicochimiques des eaux (hors micropolluants)	9
2.1.1.4. Micropolluants minéraux	10
2.1.1.5. Micropolluants organiques	10
2.1.2. ANALYSES DES SEDIMENTS	
2.1.2.1. Physicochimie des sédiments	
2.1.2.2. Micropolluants minéraux	
2.1.2.3. Micropolluants organiques	
2.2. PHYTOPLANCTON	
2.2.1. Prelevements integres	
2.2.2. LISTE FLORISTIQUE (NOMBRE DE CELLULES/ML)	16
2.2.3. ÉVOLUTIONS SAISONNIERES DES GROUPEMENTS PHYTOPLANCTONIQUES	17
2.3. OLIGOCHETES	
2.3.1. CONDITIONS DE PRELEVEMENTS	19
2.3.2. LISTE FAUNISTIQUE DES OLIGOCHETES	20
2.4. Hydromorphologie	21
2.5. MACROPHYTES	
2.5.1. POSITIONNEMENT ET CHOIX DES UNITES D'OBSERVATION	24
2.5.2. CARTE DE LOCALISATION DES UNITES D'OBSERVATIONS	
2.5.3. VEGETATION AQUATIQUE IDENTIFIEE	
2.5.4. LISTE DES ESPECES PROTEGEES ET DES ESPECES INVASIVES	27
2.5.5. APPROCHE DU NIVEAU TROPHIQUE DU PLAN D'EAU	
2.5.6. RELEVES DES UNITES D'OBSERVATIONS	28
3. INTERPRETATION GLOBALE DES RESULTATS	<u>29</u>
4. ANNEXES	

1. PREAMBULE

1.1. CADRE DU PROGRAMME DE SUIVI

Dans le cadre de la mise en œuvre de la Directive Cadre Européenne sur l'Eau (DCE), un programme de surveillance doit être établi pour suivre l'état écologique (ou le potentiel écologique) et l'état chimique des eaux douces de surface.

Différents réseaux constituent le programme de surveillance. Parmi ceux-ci, deux réseaux sont actuellement mis en œuvre sur les plans d'eau :

- Le réseau de contrôle de surveillance (RCS) vise à donner une image globale de la qualité des eaux. Tous les plans d'eau naturels supérieurs à 50ha ont été pris en compte sur les bassins Rhône-Méditerranée et Corse. Pour les plans d'eau d'origine anthropique, une sélection a été opérée parmi les plans d'eau supérieurs à 50 ha, afin de couvrir au mieux les différents types présents (grandes retenues, plans d'eau de digue, plans d'eau de creusement).
- <u>Le contrôle opérationnel (CO)</u> vise à suivre spécifiquement les masses d'eau (naturelles ou anthropiques) supérieures à 50ha, à risque de non atteinte du bon état (ou du bon potentiel) des eaux en 2015.

Au total, 80 plans d'eau sont suivis sur les bassins Rhône-Méditerranée et Corse dans le cadre de ces deux réseaux.

Le contenu du programme de suivi sur les plans d'eau est identique pour le RCS et le CO. Un plan d'eau concerné par le CO sera cependant suivi à une fréquence plus soutenue (tous les 3 ans) comparativement à un plan d'eau strictement visé par le RCS (tous les 6 ans).

Le tableau 1 résume les différents éléments suivis par an et les fréquences d'intervention associées. Il s'agit du suivi qualitatif type mis en place sur les plans d'eau du programme de surveillance.

Tableau 1 : synoptique des investigations menées sur une année de suivi du plan d'eau

			Paramètres	Type de prélèvements/ Mesures	HIVER	PRINTEMPS	ЕТЕ	AUTOMNE
Mesures in situ		Mesures in situ	O2 dis. (mg/l, %sat.), pH, COND (25°C), T°C, transparence secchi	Profils verticaux	Х	Х	Х	х
	-	Physico-chimie classique	DBO5, PO4, Ptot, NH4, NKJ, NO3, NO2, COT, COD, MEST, Turbidité, Si dissoute	Intégré Ponctuel de fond	X	X	X	X
	Sur EAU	Substances prioritaires, autres substances et pesticides	Micropolluants sur eau*	Intégré Ponctuel de fond	X	X	X	X
		Pigments chlorophylliens	Chlorophylle a + phéopigments	Intégré Ponctuel de fond	Х	Х	Х	Х
	Minéralisation		Ca ²⁺ , Na ⁺ , Mg ²⁺ , K ⁺ , dureté, TA, TAC, SO ₄ ²⁻ , Cl ⁻ , HCO ₃ ⁻	Intégré Ponctuel de fond	Х			
S	Eau	interstitielle : Physico-chimie	PO4, Ptot, NH4					
Sur SEDIMENTS	Phase solide (<2mm)	Physico-chimie	Corg., Ptot, NKJ, Granulomètrie, perte au feu	Prélèvement au point de plus grande profondeur				Х
Su	И	Substances prioritaires, autres substances et pesticides	Micropolluants sur sédiments*					
			Phytoplancton	Prélèvement Intégré (Cemagref/Utermöhl)	Х	Х	Х	Х
			Oligochètes	IOBL				Х
HYDROBIOLOGIE et		HYDROBIOLOGIE et	Mollusques	IMOL				Х
	-	PROMORPHOLOGIE	Macrophytes	Protocole Cemagref			Х	
			Hydromorphologie	A partir du Lake Habitat Survey (LHS)			Х	
	Suivi piscicole		Protocole CEN (en charge de l'ONEMA)			Х		

^{*:} se référer à l'annexe 5 de la circulaire DCE 2006/16, analyses à réaliser sur les paramètres pertinents à suivre sur le support concerné RCS : un passage par plan de gestion (soit une fois tous les six ans)

Poissons en charge de l'ONEMA (un passage tous les 6 ans)

♦ Investigations physico-chimiques :

Les différents paramètres physico-chimiques analysés sur l'eau sont suivis lors de quatre campagnes calées aux différentes phases du cycle annuel de fonctionnement du plan d'eau, soit entre le mois de février et le mois d'octobre. Les dates d'intervention sont mentionnées dans le tableau 2, au paragraphe 1.3.

A chaque campagne, sont réalisés au point de plus grande profondeur :

- ✓ un profil vertical des paramètres physico-chimiques de terrain : température, conductivité, oxygène dissous (en mg/l et % saturation) et pH ;
- des échantillons d'eau pour analyses (physico-chimie, micropolluants, pigments chlorophylliens), il s'agit :
- o d'un prélèvement intégré sur la colonne d'eau (constitué à partir du mélange de prélèvements ponctuels réalisés tous les mètres entre la surface et 2,5 fois la transparence mesurée avec le disque de Secchi);
- o d'un prélèvement de fond (réalisé généralement à un mètre du fond).

Les sédiments sont prélevés une fois par an lors de la 4^{ème} et dernière campagne au point de plus grande profondeur.

Les échantillons d'eau et de sédiments ont été transmis au Laboratoire Départemental d'Analyses de la Drôme (LDA 26) en charge des analyses.

CO: un passage tous les trois ans

♦ *Investigations hydromorphologiques et hydrobiologiques :*

Les investigations hydromorphologiques et hydrobiologiques ont été réalisées à des périodes adaptées aux objectifs des méthodes utilisées.

L'évaluation morphologique du lac est menée en suivant le protocole du Lake Habitat Survey (LHS) dans sa version 3.1 (mai 2006). Les observations ont été faites par l'ONEMA¹ (hors présent marché).

Les investigations hydrobiologiques comprennent plusieurs volets ²:

- ✓ l'étude des peuplements phytoplanctoniques à partir du protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en œuvre de la DCE (CEMAGREF INRA ; version 3.3 de mars 2009) ;
- ✓ l'étude des peuplements d'oligochètes à travers la détermination de l'Indice Oligochètes de Bio-indication Lacustre : IOBL (Norme AFNOR NF T90-391, mars 2005) ;
- ✓ l'étude des peuplements de macrophytes s'appuie sur la méthode mise au point par le CEMAGREF : Méthodologie d'étude des communautés de macrophytes en plan d'eau, version mai 2009.

1.2. Presentation du plan d'eau et localisation

Le réservoir du Grand-Large est situé dans le département du Rhône, à l'Est de Lyon, sur les communes de Décines-Charpieu et Meyzieu, à une altitude de 180 m. A l'origine, en 1895, il a été creusé pour former un réservoir d'eau pour l'usine hydroélectrique de Cusset. Le Grand-Large est adossé au canal de Jonage dont il a été isolé par une rangée de palplanches. L'ouvrage est géré par EDF pour la régulation des niveaux d'eau liés à la centrale hydroélectrique de Cusset et par le service de la navigation Rhône Saône pour la Police de l'Eau.

carte 1 : localisation du Réservoir du Grand-Large (Rhône) – (éch . 1/100 000e)

² l'étude des peuplements de Mollusques n'a pas été réalisée car jugée non pertinente pour ce plan d'eau de très faible profondeur (profondeur maximale <4 m) et colonisé presque entièrement par la végétation aquatique.

¹ Office National de l'eau et des milieux aquatiques

Le plan d'eau formé est de taille importante, environ 145 ha. La profondeur maximale théorique et mesurée est de 3,7 m. Le lac est alimenté par le canal de Jonage avec une communication à double sens. Le renouvellement de la masse d'eau est donc irrégulier et, en fonction des phases de remplissage ou de vidange dépendant des cotes des deux masses d'eau, il concerne une plus ou moins grande partie du plan d'eau. S'y adjoint une très probable participation de la nappe du Rhône. La cote du plan d'eau varie peu (0,2 m) selon la cote du canal de Jonage régulée par la centrale hydroélectrique.

Situé dans l'agglomération lyonnaise, le site est très prisé pour de nombreuses activités nautiques : pêche, canoë, voile, navigation... Plusieurs bases nautiques sont installées sur le pourtour du plan d'eau.

1.3. CONTENU DU SUIVI 2009

Le réservoir du Grand-Large est suivi au titre du Contrôle Opérationnel (CO). Tous les compartiments précités sont étudiés, l'étude hydromorphologique a été menée par l'ONEMA. Le tableau ci-dessous indique la répartition des missions au sein du groupement aussi bien en phase terrain qu'en phase laboratoire/détermination. S.T.E. a en outre eu en charge de coordonner la mission et de collecter l'ensemble des données pour établir les rapports et mener l'exploitation des données.

Réservoir du Grand Large (69)	terrain l					laboratoire - détermination
Campagne	C1	C2	C3	C4	campagne IMOL-IOBL	
date	09/03/09	20/05/09	22/07/09	30/09/09	31/08/09	automne/hiver 2009-2010
physicochimie des eaux	S.T.E.	S.T.E.	S.T.E.	S.T.E.		LDA26
physicochimie des sédiments				S.T.E.		LDA26
phytoplancton	S.T.E.	S.T.E.	S.T.E.	S.T.E.		BECQ'Eau
hydromorphologie			ONEMA			ONEMA
macrophytes			S.T.E. et Mosaïque env			Mosaïque environnement
oligochètes					IRIS consultants	IRIS consultants

Tableau 2 : synoptique des interventions de terrain et de laboratoire sur le plan d'eau, par campagne

Les débits dans le Rhône ont été moyens sur l'année 2009 avec une période hivernale assez arrosée, un printemps et un été plus secs.

Le réservoir du Grand-Large présente un fonctionnement lacustre particulier lié au mode de renouvellement de la masse d'eau d'une part et à une profondeur moyenne très faible (estimée à 1,6 m, la profondeur maximale étant de 3,7 m seulement) d'autre part. De ce fait, **il est plus assimilable à un étang qui ne réalise pas de stratification thermique.** Pour cette raison, la diagnose rapide ne s'applique pas en théorie sur ce plan d'eau : les indices constitutifs ont cependant été calculés afin d'avoir une approche du niveau trophique du plan d'eau.

2. RESULTATS DES INVESTIGATIONS

2.1. INVESTIGATIONS PHYSICOCHIMIQUES

Les comptes rendus des campagnes de prélèvements physicochimiques et phytoplanctoniques sont présentés en annexe 3.

2.1.1. Analyses des eaux du lac

2.1.1.1. Profils verticaux et évolutions saisonnières

Le suivi prévoit la réalisation de profils verticaux sur la colonne d'eau à chaque campagne. Quatre paramètres sont mesurés : la température, la conductivité, l'oxygène (en concentration et en % saturation) et le pH. Les graphiques regroupant ces résultats pour chaque paramètre lors des 4 campagnes sont affichés dans ce chapitre.

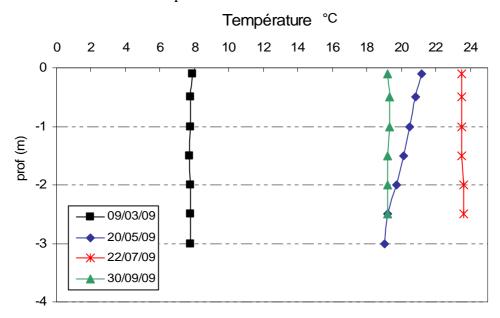


Figure 1: profils verticaux de température au point de plus grande profondeur

Le réservoir du Grand Large ne stratifie pas en raison de sa faible profondeur : la température est homogène sur la colonne d'eau sur les campagnes 1, 3 et 4. En 2009, la température était de 8°C en fin d'hiver et atteignait 23,5°C en juillet. On note un léger gradient sur la 2ème campagne de mai avec une température de 21°C en surface et 19°C au fond.

.

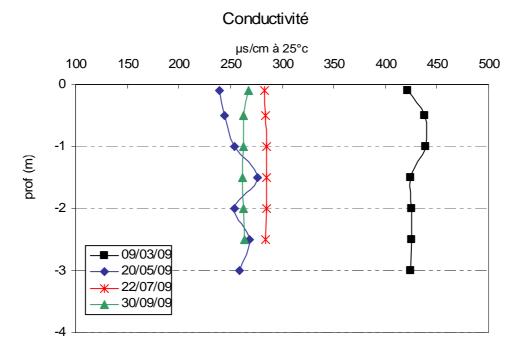


Figure 2 : profils verticaux de conductivité au point de plus grande profondeur

La conductivité est élevée (>420 μ s/cm à 25°C) sur le réservoir du Grand-Large en 1^{ère} campagne en lien avec la nature calcaire des substrats. Les minéraux sont consommés au printemps et en été induisant une baisse très nette de la conductivité (240 à 280 μ s/cm).

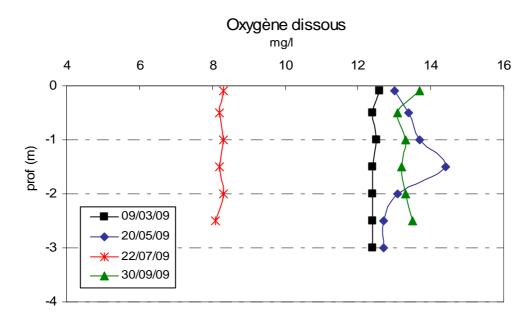


Figure 3 : profils verticaux d'oxygène (mg/l) au point de plus grande profondeur

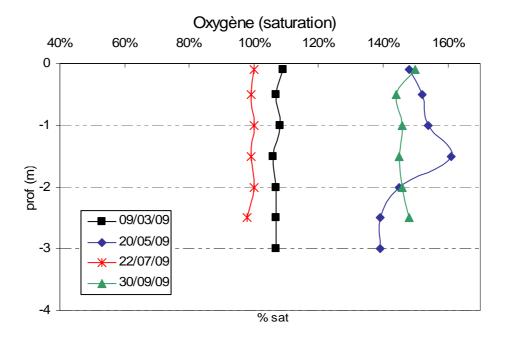


Figure 4 : profils verticaux d'oxygène (%sat.) au point de plus grande profondeur

L'activité biologique est importante sur le Grand Large. Ainsi, on note dès la 1ère campagne d'assez fortes concentrations en oxygène dissous (110% en saturation). Le phénomène s'amplifie avec le réchauffement des eaux : lors des campagnes de mai et de septembre, le milieu est à plus de 140% de saturation en oxygène dissous, témoignant d'une très forte activité photosynthétique. Etant donnée la faible profondeur du plan d'eau, la concentration en O_2 sur toute la colonne d'eau est directement reliée à l'activité photosynthétique en journée, à sa consommation et aux échanges atmosphériques. Les 4 campagnes ont été réalisées à des périodes de la journée comparables (entre 12h et 16h), avec une activité photosynthétique maximale. La saturation observée en oxygène dissous lors de la campagne estivale (100% sur toute la colonne d'eau, donc sans sur-saturation) s'explique donc avant tout par les vents violents qui ont eu lieu à cette période, entraînant un brassage des eaux ainsi qu'un faible ensoleillement, limitant la photosynthèse.

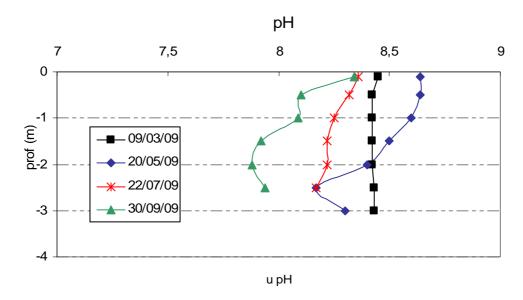


Figure 5 : profils verticaux de pH au point de plus grande profondeur

Le pH est basique, compris entre 8 et 8,6 sur le réservoir du Grand- Large. Il varie peu sur la colonne d'eau et au fil du temps. Il diminue en profondeur sur les campagnes 2, 3 et 4.

2.1.1.2. Paramètres de constitution et typologie du lac

N.B. pour tous les tableaux suivants :

LD = limite de détection, généralement =SQ/3, sauf pour DBO5 et turbidité pour lesquels LD=SQ, avec SQ = seuil de quantification;

Présence = valeur comprise entre LD et SQ, composé présent mais non précisément quantifiable.

Les paramètres de minéralisation sont étudiés lors de la 1^{ère} campagne uniquement. Les résultats sont présentés dans le tableau 3.

Tableau 3 : résultats des paramètres de minéralisation lors de la 1° campagne

Physico-chimie sur eau						
Gravière du	Gravière du Grand Large		09/03	3/2009		
code plan d'eau :	V3005003	seuil quantification	Intégré	Fond		
Dureté calculée	°F	0,1 pour C1 seule	19,4			
T.A.C.	°F	0,5 pour C1 seule	16,2			
T.A.	°F	0,5 pour C1 seule	0,6			
CO3	mg(CO3)/l	0 pour C1 seule	7,2			
HCO3-	mg(HCO3)/l	0 pour C1 seule	183			
Calcium total	mg(Ca)/l	1 pour C1 seule	68			
Magnésium	mg(Mg)/l	1 pour C1 seule	6			
Sodium	mg(Na)/l	1 pour C1 seule	8,3			
Potassium	mg(K)/l	1 pour C1 seule	1,7			
Cl-	mg(Cl)/l	1 pour C1 seule	14			
SO4	mg(SO4)/l	1 pour C1 seule	31			

Les résultats indiquent une eau bien carbonatée, de dureté moyenne. Le réservoir du Grand-Large et son bassin versant se trouvent pour l'essentiel sur des terrains calcaires recouverts par des dépôts alluvionnaires, ce qui explique la forte minéralisation des eaux.

2.1.1.3. Résultats des analyses physicochimiques des eaux (hors micropolluants)

Tableau 4 : résultats des paramètres de physico-chimie classique sur eau.

Physico-chimie sur eau										
Gravière du Grand Large		seuil quantification	09/03	09/03/2009		20/05/2009		22/07/2009		0/2009
code plan d'eau :	V3005003	seun quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
Turbidité	NTU	0,1 pour C1 à C4	2,2	1,8	1,7	3,6	3,5	4,3	0,8	1,1
M.E.S.T.	mg/l	1 pour C1 à C4	4	2	3	6	4	5	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
C.O.D.	mg(C)/l	0,1 pour C1 à C4	1,6	1,4	2,1	2	2,1	2,1	1,9	1,8
C.O.T.	mg(C)/l	0.1 pour C1	1,6	1,7						
Oxyd. KMnO4 ac.	mg(O2)/l	0.1 pour C2-C3-C4			0,5	0,4	1,4	1,3	1,9	1,7
D.B.O.5	mg(O2)/l	0,5 pour C1 à C4	3,1	4,4	1,8	1,7	1,2	1,8	1,6	1,7
Azote Kjeldahl	mg(N)/l	1 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
NH4+	mg(NH4)/l	0,05 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
NO3-	mg(NO3)/l	1 pour C1 à C4	5,2	5,6	1,8	1,7	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
NO2-	mg(NO2)/l	0,02 pour C1 à C4	0,03	0,03	0,04	0,04	0,02	0,02	0,02	0,02
PO4	mg(PO4)/l	0,015 pour C1 à C4	<ld< td=""><td><ld< td=""><td>0,058</td><td>0,064</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,058</td><td>0,064</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,058	0,064	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Phosphore Total	mg(P)/l	0,005 pour C1 à C4	0,022	0,023	0,046	0,051	0,037	0,041	0,035	0,035
Silice dissoute	mg(SiO2)/l	0,2 pour C1 à C4	1,1	1	0,6	1,1	1,9	1,7	0,6	0,6
Chl. A	μg/l	1 pour C1 à C4	9		6		10		9	
Chl. B	μg/l	1 pour C1 à C4	<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<>		<ld< td=""><td></td></ld<>	
Chl. C	μg/l	1 pour C1 à C4	4		<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<>		<ld< td=""><td></td></ld<>	
Phéophytine	μg/l	1 pour C1 à C4	1		<ld< td=""><td></td><td>1</td><td></td><td>4</td><td></td></ld<>		1		4	

Les analyses des fractions dissoutes ont été réalisées sur eau filtrée (COD, NH4, NO3, NO2, PO4, Si).

- ✓ MES et turbidité faible ;
- ✓ Charge organique réduite à part lors de la 1ère campagne où la DBO est plus élevée ;
- ✓ Nitrates et phosphore biodisponibles dans les eaux en début de saison ;
- ✓ Pigments chlorophylliens à des concentrations assez élevées.

Le rapport N/P³ est important, lors de la campagne de fin d'hiver : les orthosphosphates n'étant pas quantifié, le phosphore est donc limitant par rapport à l'azote, favorisant le développement des chlorophycées. La concentration en nitrates lors de la 1^{ère} campagne est particulièrement élevée. La teneur en silice dissoute est faible, limitant le développement des diatomées.

La production semble assez élevée au travers des concentrations en pigments chlorophylliens.

³ le rapport N/P est calculé à partir de [Nminéral]/ [P-PO₄³⁻] avec N minéral = [N-NO₃⁻]+[N-NO₂⁻]+[N-NH₄⁺] lors de la campagne de fin d'hiver.

2.1.1.4. Micropolluants minéraux

Tableau 5 : résultats d'analyses de métaux sur eau

Micropolluants minéraux	Micropolluants minéraux sur eau									
	Grand Large	seuil quantification	09/03/2009		20/05/2009		22/07/2009		30/09	9/2009
code plan d'eau :	V3005003	seun quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
Aluminium	μg (Al)/l	5 pour C1 à C4	31	29	16	42	17	10	20	9
Antimoine	μg(Sb)/l	0,2 pour C1 à C4	0,24	0,22	<ld< td=""><td><ld< td=""><td>0,2</td><td>0,2</td><td>0,3</td><td>0,2</td></ld<></td></ld<>	<ld< td=""><td>0,2</td><td>0,2</td><td>0,3</td><td>0,2</td></ld<>	0,2	0,2	0,3	0,2
Argent	μg(Ag)/l	5 pour C1/ 0,2 pour C2-C3-C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Arsenic	μg(As)/l	0,2 pour C1 à C4	0,7	0,71	1,1	1,4	1,9	2	1,6	1,6
Baryum	μg(Ba)/l	5 pour C1 à C4	17,79	17,49	13,6	13,8	19	19,4	11,2	10
Beryllium	μg(Be)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Bore	μg(B)/l	5 pour C1 à C4	16	16	15	14	18	16	14	15
Cadmium	μg(Cd)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,5</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,5</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,5</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,5</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,5</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,5</td><td><ld< td=""></ld<></td></ld<>	0,5	<ld< td=""></ld<>
Chrome Total	μg(Cr)/l	0,2 pour C1 à C4	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Cobalt	μg(Co)/l	0,2 pour C1 à C4	<ld< td=""><td>0,2</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Cuivre	μg(Cu)/l	0,2 pour C1 à C4	1,62	1,12	1,2	1,2	0,5	0,7	1,9	0,7
Etain	μg(Sn)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Fer total	μg(Fe)/l	5 pour C1 à C4	30	30	24	78	25	32	23	15
Manganèse	μg(Mn)/l	5 pour C1 à C4	<ld< td=""><td><ld< td=""><td>5,2</td><td>10,9</td><td>7</td><td>8,4</td><td>10,6</td><td>10,6</td></ld<></td></ld<>	<ld< td=""><td>5,2</td><td>10,9</td><td>7</td><td>8,4</td><td>10,6</td><td>10,6</td></ld<>	5,2	10,9	7	8,4	10,6	10,6
Mercure	μg(Hg)/l	0,1 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Molybdène	μg(Mo)/l	0,2 pour C1 à C4	0,83	0,81	0,8	0,9	1,2	1,1	1,1	1
Nickel	μg(Ni)/l	0,2 pour C1 à C4	0,64	0,62	0,5	0,7	0,6	0,5	0,6	0,5
Plomb	μg(Pb)/l	0,2 pour C1 à C4	0,24	<ld< td=""><td><ld< td=""><td>0,3</td><td><ld< td=""><td>0,3</td><td>0,3</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,3</td><td><ld< td=""><td>0,3</td><td>0,3</td><td><ld< td=""></ld<></td></ld<></td></ld<>	0,3	<ld< td=""><td>0,3</td><td>0,3</td><td><ld< td=""></ld<></td></ld<>	0,3	0,3	<ld< td=""></ld<>
Sélénium	μg(Se)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Thallium	μg(Tl)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Titane	μg(Ti)/l	0,2 pour C1 à C4	0,79	0,54	0,6	1,6	0,5	0,5	0,8	0,2
Uranium	μg(U)/l	0,2 pour C1 à C4	1,15	1,2	1,1	1,2	1,4	1,5	1,2	1,1
Vanadium	μg(V)/l	0,2 pour C1 à C4	0,24	0,24	0,2	0,3	0,2	0,2	0,3	0,2
Zinc	μg(Zn)/l	2 pour C1 à C4	2	<ld< td=""><td>3</td><td><ld< td=""><td>2</td><td>2</td><td>9</td><td><ld< td=""></ld<></td></ld<></td></ld<>	3	<ld< td=""><td>2</td><td>2</td><td>9</td><td><ld< td=""></ld<></td></ld<>	2	2	9	<ld< td=""></ld<>

Les analyses sur les métaux ont été effectuées sur eau brute.

Plusieurs micropolluants minéraux sont présents dans l'eau. Certains sont quantifiés à toutes les campagnes en des concentrations plus ou moins importantes :

- ✓ l'Aluminium est quantifié à toutes les campagnes entre 9 et 31 µg/l;
- ✓ le Baryum et le Bore sont quantifiés à toutes les campagnes entre 10 et 20 μg/l;
- ✓ le Fer est quantifié à toutes les campagnes entre 15 et 78 µg/l;
- ✓ le Cuivre est quantifié à toutes les campagnes entre 0,5 et 1,9 µg/l;
- \checkmark l'Uranium est présent dans le milieu aquatique à des concentrations voisines de 1,2 μg/l, ce qui correspond à une valeur élevée, supérieures aux concentrations moyennes mesurées dans le Rhône (environ 0,5 μg/l).

2.1.1.5. Micropolluants organiques

Le tableau 6 indique les micropolluants organiques qui ont été quantifiés lors des campagnes de prélèvements en 2009. La liste de l'ensemble des substances analysées est fournie en annexe 1.

Tableau 6: résultats d'analyses de micropolluants organiques présents sur eau

Toutes les valeurs quantifiées sont présentées dans le tableau 6. Cependant certaines valeurs pourront être qualifiées d'incertaines suite à la validation finale des résultats (cas des valeurs mesurées en DEHP, BTEX, Formaldéhyde, dont une contamination via la chaîne de prélèvement et/ou d'analyse de laboratoire est privilégiée).

		•		•						
Micropolluants organiques mis en évidence sur eau										
Gravière du	Gravière du Grand Large		09/03	3/2009	20/05/2009		22/07/2009		30/09/2009	
code plan d'eau :	V3005003	seuil quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
AMPA	μg/l	0,1 pour C1 à C4	<ld< td=""><td><ld< td=""><td>0,17</td><td>0,24</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,17</td><td>0,24</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,17	0,24	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Atrazine	μg/l	0,02 pour C1 à C4	présence	présence	présence	présence	présence	présence	présence	présence
Atrazine déséthyl	μg/l	0,02 pour C1 à C4	présence	<ld< td=""><td>présence</td><td>présence</td><td>0,04</td><td>0,03</td><td>présence</td><td>0,02</td></ld<>	présence	présence	0,04	0,03	présence	0,02
Benzo (a) pyrène	μg/l	0,001 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,001</td><td><ld< td=""><td>0,001</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,001</td><td><ld< td=""><td>0,001</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,001</td><td><ld< td=""><td>0,001</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,001	<ld< td=""><td>0,001</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,001	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Di(2-éthylhexyl)phtalate (DEHP)	μg/l	1 pour C1 à C4	<ld< td=""><td><ld< td=""><td>1</td><td>3</td><td><ld< td=""><td><ld< td=""><td>1</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>1</td><td>3</td><td><ld< td=""><td><ld< td=""><td>1</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	1	3	<ld< td=""><td><ld< td=""><td>1</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>1</td><td><ld< td=""></ld<></td></ld<>	1	<ld< td=""></ld<>
Dioctylétain	μg/l	0,015 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,037</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,037</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,037</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,037</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,037</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,037	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Diuron	μg/l	0,02 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td>présence</td><td>présence</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>présence</td><td>présence</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>présence</td><td>présence</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	présence	présence	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Formaldéhyde	μg/l	1 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>1</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>1</td></ld<></td></ld<>	<ld< td=""><td>1</td></ld<>	1
Métalaxyle	μg/l	0,02 pour C1 à C4	<ld< td=""><td><ld< td=""><td>présence</td><td>présence</td><td>0,02</td><td>présence</td><td>présence</td><td>présence</td></ld<></td></ld<>	<ld< td=""><td>présence</td><td>présence</td><td>0,02</td><td>présence</td><td>présence</td><td>présence</td></ld<>	présence	présence	0,02	présence	présence	présence
Monobutylétain	μg/l	0,015 pour C1 à C4	<ld< td=""><td>présence</td><td><ld< td=""><td>présence</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	présence	<ld< td=""><td>présence</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	présence	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Simazine	μg/l	0,02 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>présence</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>présence</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>présence</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>présence</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	présence	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Terbutylazine	μg/l	0,02 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>présence</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>présence</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>présence</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>présence</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	présence	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Tributylphosphate	μg/l	0,05 pour C1 à C4	<ld< td=""><td>présence</td><td><ld< td=""><td>présence</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	présence	<ld< td=""><td>présence</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	présence	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Trioctylétain	μg/l	0,02 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,02	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

Plusieurs substances appartenant aux micropolluants organiques sont repérées dans les eaux du Grand-Large :

- ✓ des pesticides et leur produit de décomposition présents dans les eaux à des concentrations très faibles : AMPA, atrazine, atrazine déséthyl, diuron, métalahyle, simazine, terbutylazine, et tributylphosphate ;
- ✓ le DEHP (Di(2-ethylhexyl)phtalate) est présent dans les échantillons intégrés des campagnes 2, et 4 ;
- ✓ un HAP : le Benzo(a)pyrène) quantifié à faible dose en C2 et C3 ;
- ✓ des organostanneux (dioctylétain, monobutylétain, trioctylétain) sont présents dans le fond du plan d'eau ;
- ✓ le formaldéhyde est détecté sur l'échantillon de fond de la campagne 4.

Les substances appartenant aux polluants spécifiques (synthétiques) de l'état écologique (Arrêté du 25 janvier 2010) ne sont pas quantifiées sur les prélèvements réalisés.

2.1.2. Analyses des sédiments

2.1.2.1. Physicochimie des sédiments

Le tableau 7 fournit la synthèse de l'analyse granulométrique menée sur les sédiments prélevés.

Tableau 7 : synthèse granulométrique sur le sédiment du point de plus grande profondeur

Sédiment : composition granulométrique (%)					
Gravière du Grand Large	30/09/2009				
code plan d'eau : V3005003	30/09/2009				
classe granulométrique (µm)	%				
0 à 2	2,5				
2 à 20	29,8				
20 à 50	23,5				
50 à 63	5,1				
63 à 200	16,1				
200 à 1000	17,7				
1000 à 2000	4,7				
> 2000	0,6				

Les sédiments présentent une portion fine limono-vaseuse (60%) et une portion sabloneuse (40%).

Les analyses de physicochimie classique menées sur la fraction solide et sur l'eau interstitielle du sédiment sont rapportées au tableau 8.

Tableau 8 : Physicochimie classique des sédiments (matrice solide et eau interstitielle)

Eau interstitielle du sédiment : Physico-chimie								
Gravière du								
code plan d'eau :	V3005003		30/09/2009					
NH4+	mg(NH4)/l	0,5	<ld< td=""></ld<>					
PO4	mg(PO4)/l	1,5	<ld< td=""></ld<>					
Phosphore Total	mg(P)/l	0,005	0,31					

Sédiment : Physico-chimie								
Gravière du Grand Large seuil quantification								
code plan d'eau :	V3005003		30/09/2009					
Matières sèches minérales	% MS	0,3	95,3					
Perte au feu	% MS	0,3	4,7					
Matières sèches totales	%	0,3	61,8					
C.O.T.	mg(C)/kg MS	1	28600,0					
Azote Kjeldahl	mg(N)/kg MS	1	2580,0					
Phosphore Total	mg(P)/kg MS	0,5	633,5					

Dans les sédiments, la teneur en matière organique est faible avec 4,7 %. La concentration en azote organique est relativement faible. Le rapport C/N est de 11, ce qui indique que de la matière organique est à prédominance macrophytique, sa dégradation est à venir. La concentration en phosphore est de l'ordre de 0,6 g/kg MS, ce qui correspond à un stockage modéré de phosphore dans les sédiments.

L'eau interstitielle contient les minéraux facilement mobilisables dans les sédiments. Sur le Grand-Large, l'ammonium n'est pas quantifié et le phosphore est présent à une concentration moyenne. Compte tenu des bonnes conditions d'oxygénation dans le fond du plan d'eau, le processus de relargage est peu probable.

2.1.2.2. Micropolluants minéraux

Ils ont été dosés sur la fraction solide du sédiment.

Tableau 9 : résultats d'analyses de métaux sur sédiment

Sédiment : Micropolluants minéraux						
Gravière du	Grand Large	seuil quantification				
code plan d'eau :	V3005003	_	30/09/2009			
Aluminium	mg(Al)/kg MS	10	13200			
Bore	mg(B)/kg MS	0,2	40,3			
Fer total	mg(Fe)/kg MS	2	15100			
Mercure	mg(Hg)/kg MS	0,02	0,07			
Zinc	mg(Zn)/kg MS	0,2	98,3			
Antimoine	mg(Sb)/kg MS	0,2	1,1			
Argent	mg(Ag)/kg MS	0,2	0,9			
Arsenic	mg(As)/kg MS	0,2	5,1			
Baryum	mg(Ba)/kg MS	0,2	180,4			
Beryllium	mg(Be)/kg MS	0,2	1			
Cadmium	mg(Cd)/kg MS	0,2	0,7			
Chrome Total	mg(Cr)/kg MS	0,2	59,7			
Cobalt	mg(Co)/kg MS	0,2	6,1			
Cuivre	mg(Cu)/kg MS	0,2	37,3			
Etain	mg(Sn)/kg MS	0,2	6,3			
Manganèse	mg(Mn)/kg MS	0,2	486			
Molybdène	mg(Mo)/kg MS	0,2	0,8			
Nickel	mg(Ni)/kg MS	0,2	25			
Plomb	mg(Pb)/kg MS	0,2	28,6			
Sélénium	mg(Se)/kg MS	0,2	0,7			
Tellurium	mg(Te)/kg MS	0,2	<ld< td=""></ld<>			
Thallium	mg(Th)/kg MS	0,2	0,5			
Titane	mg(Ti)/kg MS	0,2	1978			
Uranium	mg(U)/kg MS	0,2	2,8			
Vanadium	mg(V)/kg MS	0,2	55,9			

Tous les métaux sont quantifiés dans le prélèvement de sédiment. Les éléments Aluminium et Fer sont à des teneurs remarquables. On note également des valeurs élevées pour les métaux de constitution : Baryum et plus particulièrement Titane. Ces éléments se retrouvent dans certains minéraux des roches.

Parmi les métaux lourds, le Chrome est en quantité non négligeable.

2.1.2.3. Micropolluants organiques

Le tableau 10 indique les micropolluants organiques qui ont été quantifiés dans les sédiments lors de la campagne de prélèvements en 2009. La liste de l'ensemble des substances analysées est fournie en annexe 2.

Tableau 10 : résultats d'analyses de micropolluants organiques présents sur sédiment

Sédiment : Micropolluants orga	niques mis en é	vidence	
Gravière du	Grand Large	seuil quantification	
code plan d'eau :	V3005003		30/09/2009
Anthracène	μg/kg MS	20	22
Benzo (a) anthracène	μg/kg MS	10	93
Benzo (a) pyrène	μg/kg MS	10	96
Benzo (b) fluoranthène	μg/kg MS	10	139
Benzo (ghi) pérylène	μg/kg MS	10	73
Benzo (k) fluoranthène	μg/kg MS	10	57
Di(2-éthylhexyl)phtalate (DEHP)	μg/kg MS	100	290
Chrysène	μg/kg MS	50	82
Dibenzo (a,h) anthracène	μg/kg MS	20	27
Equivalent Arochlor 1260	μg/kg MS	5	44
Fluoranthène	μg/kg MS	40	242
Indéno (1,2,3-cd) pyrène	μg/kg MS	10	47
PCB totaux	μg/kg MS	5	34
PCB101	μg/kg MS	1	3
PCB105	μg/kg MS	1	1
PCB118	μg/kg MS	1	3
PCB132	μg/kg MS	1	1
PCB138	μg/kg MS	1	3
PCB149	μg/kg MS	1	2
PCB153	μg/kg MS	1	3
PCB167	μg/kg MS	1	présence
PCB170	μg/kg MS	1	2
PCB180	μg/kg MS	1	3
PCB194	μg/kg MS	1	présence
PCB28	μg/kg MS	1	10
PCB31	μg/kg MS	1	présence
PCB44	μg/kg MS	1	1
PCB52	μg/kg MS	1	1
PCB77	μg/kg MS	1	1
Phénanthrène	μg/kg MS	50	76
Pyrène	μg/kg MS	40	131
-			

De nombreux micropolluants organiques ont été dosés dans les sédiments parmi lesquels :

- ✓ 12 substances appartenant aux hydrocarbures Aromatiques Polycycliques, la concentration totale des HAP atteint 1 g/kg, valeur qui révèle une contamination évidente des sédiments ;
- ✓ des PCB dont la somme atteint plus de 34 μg/kg, et un équivalent Arochlor 1260 (44 μg/kg),
- ✓ le DEHP, indicateur de matières plastiques, est quantifié à 290 µg/kg, Cette valeur reste toutefois relativement faible au regard de l'ensemble des résultats acquis sur les plans d'eau du bassin.

2.2. PHYTOPLANCTON

2.2.1. Prélèvements intégrés

Les prélèvements intégrés destinés à l'analyse du phytoplancton ont été réalisés en même temps que les prélèvements pour analyses physicochimiques. Sur le réservoir du Grand Large, la zone euphotique et la transparence mesurées sont représentées par le graphique de la figure 7. La transparence mesurée est moyenne. La zone euphotique calculée dépassait systématiquement la profondeur maximale du plan d'eau. Les prélèvements intégrés ont été arrêtés à 2,5 m de profondeur (soit à 1 m du fond).

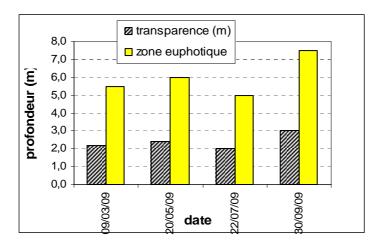


Figure 6 : évolution de la transparence et de la zone euphotique aux 4 campagnes

La liste des espèces de phytoplancton par plan d'eau a été établie selon la méthodologie développée par le CEMAGREF: Protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en oeuvre de la DCE, Mars 2009.

On fixe ci-après les règles qui ont été appliquées dans les dénombrements du peuplement phytoplanctonique, sur la base des considérations pratiques imposées par les observations au microscope :

La liste présente le nombre de cellules observées/ml, identifiées à l'espèce dans la mesure du possible. Dans certains cas, l'identification à l'espèce s'avère toutefois impossible :

- certains critères d'identification sont visibles uniquement en période de reproduction de l'algue (stade de sporulation) ;
- des individus peuvent être détériorés dans l'échantillon, ne permettant pas une identification précise.

Les cellules concernées sont alors identifiées au genre (*Mougeotia sp., Mallomonas sp...*), voire à la classe (ex : chlorophycées indéterminées, kystes de chrysophycées).

Plus spécifiquement, le groupe des "chlorophycées indéterminées" correspond à l'ensemble des "algues vertes" non identifiables parce que ces dernières sont dégradées, sont au stade végétatif ou plus fréquemment encore, sont sous la forme de cellules sphériques ou ovales qui peuvent être identifiées comme un grand nombre d'espèces dans les ouvrages de taxonomie. Par ailleurs, et par expérience, il s'avère que ces individus correspondent rarement à des espèces déjà identifiées dans le même échantillon.

De ces faits, il ressort que la création d'une ligne de taxon déterminé seulement au genre (par ex. : *Mallomonas*, *Mougeotia*) suivi de « sp » correspond très probablement à une, voire même plusieurs espèces supplémentaires distinctes de celles par ailleurs identifiées à l'espèce dans ce même échantillon. Ex : les cellules de *Mougeotia sp.* ainsi identifiées au genre n'appartiennent pas à l'espèce *Mougeotia gracillima* identifiée par ailleurs dans le même échantillon. Ce taxon ainsi identifié au genre doit donc être compté pour au minimum une espèce supplémentaire.

Cette méthodologie de comptage des taxons et espèces, basée sur ces considérations techniques, est très certainement celle qui minimise au mieux les distorsions entre nombre d'espèces véritablement présentes et nombre comptable d'espèces identifiables au vu de l'état des individus les représentant.

En somme, le nombre d'espèces apparaissant en bas de tableau est :

- ✓ premier nombre N (entre parenthèses) = nombre d'espèces strictement identifiées à ce niveau, fournissant une borne minimale de la diversité spécifique (valeur certaine) ;
- ✓ deuxième nombre N' = somme du nombre N d'espèces véritablement identifiées, augmenté de 1 espèce pour 1 taxon au genre (ou classe,...).

2.2.2. Liste floristique (nombre de cellules/ml)

Réservoir du Grand-Large (69)

	Nb cellules /ml		Date pre	Élèvement		
Groupe algal	Nom Taxon	09/03/2009	20/05/2009	22/07/2009	30/09/2009	
Chlorophycées	Actinastrum hantzschii				58	
	Ankyra judayi		22	18		
	Chlamydomonas globosa	55				
	Chlorella vulgaris	564		209	80	
	Chlorophycées flagellées indéterminées					
	diam 5 10 µm	673	22	191	131	
	Chlorophycées indéterminées	582	116	473	466	
	Chlorophycées ovales		15	18		
	Coelastrum astroideum			73		
	Dictyosphaerium pulchellum			36		
	Didymocystis bicellularis			18		
	Elakatothrix gelatinosa		44	64		
	Hyaloraphidium contortum	637				
	Kirchneriella contorta	127				
	Lagerheimia balatonica	127			7	
	Lagerheimia genevensis			9	,	
	Micractinium pusillum					
	Monoraphidium circinale				146	
	Monoraphidium minutum	36	29		29	
	Oocystis borgei	18	<i>49</i>	100	29	
	Phacotus lendneri	36		36		
	Planktosphaeria gelatinosa	18		30		
	Scenedesmus linearis	10		173		
	Scenedesmus tinearis Scenedesmus parisiensis			1/3	58	
	Scenedesmus quadricauda			72	36	
	-	36	15		58	
Chrysophycées	Sphaerocystis schroeteri Bicoeca socialis	36	13	304	36	
Ciliysophycees						
	Chromulina vestita	18	1500			
	Dinobryon divergens	437				
	Dinobryon sociale var. stipitatum	273		127	120	
	Erkenia subaequiciliata	1911		127	138	
	Kephyrion mastigophorum	107	22			
	Kephyrion ovum	127				
	Kephyrion spirale	18				
	Mallomonas akrokomos	55	1.70			
	Mallomonas sp.	400	153			
	Ochromonas sp.	182				
	Pseudopedinella elastica	127			_	
Cryptophycées	Cryptomonas marssonii	18			7	
	Cryptomonas sp.	200			342	
	Rhodomonas minuta	637			73	
	Rhodomonas minuta var. nannoplanctica	1656		1292	1398	
Cyanophycées	Aphanocapsa holsatica		1958		1165	
	Komvophoron sp.		22 116 15			
	Limnothrix redekei			364		
	Pseudanabaena galeata		146			
Desmidiées	Closterium acutum	18				
	Staurodesmus sp.			9		
Diatomées	Achnanthidium minutissimum			18	7	
	Asterionella formosa	1365				
	Cocconeis sp.				36	
	Cyclotella costei		328	337	153	
	Encyonema minutum			9		
	Fragilaria sp.				15	
	Navicula sp.			46	15	
	Nitzschia sp.		15	64	7	
	Stephanodiscus hantzschii	1310				
Dinophycées	Gymnodinium lantzschii	109	15	55	22	
F-1-J 0000	Peridiniopsis cunningtonii					
	Peridinium inconspicuum	18		32		
Total	nombre cellules/ml	11303	7105	0564	4412	
1 0141	nombre taxons N	27			19	
				9 18 337 9 46		

Tableau 11: Liste taxonomique du phytoplancton

2.2.3. Évolutions saisonnières des groupements phytoplanctoniques

Les échantillons destinés à la détermination du phytoplancton sont constitués d'un prélèvement intégré sur la zone euphotique (équivalant à 2,5 fois la transparence lors de la campagne). Les graphiques suivants présentent la répartition du phytoplancton par groupe algal en cellules/ml puis en biovolume en mm³/l lors des quatre campagnes.

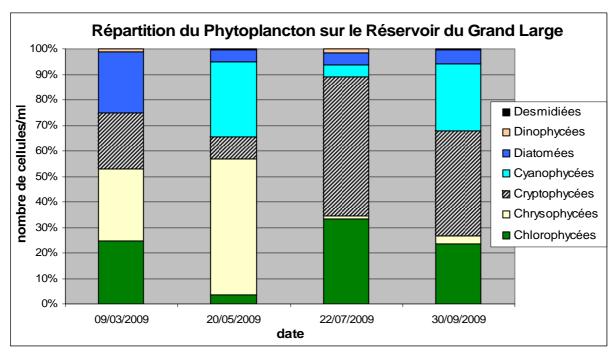


Figure 7: répartition du phytoplancton par groupe algal, en nombre de cellules

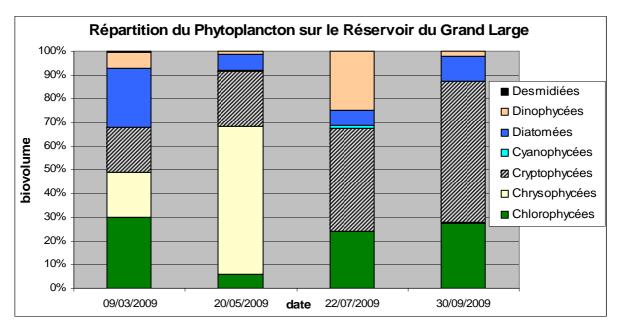


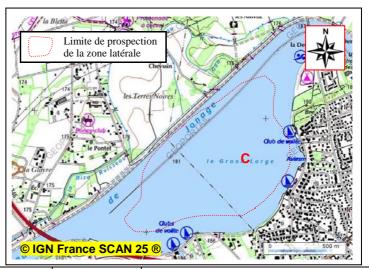
Figure 8: répartition du phytoplancton par groupe algal, en biovolumes

Le peuplement phytoplanctonique sur le réservoir du Grand Large présente une abondance élevée lors des 4 campagnes. En fin d'hiver, le peuplement est dense et partagé entre plusieurs groupes : Chlorophycées, Diatomées, Cryptophycées et Chrysophycées. Lors de la campagne 2, les algues sont dominées par le groupe des Chrysophycées avec les espèces *Dinobryon divergens* et *Erkenia subaequicilata*. On note également le développement de quelques colonies de Cyanobactéries *Aphanocapsa holsatica*. La production algale reste importante en été, avec la petite espèce *Rhodomonas minuta* (Cryptophycées) qui domine le peuplement. Elle est accompagnée par plusieurs algues vertes dont *Monoraphidium circinale*. La composition du phytoplancton reste similaire en fin d'été mais l'abondance est réduite de moitié (en biovolume et en nombre de cellules).

Globalement, la production algale est importante et diversifiée. Le peuplement phytoplanctonique est constitué d'espèces se développant dans un milieu mésotrophe (Indice Phytoplanctonique IPL : 35 ; correspondant à un milieu mésotrophe).

2.3. OLIGOCHETES

2.3.1. Conditions de prélèvements


Nom (dépt): Grand-Large (69)

Type: grande retenue

Code PE: V3005003 Code ME: FRDL49

Coordonnées GPS (Lambert II étendu) X-Y du point : ➤ C (centre) : 805792 - 2090621

Caractéristiques :		L1	C	L2				
> Prélèvements								
Date	31 août 2009							
Heure		13-14h00	12h00	14-15h00				
Prof (m)		1 à 2m	3,2	1 à 2m				
Nombre et type de benne		multiples	3 Ekman	multiples				
Surface (m²)		0	0,063	0				
➤ Sédiments (les volumes so Couleur	nt	donnés en m	l) Gris					
Odeur			Légère					
Vol. total			4150					
Vol. < 0,5 mm (fines)			3996					
Vol.> 0,5 mm (débris)			154					
Vol. 0,5 à 5 mm, organique			24					
Vol. 0,5 à 5 mm, minéral			5					
Vol. > 5 mm, organique			125					
Vol. > 5 mm, minéral		_	0					

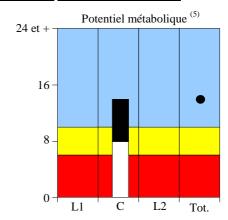
Profil granulométrique L1 C L2 80% 60% 40%

Particularités (conditions extérieures remarquables, écart au protocole...):

- Les prélèvements sur les points latéraux se sont avérés impossibles : en effet, à 50% de la profondeur maximale (1 à 2m), les sédiments étaient entièrement recouverts par une épaisse couche d'hydrophytes rendant impossible le prélèvement à la benne. Des dizaines de bennes ont été tentées sur la zone de prospection représentée sur la carte, sans succès.

Commentaires:

- Le taux de remplissage de la benne est moyen (25 à 75 %) sur le point central (profondeur maximale)
- Au niveau du point central, les débris sont peu abondants (< 10%) et sont largement dominés par la fraction organique grossière


2.3.2. Liste faunistique des oligochètes

Liste faunistique (oligochètes) et indice IOBL

Nom : Grand-Large	Type : grande retenue	Type : grande retenue Date :			ìt 2009)
	Taxon	Code Sandre	I (1)	Lat 1	Centre	Lat 2
Naididae ASC	Branchiura sowerbyi	952	a		26	
	Dero digitata	19306	a		2	
	Ilyodrilus templetoni	2995	m		1	
	Naididae ASC immat.	5231	a		4	
Naididae SSC	Limnodrilus claparedeanus	2992	m		6	
	Limnodrilus hoffmeisteri	2991	m		14	
	Naididae SSC immat.	5230	a		46	
	Potamothrix moldaviensis	2987	m		1	
	Nombre de	taxons =	S (2)		6	
	Nombre d'oligo		100			
	Nombre d'oligochètes récoltés				272	
Paramètres faunistiques	Surface échantillonnée (m²)				0,063	
	Densité en oligochètes (pour 0,1 m²) = D				432	
	Indice IOBL par site (3)				13,9	
	Indice IC)BL glol	bal (4)		13,9	

Commentaires:

- Le potentiel métabolique des sédiments est élevé dans la zone la plus profonde de la retenue. Les sédiments des points latéraux n'ont pas pu être analysés en raison de l'épaisse couverture d'hydrophytes
- Pas d'espèces figurant sur la liste des oligochètes sensibles à la pollution en annexe C de la Norme NF T90-391.

Remarques:

- (1) Identification possible du taxon à tous les stades (a) ou seulement à l'état mature (m)
- (2) S est le nombre minimal possible de taxons parmi les 100 oligochètes comptés. Par exemple, le taxon Naididae ASC immat. (identification limitée par le caractère immature de l'individu) sera comptabilisé comme un taxon uniquement en cas d'absence d'autres Naididae ASC identifiables seulement au stade mature. Les valeurs d'abondance mises en caractère gras correspondent aux taxons pris en compte pour le calcul de la richesse.
- (3) Indice IOBL par site = S + 3log10 (D+1) où S = nombre de taxons parmi les oligochètes comptés et D = densité en oligochètes pour 0,1 m^2 .
- (4) Indice IOBL global = ½(IOBLcentre) + ¼(IOBLlat1) + ¼(IOBLlat2). Il s'agit donc de la moyenne entre l'indice IOBL de la zone centrale profonde et l'indice IOBL des zones latérales, ce dernier indice étant égal à la moyenne des indices IOBL des deux zones latérales (lat 1 et lat2)
- (5) Le graphique représente les valeurs de l'indice IOBL (ordonnée) dans les différents sites (abscisse). La partie noire des histogrammes correspond à la part "richesse" de l'indice IOBL (S) alors que la partie blanche indique la part "densité" de l'indice $(3 \log_{10} (D+1))$

Les prélèvements en zone littorale n'ont pas pu être effectué à cause de la densité d'hydrophytes enracinées dans les sédiments, qui rendait impossible le prélèvement à la benne.

2.4. Hydromorphologie

La méthode aboutit au calcul de deux indices :

- ✓ LHMS : évaluation de l'altération du milieu ;
- ✓ LHQA : évaluation de la qualité des habitats du lac.

La reconnaissance hydromorphologique a été menée par l'ONEMA le 8 juin 2009. Le plan d'eau était à une cote moyenne.

Les berges sont modifiées sur tout le périmètre du réservoir du Grand Large avec une digue en bordure du canal de Jonage, et une zone urbaine qui entoure la masse d'eau. Ce plan d'eau subit également des pressions liées à des usages multiples (navigation, baignade, ports). A cela s'ajoute le développement d'espèces invasives dans l'eau (*Elodea Nuttallii*, cf macrophytes), non mentionné dans le tableau de synthèse, vraisemblablement en raison de la période d'investigations peu propice à l'observation de la végétation aquatique. Toutes ces pressions sur le milieu entraînent un score LHMS assez élevé (24 à 28/42).

La qualité des habitats est fortement altérée sur le réservoir du Grand Large avec une zone rivulaire et une plage peu attractives. Cela peut s'expliquer par la modification des berges sur tout le pourtour du plan d'eau mais aussi par l'aménagement de zones de baignade et de zones portuaires. La zone littorale est très favorable au développement de macrophytes, qui colonise la globalité du plan d'eau. La note LHQA résultante est médiocre avec 38/112.

Le rapport présente uniquement la fiche de synthèse de la base de données LHS.

LAKE HABITAT SURVEY SUMMARY REPORT

	LAKE INF	ORMATIC	DN	
LAKE ID Name of lake:	49 Grand large			
Country: GB Lakes code WBID	0 08-juin-09			
Date surveyed: Hab-Plots: Principle use:	08-juin-09 AM			
Water Body Type	FL PIT			
	1,44 Lake perimeter (m			
	0 Maximum depth (3,7		
	180		1 1 1 2 4 (whole numbers	
			Id Land Uses % (whole numbers	3)
impoundments:	Coniferous logg		zittori, dampi, ramanii	
Hard open: 17 Hard closed: 54	Imp grassland:			-
Tial a diodoal	Tilled land:	0		
Soft Engineering: 14	Orchard:	0	Turko ana garaciio.)
Docks, marinas, jetties 22	Erosion:	0		
Commercial activities 5	Residential:	5	o o moro do prantación o	
Soil poaching: 0	Educational rec			
	Lake Site Activities/	_		
	Angling Non	Litter	☐ Introduced specie	
	Angling from boa	Wildfow		
_	Angling from shor	☐ Surface	film Powerlines	
_	Ion-motor boat activitie	Liming	Non-boat recreation/swimm	i
_	Notorboat activitie	Dumping	Military activitie	
_	Other			
I isii stockiiig .	oressures			
	labitats % (whole num		Geomorphology	
Emergent reed-bed 0	Rough grassland	0	Vegetated islands (non-deltaic)	
Wet Woodland: 0	Other:	0	Unvegetated islands (non-deltaic)	
Bog: 0	Broadleaf/mixed woodla	n 1	Aggrading vegetated deltaic deposit	
Fen or marsh 1	Coniferous woodland:	0	Stable vegetated islands (deltaic)	
Floating veg mats 0	Moorland/heath:	0	Deltaic unvegetated gravel bars	
Open water: 32	Rock, scree or dunes:	0	Deltaic unvegetated fines bars	
LHM	is		LHQA	
LHMS Score	24	LHQA	38	
Shore zone modification	8	Riparia	an score 6	
Shore zone intensive use	8	Shore s	score 2	
In-lake pressures	8	Littoral	I score 15	-1
Hydrology	0	Whole	lake score 15	- 1
				-
Sediment regime	0			

2.5. MACROPHYTES

Le positionnement des unités d'observation est déterminé avec la méthode de Jensen. Pour le réservoir du Grand-Large, 5 profils⁴ perpendiculaires à la plus grande longueur du plan d'eau ont été représentés, soit 10 points contacts potentiels auxquels s'ajoutent les 2 points correspondant au point de départ et d'arrivée de cette ligne de base.

Le protocole d'échantillonnage s'appuie sur le type de rives recensées sur le plan d'eau, et la largeur de la zone littorale (profondeur de colonisation des végétaux). Sur le réservoir du Grand-Large, 2 types de rives ont été observés, une appréciation du recouvrement est donnée en % du périmètre total.

- ✓ Type 2 ; zones rivulaires colonisées par une végétation arbustive ou arborescente non humide : 20 % ;
- ✓ Type 4 ; zones artificialisées ou subissant des pressions anthropiques visibles : 80 %.

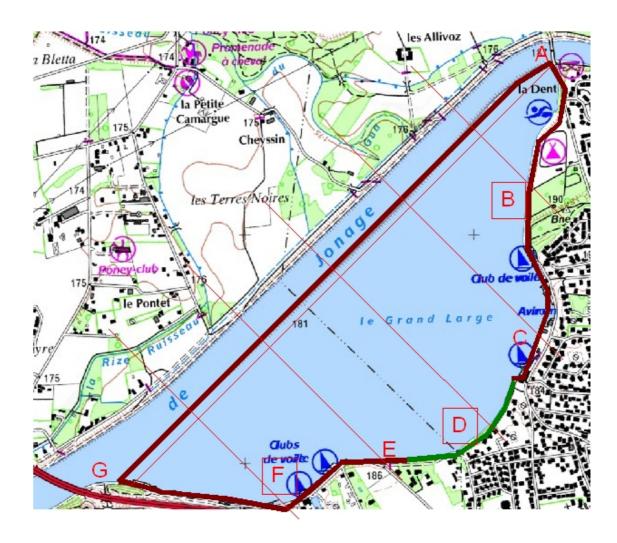
La transparence est moyenne sur le réservoir du Grand-Large, avec 2 m mesuré au disque de Secchi. La zone euphotique atteint donc une profondeur de 5 m, soit davantage que la profondeur maximale du plan d'eau : la largeur de la zone littorale euphotique est donc considérée comme importante (type a) sur toutes les rives du plan d'eau.

La superficie du plan d'eau étant de 156 ha (lors de l'intervention), 3 unités d'observation ont été sélectionnées selon leur représentativité d'un type de rive soit :

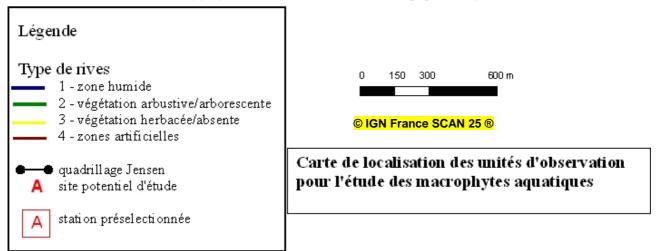
- ✓ UO 1 : 1 unité de type 4a (zone aménagée : route/parking) ;
- ✓ UO 2 : 1 unité de type 2a (bande rivulaire et route) ;
- ✓ UO 3 : 1 unité de type 4a (friches et habitations).

La digue en rive nord-ouest n'est pas représentée compte tenu des difficultés de réalisabilité d'un transect de végétation : pas de possibilité d'attache en berges, absence de zone rivulaire.

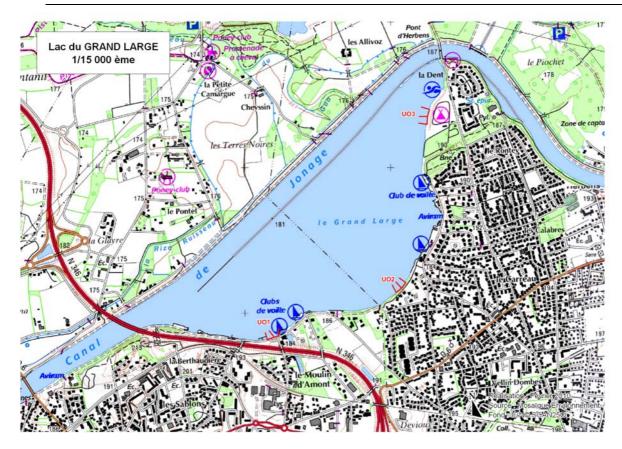
Pour chaque UO, le choix a porté sur un secteur exclusivement constitué d'un type de rive (sur 100 m minimum), accessible, à l'exclusion des arrivées de tributaires, et des singularités.


Les relevés de terrain ont été menés lors de deux campagnes réalisées les 22 juillet 2009 et 24 août 2009. Le niveau d'eau était moyen sur le Grand-Large. L'intervention du 22 juillet a du être arrêtée en raison de mauvaises conditions climatiques et des difficultés pour naviguer et pour faire les prélèvements compte tenu de la densité de végétation aquatique.

Une carte indiquant la position de chaque unité d'observation et le recouvrement des types de rives est présentée en page suivante.


⁴Le nombre de profils est défini selon la surface du lac et son périmètre.

2.5.1. Positionnement et choix des unités d'observation


Grand Large

Les points situés sur la digue submersible ne sont pas pris en compte car il serait impossible d'effectuer des relevés sur le canal de Jonage (qui présente des vitesses non négligeables).

2.5.2. Carte de localisation des unités d'observations

2.5.3. Végétation aquatique identifiée

Le canal de Miribel Jonage alimente le plan d'eau sur la rive nord-ouest, séparé par une digue submersible. Les rives sud et est sont constituées de milieux plus artificialisés : urbanisation, camping, club nautique, etc.

Le recouvrement global de macrophytes sur le lac est très important, puisque toute la lame d'eau est colonisée. Il approcherait la quasi-totalité du plan d'eau.

Le bassin abrite une grande diversité d'espèces d'hydrophytes enracinées et d'algues en herbiers très denses. Cependant, l'abondance des macrophytes est telle qu'elle traduit une eutrophisation poussée du plan d'eau.

UO1:

La première unité d'observation située au sud est proche du club de voile, en bordure d'une route et d'un parking. Elle est réalisée dans une zone aux berges assez abruptes.

On y observe dès les premiers centimètres ce que l'on retrouve jusqu'à 2 m de profondeur, à savoir des herbiers aquatiques denses et diversifiés de phanérogames (*Ceratophyllum demersum*, *Najas marina*, *Myriophyllum spicatum*, *Elodea nuttallii*, *Potamogeton pectinatus*) et de Characées (*Nitellopsis obutusa*, *Chara contraria*, *Chara globularis*) sur et au sein desquels prolifèrent des algues filamenteuses vertes (*Vaucheria sp. Rhizoclonium sp.*, *Mougeotia sp.*, *Oedogonium sp.*)., . Les herbiers s'étendent sur plus de 50 m de transect. La totalité de la lame d'eau semble colonisée par les hydrophytes.

UO2:

La seconde unité d'observation est réalisée au sud-est en bordure de route et d'habitation. La zone littorale est marquée par une roselière de roseau commun bien atterrie jusqu'à 80 cm de profondeur d'eau.

On y observe dès les premiers centimètres ce que l'on retrouve jusqu'à 3,2 m de profondeur, à savoir des herbiers aquatiques denses et diversifiés de phanérogames (*Ceratophyllum demersum*, *Najas marina, Myriophyllum spicatum, Elodea nuttallii, Potamogeton pectinatus*) et de Characées (*Nitellopsis obutusa, Chara contraria, Chara globularis*) sur et au sein desquels prolifèrent des algues filamenteuses vertes (*Vaucheria sp. Rhizocloniuma sp., Mougeotia sp., Oedogonium sp.*).

UO3:

La troisième et dernière unité d'observation est localisée à l'extrémité est du site en bordure d'une zone de friche abandonnée et de quelques habitations.

Sur la zone littorale, on retrouve les mêmes espèces que sur les UO précédentes avec en plus quelques hélophytes sur berges qui visiblement ont été plantés (*Iris pseudacorus, Phalaris arundinacea, Lythrum salicaria*, etc.).

On observe ensuite jusqu'à 2,4 m de profondeur des herbiers aquatiques denses et diversifiés de phanérogames (Ceratophyllum demersum, Najas marina, Myriophyllum spicatum, Elodea nuttallii, Potamogeton pectinatus) et de characées (Nitellopsis obutusa, Chara contraria, Chara globularis) sur et au sein desquels prolifèrent des algues filamenteuses vertes (Vaucheria sp. Rhizocloniuma sp., Mougeotia sp., Oedogonium sp., Spirogyra sp.).

2.5.4. Liste des espèces protégées et des espèces invasives

L'Elodée de Nuttall (*Elodea nuttallii*) est très abondante sur le plan d'eau. Elle concurrence toutes les autres espèces (cf. photo ci-dessus).

Une seule espèce protégée a été observée sur le secteur : il s'agit de la Grande naïade (*Najas marina*) présente un peu partout sur le plan d'eau (cf. photo ci-contre).

S.T.E. – Sciences et Techniques de l'Environnement - Rapport 08-283/ 2010-PE2009-11 – Mai 2010 – page 27

2.5.5. Approche du niveau trophique du plan d'eau

On observe les mêmes herbiers aquatiques sur les trois unités d'observations, ce qui permet de dire que l'ensemble du bassin est homogène.

Les macrophytes prolifèrent sur ce plan d'eau de manière très importante puisque sur 2 ou 3 m de profondeur, toute la colonne d'eau est colonisée. Parmi les espèces de phanérogames observées, on retrouve 3 hydrophytes immergés : *Ceratophyllum demersum, Myriophyllum spicatum* et *Potamogeton pectinatus*, trois espèces se développant préférentiellement dans les eaux eutrophes. De même, *Elodea nuttallii*, espèce invasive, préfère les eaux les plus eutrophes. *Najas marina* se rencontre dans des eaux plutôt mésotrophes assez calcaires.

Parmi les characées, *Nitelllopsis obtusa* se rencontre dans des eaux assez profondes et nettement calcaires. Les formations à Chara sont des communautés pionnières mésotrophes plus ou moins sensibles, selon les espèces, aux concentrations en nutriments et particulièrement aux phosphates ; ces dernières sont ici peu présentes. Les menaces ici semblent principalement liées aux nutriments (phosphates) et à la concurrence avec des formations d'autres hydrophytes.

Diverses algues ont également été observées sur le plan d'eau avec une forte abondance de quelques espèces qui prolifèrent jusqu'en surface : *Vaucheria sp.* et *Rhizoclonium sp* . Leur développement important traduit également un enrichissement du plan d'eau en nutriments (phosphates probablement).

Il est important de noter également que plusieurs cadavres de poissons ont été observés dans l'eau, ce qui pourrait s'expliquer par des phénomènes d'anoxie temporaire.

En conclusion, la prolifération des macrophytes sur le plan d'eau, sur l'ensemble de la colonne d'eau, et notamment de certaines espèces des eaux eutrophes, traduit une eutrophisation du plan d'eau liée probablement à des apports importants de fertilisants (phosphates certainement).

2.5.6. Relevés des unités d'observations

Les relevés des 3 unités d'observations réalisés ont été reportés dans le formulaire de saisie version 3 élaboré par le CEMAGREF. Les 3 fichiers sont disponibles sur demande.

3. Interpretation globale des resultats

Les résultats acquis durant le suivi annuel ont été interprétés en termes de potentiel écologique pour les plans d'eau d'origine anthropique et d'état chimique selon les critères et méthodes d'évaluation décrites dans l'arrêté du 25 janvier 2010.

Ces résultats ont également été traités en terme de niveau trophique à l'aide des outils de la diagnose rapide (Cemagref, 2003).

Les résultats de ces deux approches sont présentés dans le document complémentaire : Note synthétique d'interprétation des résultats.

✓ Critères d'applicabilité de la diagnose rapide

La diagnose rapide vise à évaluer l'état trophique des lacs et à mettre en évidence les phénomènes d'eutrophisation. Elle fait appel au principe fondamental du fonctionnement des lacs qui suppose qu'il existe un lien entre la composition physico-chimique à l'époque du mélange hivernal et les phénomènes qu'elle est susceptible d'engendrer dans les divers compartiments de l'écosystème au cours de la période de croissance végétale qui lui succède.

Cette méthode est donc adaptée aux plans d'eau qui stratifient durablement en été et exclut les plans d'eau au temps de séjour réduit (CEMAGREF, 1990, 2003) et les lacs dont la profondeur moyenne est inférieure à 3 m.

Le réservoir du Grand-Large présente un fonctionnement lacustre particulier lié au mode de renouvellement de la masse d'eau d'une part et à une profondeur moyenne très faible (estimée à 1,6 m, la profondeur maximale étant de 3,7 m seulement) d'autre part. De ce fait, il est plus assimilable à un étang qui ne réalise pas de stratification thermique.

De plus, du fait de l'importante du recouvrement en macrophytes, le réservoir du Grand-Large se trouve en dehors du champ d'application de la diagnose rapide.

Pour cette raison, la diagnose rapide ne s'applique pas en théorie sur ce plan d'eau : les indices constitutifs ont cependant été calculés afin d'avoir une approche du niveau trophique du plan d'eau.

Le plan d'eau ne stratifiant pas, il semble donc peu pertinent de calculer l'indice dégradation à partir de la consommation en oxygène.

Agence de l'Eau Rhône - Méditerranée & Corse Etude des plans d'eau du programme de surveillance des bassins Rhône- Méditerranée et Corse –Réservoir du Grand-Large (69)

Annexe 1 : Liste des micropolluants analysés sur eau

Code SANDRE	Libel param	Famillo composós	Code SANDRE	Libal param	Famillo composós
5474		Famille composés Alkylphénols		Libel_param	Famille composés HAP
1957	4-n-nonylphénol Nonylphénols	Alkylphénols	1118 1117	Benzo (ghi) Pérylène Benzo (k) Fluoranthène	HAP
1920			1476	· · · · ·	HAP
1958	p-(n-octyl)phénols	Alkylphénols	1621	Chrysène Dibenzo (ah) Anthracène	HAP
	Para-nonylphénols ramifiés	Alkylphénols		Fluoranthène	HAP
1959	Para-tert-octylphénol	Alkylphénols	1191		HAP
1593	Chloroaniline-2	Anilines et Chloroanilines	1623	Fluorène	
1592	Chloroaniline-3	Anilines et Chloroanilines	1204	Indéno (123c) Pyrène	HAP HAP
1591	Chloroaniline-4	Anilines et Chloroanilines	1619	Méthyl-2-Fluoranthène	
1589	Dichloroaniline-2,4	Anilines et Chloroanilines	1618	Méthyl-2-naphtalène	HAP
1114	Benzène	BTEX	1517	Naphtalène	HAP
1602	Chlorotoluène-2	BTEX	1524	Phénanthrène	HAP
1601	Chlorotoluène-3	BTEX	1537	Pyrène	HAP
1600	Chlorotoluène-4	BTEX	1370	Aluminium	Métaux
1497	Ethylbenzène	BTEX	1376	Antimoine	Métaux
1633	Isopropylbenzène	BTEX	1368	Argent	Métaux
1278	Toluène	BTEX	1369	Arsenic	Métaux
5431	Xylène (ortho+meta+para)	BTEX	1396	Baryum	Métaux
1292	Xylène-ortho	BTEX	1377	Beryllium	Métaux
1955	Chloroalcanes C10-C13	Chloroalacanes	1362	Bore	Métaux
1467	Chlorobenzène (Mono)	Chlorobenzènes	1388	Cadmium	Métaux
1165	Dichlorobenzène-1,2	Chlorobenzènes	1389	Chrome	Métaux
1164	Dichlorobenzène-1,3	Chlorobenzènes	1379	Cobalt	Métaux
1166	Dichlorobenzène-1,4	Chlorobenzènes	1392	Cuivre	Métaux
1199	Hexachlorobenzène	Chlorobenzènes	1380	Etain	Métaux
1888	Pentachlorobenzène	Chlorobenzènes	1393	Fer	Métaux
1631	Tétrachlorobenzène-1,2,4,5	Chlorobenzènes	1394	Manganèse	Métaux
1630	Trichlorobenzène-1,2,3	Chlorobenzènes	1387	Mercure	Métaux
1283	Trichlorobenzène-1,2,4	Chlorobenzènes	1395	Molybdène	Métaux
1629	Trichlorobenzène-1,3,5	Chlorobenzènes	1386	Nickel	Métaux
1774	Trichlorobenzènes	Chlorobenzènes	1382	Plomb	Métaux
1469	Chloronitrobenzène-1,2	Chloronitrobenzènes	1385	Sélénium	Métaux
1468	Chloronitrobenzène-1,3	Chloronitrobenzènes	2559	Tellurium	Métaux
1470	Chloronitrobenzène-1,4	Chloronitrobenzènes	2555	Thallium	Métaux
1617	Dichloronitrobenzène-2,3	Chloronitrobenzènes	1373	Titane	Métaux
1615	Dichloronitrobenzène-2,5	Chloronitrobenzènes	1361	Uranium	Métaux
1614	Dichloronitrobenzène-3,4	Chloronitrobenzènes	1384	Vanadium	Métaux
2915	BDE100	Diphényléthers bromés	1383	Zinc	Métaux
2912	BDE153	Diphényléthers bromés	1135	Chloroforme (trichlorométhane)	OHV
2911	BDE154	Diphényléthers bromés	2611	Chloroprène	OHV
2920	BDE28	Diphényléthers bromés	2065	Chloropropène-3	OHV
2919	BDE47	Diphényléthers bromés	1160	Dichloréthane-1,1	OHV
2916	BDE99	Diphényléthers bromés	1161	Dichloréthane-1,2	OHV
1815	Décabromodiphényléther	Diphényléthers bromés	1162	Dichloréthylène-1,1	OHV
2609	Octabromodiphénylether	Diphényléthers bromés	1163	Dichloréthylène-1,2	OHV
1921	Pentabromodiphényléther	Diphényléthers bromés	1456	Dichloréthylène-1,2 cis	OHV
1465	Acide monochloroacétique	Divers	1727	Dichloréthylène-1,2 trans	OHV
1753	Chlorure de vinyle	Chlorure de vinyles	1168	Dichlorométhane	OHV
2826	Diéthylamine	Divers	1652	Hexachlorobutadiène	OHV
2773	Diméthylamine	Divers	1271	Tétrachloréthane-1,1,2,2	OHV
1494	Epichlorohydrine	Divers	1272	Tétrachloréthylène	OHV
1453	Acénaphtène	HAP	1276	Tétrachlorure de C	OHV
1622	Acénaphtylène	HAP	1284	Trichloréthane-1,1,1	OHV
1458	Anthracène	HAP	1285	Trichloréthane-1,1,2	OHV
1082	Benzo (a) Anthracène	HAP	1286	Trichloréthylène	OHV
1115	Benzo (a) Pyrène	HAP	1771	Dibutylétain	Organostanneux complets
	Benzo (b) Fluoranthène	HAP	1936	Tétrabutylétain	Organostanneux complets

page 1/2

Code	I	•	Code	1	
	Libel_param	Famille_composés	SANDRE	Libel_param	Famille composés
2879	Tributylétain-cation	Organostanneux complets	1187	Fénitrothion	Pesticides
1779	Triphénylétain	Organostanneux complets	1967	Fénoxycarbe	Pesticides
1242	PCB 101	PCB	2022	Fludioxonil	Pesticides
1243	PCB 118	PCB	1765	Fluroxypyr	Pesticides
1244	PCB 138	PCB	2547	Fluroxypyr-meptyl	Pesticides
1244	PCB 153	PCB	1194	Flusilazole	Pesticides
1090	PCB 169	PCB	1702	Formaldéhyde	Pesticides
1246	PCB 180	PCB	1506		Pesticides
1239	PCB 28	PCB	1200	Glyphosate HCH alpha	Pesticides
1240	PCB 35	PCB	1201	HCH beta	Pesticides
1241	PCB 52	PCB	1202	HCH delta	Pesticides
1091	PCB 77	PCB	2046	HCH epsilon	Pesticides
1141	2 4 D	Pesticides	1203	HCH gamma	Pesticides
1212	2 4 MCPA	Pesticides	1405	Hexaconazole	Pesticides
	2-Hydroxy-atrazine	Pesticides	1877	Imidaclopride	Pesticides
1903	Acétochlore	Pesticides	1206	Iprodione	Pesticides
1688	Aclonifen	Pesticides	1207	Isodrine	Pesticides
1101	Alachlore	Pesticides	1208	Isoproturon	Pesticides
1103	Aldrine	Pesticides	1950	Kresoxim méthyl	Pesticides
1105	Aminotriazole	Pesticides	1094	Lambda Cyhalothrine	Pesticides
	AMPA	Pesticides	1209	Linuron	Pesticides
1107	Atrazine	Pesticides	1210	Malathion	Pesticides
1109	Atrazine déisopropyl	Pesticides	1214	Mécoprop	Pesticides
1108	Atrazine déséthyl	Pesticides	2987	Métalaxyl m = mefenoxam	Pesticides
1951	Azoxystrobine	Pesticides	1796	Métaldéhyde	Pesticides
1113	Bentazone	Pesticides	1215	Métamitrone	Pesticides
1686	Bromacil	Pesticides	1670	Métazachlore	Pesticides
1125	Bromoxynil	Pesticides	1216	Méthabenzthiazuron	Pesticides
1941	Bromoxynil octanoate	Pesticides	1227	Monolinuron	Pesticides
1129	Carbendazime	Pesticides	1519	Napropamide	Pesticides
1130	Carbofuran	Pesticides	1882	Nicosulfuron	Pesticides
1464	Chlorfenvinphos	Pesticides	1669	Norflurazon	Pesticides
1134	Chlorméphos	Pesticides	1667	Oxadiazon	Pesticides
1474	Chlorprophame	Pesticides	1666	Oxadixyl	Pesticides
1083	Chlorpyriphos éthyl	Pesticides	1231	Oxydéméton méthyl	Pesticides
1540	Chlorpyriphos méthyl	Pesticides	1234	Pendiméthaline	Pesticides
1136	Chlortoluron	Pesticides	1665	Phoxime	Pesticides
2017	Clomazone	Pesticides	1664	Procymidone	Pesticides
1680	Cyproconazole	Pesticides	1414	Propyzamide	Pesticides
1359	Cyprodinil	Pesticides	1432	Pyriméthanil	Pesticides
1143	DDD-o,p'	Pesticides	1892	Rimsulfuron	Pesticides
1144	DDD-p,p'	Pesticides	1263	Simazine	Pesticides
1145	DDE-o,p'	Pesticides	1662	Sulcotrione	Pesticides
1146	DDE-p,p'	Pesticides	1694	Tébuconazole	Pesticides
1147	DDT-o,p'	Pesticides	1661	Tébutame	Pesticides
1148	DDT-p,p'	Pesticides	1268	Terbuthylazine	Pesticides
1830	Déisopropyl-déséthyl-atrazine	Pesticides	2045	Terbuthylazine déséthyl	Pesticides
1149	Deltaméthrine	Pesticides	1954	Terbuthylazine hydroxy	Pesticides
1480	Dicamba	Pesticides	1269	Terbutryne	Pesticides
1169			1660	Tétraconazole	
	Dichlorprop	Pesticides	1288		Pesticides
	Dichlorvos Dieldrine	Pesticides		Trichlopyr Trifluraline	Pesticides Pesticides
1173		Pesticides Pesticides	1289		
1814	Diflufénicanil Diméthénomide	Pesticides	1636	Chlorométhylphénol-4,3	Phénois et chlorophénois
1678	Diméthénamide Diméthemeraha	Pesticides	1471	Chlorophénol-2	Phénois et chlorophénois
1403	Diméthomorphe	Pesticides	1651	Chlorophénol-3	Phénols et chlorophénols
1177	Diuron	Pesticides	1650	Chlorophénol-4	Phénois et chlorophénois
1178	Endosulfan alpha	Pesticides	1486	Dichlorophénol-2,4	Phénols et chlorophénols
1179	Endosulfan beta	Pesticides	1235	Pentachlorophénol	Phénols et chlorophénols
1742	Endosulfan sulfate	Pesticides	1548	Trichlorophénol-2,4,5	Phénols et chlorophénols
1743	Endosulfan Total	Pesticides	1549	Trichlorophénol-2,4,6	Phénols et chlorophénols
	II madeina	Pesticides	1584	Biphényle	Semi volatils organiques divers
1181	Endrine				
	Epoxiconazole Ethofumésate	Pesticides Pesticides Pesticides	1461 1847	DEPH Tributylphosphate	Semi volatils organiques divers Semi volatils organiques divers

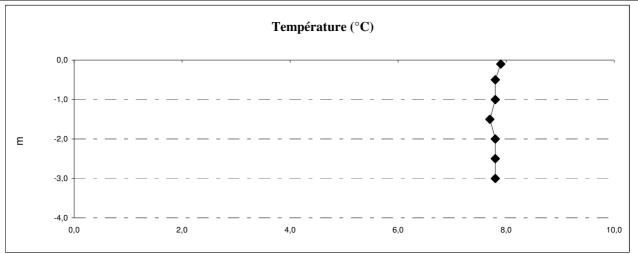
page 2/2

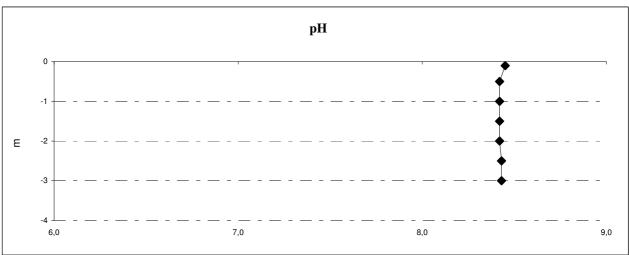
Annexe 2 : Liste des micropolluants analysés sur sédiment

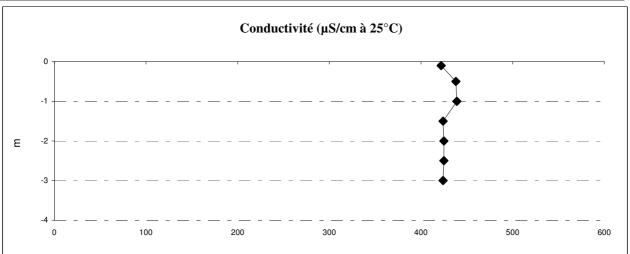
	Libel param	Famille_composés	Code_SANDR		Famille_composés
5474	4-n-nonylphénol	Alkylphénols	1652	Hexachlorobutadiène	OHV
1957	Nonylphénols	Alkylphénols	1770	Dibutylétain (oxyde)	Organostanneux complets
1920	p-(n-octyl)phénols	Alkylphénols	1936	Tétrabutylétain	Organostanneux complets
1958	Para-nonylphénols ramifiés	Alkylphénols	2879	Tributylétain-cation	Organostanneux complets
1959	Para-tert-octylphénol	Alkylphénols	1779	Triphénylétain	Organostanneux complets
1602	Chlorotoluène-2	BTEX	1242	PCB 101	PCB
1601	Chlorotoluène-3	BTEX	1243	PCB 118	PCB
1600	Chlorotoluène-4	BTEX	1244	PCB 138	PCB PCB
1497	Ethylbenzène	BTEX	1245 1090	PCB 153	PCB
1633 5431	Isopropylbenzène	BTEX BTEX	1246	PCB 169 PCB 180	PCB
1292	Xylène (ortho+meta+para) Xylène-ortho	BTEX	1239	PCB 180	PCB
1955	Chloroalcanes C10-C13	Chloroalacanes	1240	PCB 35	PCB
1165	Dichlorobenzène-1,2	Chlorobenzènes	1241	PCB 52	PCB
1164	Dichlorobenzène-1,3	Chlorobenzènes	1091	PCB 77	PCB
1166	Dichlorobenzène-1,4	Chlorobenzènes	1903	Acétochlore	Pesticides
1199	Hexachlorobenzène	Chlorobenzènes	1688	Aclonifen	Pesticides
1888	Pentachlorobenzène	Chlorobenzènes	1103	Aldrine	Pesticides
1631	Tétrachlorobenzène-1,2,4,5	Chlorobenzènes	1125	Bromoxynil	Pesticides
1630	Trichlorobenzène-1,2,3	Chlorobenzènes	1941	Bromoxynil octanoate	Pesticides
1283	Trichlorobenzène-1,2,4	Chlorobenzènes	1464	Chlorfenvinphos	Pesticides
1629	Trichlorobenzène-1,3,5	Chlorobenzènes	1134	Chlorméphos	Pesticides
1774	Trichlorobenzènes	Chlorobenzènes	1474	Chlorprophame	Pesticides
1617	Dichloronitrobenzène-2,3	Chloronitrobenzènes	1083	Chlorpyriphos éthyl	Pesticides
1615	Dichloronitrobenzène-2,5	Chloronitrobenzènes	1540	Chlorpyriphos méthyl	Pesticides
1614	Dichloronitrobenzène-3,4	Chloronitrobenzènes	1359	Cyprodinil	Pesticides
2915	BDE100	Diphényléthers bromés	1143	DDD-o,p'	Pesticides
2912	BDE153	Diphényléthers bromés	1144	DDD-p,p'	Pesticides
2911	BDE154	Diphényléthers bromés	1145	DDE-o,p'	Pesticides
2920	BDE28	Diphényléthers bromés	1146	DDE-p,p'	Pesticides
2919	BDE47	Diphényléthers bromés	1147	DDT-o,p'	Pesticides
2916	BDE99	Diphényléthers bromés	1148	DDT-p,p'	Pesticides
1815	Décabromodiphényléther	Diphényléthers bromés	1149	Deltaméthrine	Pesticides
2609	Octabromodiphénylether	Diphényléthers bromés	1169	Dichlorprop	Pesticides
1921	Pentabromodiphényléther	Diphényléthers bromés	1173	Dieldrine	Pesticides
1453	Acénaphtène	HAP	1814	Diflufénicanil	Pesticides
1622	Acénaphtylène	HAP	1178	Endosulfan alpha	Pesticides
1458	Anthracène	HAP	1179	Endosulfan beta	Pesticides
1082	Benzo (a) Anthracène	HAP	1742	Endosulfan sulfate	Pesticides
1115	Benzo (a) Pyrène	HAP	1743	Endosulfan Total	Pesticides
1116	Benzo (b) Fluoranthène	HAP	1181	Endrine	Pesticides
1118	Benzo (ghi) Pérylène	HAP	1744	Epoxiconazole	Pesticides
1117	Benzo (k) Fluoranthène	HAP	1187	Fénitrothion	Pesticides
1476	Chrysène	HAP	1967	Fénoxycarbe	Pesticides
1621	Dibenzo (ah) Anthracène	HAP	2022	Fludioxonil	Pesticides
1191	Fluoranthène	HAP	2547	Fluroxypyr-meptyl	Pesticides
1623	Fluorène	HAP	1194	Flusilazole	Pesticides
1204	Indéno (123c) Pyrène	HAP	1200	HCH alpha	Pesticides
1619	Méthyl-2-Fluoranthène	HAP	1201	HCH beta	Pesticides
1618	Méthyl-2-naphtalène	HAP	1202	HCH delta	Pesticides
1517	Naphtalène	HAP	2046	HCH epsilon	Pesticides
1524	Phénanthrène	HAP	1203	HCH gamma	Pesticides
1537	Pyrène	HAP	1405	Hexaconazole	Pesticides
1370	Aluminium	Métaux	1206	Iprodione	Pesticides
1376	Antimoine	Métaux	1207	Isodrine	Pesticides
1368	Argent	Métaux	1950	Kresoxim méthyl	Pesticides
1369	Arsenic	Métaux	1094	Lambda Cyhalothrine	Pesticides
1396	Baryum	Métaux	1209	Linuron	Pesticides
1377	Beryllium	Métaux	1519	Napropamide	Pesticides
1362	Bore	Métaux	1667	Oxadiazon	Pesticides
1388	Cadmium	Métaux	1234	Pendiméthaline	Pesticides
1389	Chrome	Métaux	1664	Procymidone	Pesticides
1379	Cobalt Cuivre	Métaux Métaux	1414	Propyzamide Tábucopazolo	Pesticides
1392			1694	Tébuconazole	Pesticides
1380	Etain	Métaux Métaux	1661	Tébutame	Pesticides Pesticides
1393	Fer Manganèse	Métaux	1268	Terbuthylazine	Pesticides Pesticides
1394	Manganèse Mercure	Métaux Métaux	1269 1660	Terbutryne Tétraconazole	Pesticides Pesticides
1387	Mercure Melyhdène	Métaux		Tétraconazole	Pesticides
1395	Molybdène	Métaux	1289	Trifluraline	Pesticides
1386	Nickel	Métaux	1636	Chlorométhylphénol-4,3	Phénois et chlorophénois
1382	Plomb	Métaux	1486	Dichlorophénol-2,4	Phénois et chlorophénois
1385	Sélénium	Métaux	1235	Pentachlorophénol	Phénois et chlorophénois
2559	Tellurium	Métaux	1548	Trichlorophénol-2,4,5	Phénois et chlorophénois
2555	Thallium	Métaux	1549	Trichlorophénol-2,4,6	Phénois et chlorophénois
1373	Titane	Métaux	1584	Biphényle	Semi volatils organiques di
	Uranium	Métaux	1461	DEPH	Semi volatils organiques div
1361 1384	Vanadium	Métaux	1847	Tributylphosphate	Semi volatils organiques div

Annexe 3 : Comptes rendus des campagnes de prélèvements physicochimiques et phytoplanctoniques sur l'année 2009

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES GENERALES PLAN D'EAU - STATION Plan d'eau: Grand Large (réservoir du -) Date: 09/03/2009 Type (naturel, artificiel,...): Code lac: V3005003 artificiel Hervé Coppin Organisme / opérateur : **S.T.E.**: Audrey Péricat et Campagne 1 $march\acute{e}~n^{\circ}~08M082$ Organisme demandeur Agence de l'eau RM&C LOCALISATION PLAN D'EAU Commune : Décines-Charpieu (69) H.E.R.: Collines du Bas-Dauphiné Lac marnant: non Superficie du bassin-versant : nd km² Superficie du plan d'eau : 160 ha Profondeur maximale: Carte: (extrait SCAN25, IGN 1/25 000) localisation du point de prélèvements angle de prise de vue de la photographie **STATION** Photo du site : depuis le point de plus grande profondeur

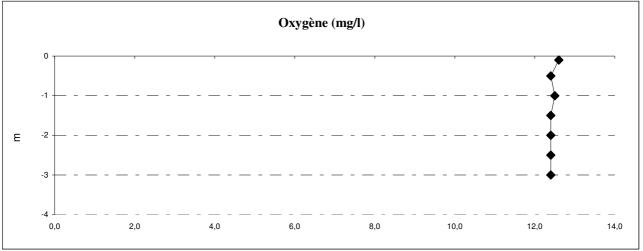

Relevé phytoplanctonique et physic DONNEES GENERALES CAMP	• •
Plan d'eau :	Grand Large (réservoir du -) Date : 09/03/2009
Type (naturel, artificiel,):	artificiel Code lac: V3005003
Organisme / opérateurs :	S.T.E.: Audrey Péricat et Hervé Coppin Campagne 1
Organisme demandeur	Agence de l'eau RM&C marché n° 08M082
STATION	rigonee de l'edd l'étiece
Coordonnées de la station	relevées sur : GPS
Lambert 93	
WGS 84 (système international)	
Profondeur:	
Troibideur :	vent : moyen
	météo : peu nuageux
Conditions d'observation :	Surface de l'eau : agitée
	Hauteur des vagues : 0,05 m P atm standard : 992,40 hPa
	Bloom algal: non Pression atm.: 995 hPa
Marnage:	non Hauteur de la bande : m
Campagne : PRELEVEMENTS	1 campagne de fin d'hiver : homothermie du plan d'eau avant démarrage de l'activité biologique
Heure de début du relevé :	16h 30 Heure de fin du relevé : 17h 10
Heure de debut du reieve :	Ton 50 Heure de fin du reieve : 1711 fo
Prélèvements pour analyses :	eau chlorophylle matériel employé : pompe phytoplancton
Gestion:	Réservoir alimenté par le canal de Jonage, hydroélectricité EDF
Contact préalable :	EDF Centrale de Cusset
	Plan de prévention établi entre EDF et S.T.E. Le lac est utilisé pour les loisirs nautiques (voile, canoë) ainsi que pour la navigation (réglementée).
Remarques, observations:	Le plan d'eau peut être alimenté à la fois par l'amont, mais aussi par l'aval du canal de Jonage (niveau d'eau géré au barrage hydroélectrique de Cusset). La zone euphotique est limitée à la profondeur maximale mesurée.

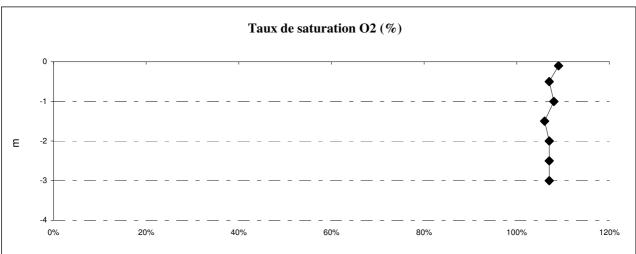

Relevé phytoplanctonique et p	physico-ch	imique en	plan d'eau				
DONNEES PHYSICO-CHIM	IIQUES						
Plan d'eau:	Grand La	rge (réserv	oir du -)			Date:	09/03/2009
Type (naturel, artificiel,):	artificiel					Code lac:	V3005003
Organisme / opérateur :	S.T.E. :	Audrey Pe	éricat et	Hervé Cop	pin	Campagne	1
Organisme demandeur	Agence de	e l'eau RM	&C			marché n°	08M082
TRANSPARENCE							
Secchi en m:	2,2		Zone euphot	ique (2,5 x Sec	echi):	5,5	m
PROFIL VERTICAL							
Moyen de mesure utilisé :		in-situ à ch	aque prof.		X	en surface da	ans un récipient
Volume prélevé (en litres) :	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
volume preserve (en nues).	(m)	(°C)		(µS/cm 25°)	(mg/l)	(%)	
prélèvement intégré (2 L)	-0,1	7,9	8,45	422	12,6	109%	16:40
prélèvement intégré (2 L)	-0,5	7,8	8,42	438	12,4	107%	
prélèvement intégré (2 L)	-1,0	7,8	8,42	439	12,5	108%	
prélèvement intégré (2 L)	-1,5	7,7	8,42	424	12,4	106%	
prélèvement intégré (2 L)	-2,0	7,8	8,42	425	12,4	107%	
prélèvement intégré (2 L)	-2,5	7,8	8,43	425	12,4	107%	
prélèvement de fond	-3,0	7,8	8,43	424	12,4	107%	17:00


Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Plan d'eau : Grand Large (réservoir du -) Date : 09/03/2009 Type (naturel, artificiel,...) : artificiel Code lac : V3005003 Organisme / opérateur : S.T.E. : Audrey Péricat et Hervé Coppin Campagne 1

Agence de l'eau RM&C

Organisme demandeur





marché n° 08M082

Distance au fond : 1,0 m soit à Zf =	3,0 m		
Remarques et observations :			
Remise des échantillons :			
Echantillons pour analyses physicochimiques (Laboratoire L	DA26)		
échantillon intégré n° 1334229	Bon transport intégré :		
échantillon de fond n° 1337650	Bon transport fond:		
remise par S.T.E.: en chambre froide au LDA26	le 09/03/09	à	19:00
Au transporteur :	le	à	
• • • • • • • • • • • • • • • • • • •			

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES GENERALES PLAN D'EAU - STATION Plan d'eau: Grand Large (réservoir du -) Date: 20/05/2009 Type (naturel, artificiel,...): Code lac: V3005003 artificiel **S.T.E.**: Campagne 2 Organisme / opérateur : Najmeh Rozitalab et Hervé Coppin $march\acute{e}~n^{\circ}~08M082$ Organisme demandeur Agence de l'eau RM&C LOCALISATION PLAN D'EAU Commune : Décines-Charpieu (69) Lac marnant: H.E.R.: Collines du Bas-Dauphiné non Superficie du bassin-versant : nd km^2 Superficie du plan d'eau : 160 ha Profondeur maximale: Carte: (extrait SCAN25, IGN 1/25 000) localisation du point de prélèvements angle de prise de vue de la photographie **STATION** Photo du site : depuis le point de prélèvements

Relevé phytoplanctonique et physi	* *
DONNEES GENERALES CAMP	
Plan d'eau :	Grand Large (réservoir du -) Date: 20/05/2009
Type (naturel, artificiel,):	artificiel Code lac: V3005003
Organisme / opérateurs :	S.T.E.: Najmeh Rozitalab et Hervé Coppin Campagne 2
Organisme demandeur	Agence de l'eau RM&C marché n° 08M082
STATION	
Coordonnées de la station	relevées sur : GPS
Lambert 93	X: 853769 Y: 6522352 alt.: 180 m
WGS 84 (système international)	GPS (en dms) X: Y: alt.: m
Profondeur:	3,5 m
	vent : faible
	météo : soleil
	iniceo. Sololi
Conditions d'observation :	Surface de l'eau : lisse
Conditions d'observation.	Surface de feau. Hisse
	W . 1
	Hauteur des vagues : 0,0 m P atm standard : 992,40 hPa
	Bloom algal: non Pression atm.: 999,4 hPa
Marnage:	non Hauteur de la bande : m
PRELEVEMENTS Heure de début du relevé : Prélèvements réalisés :	de la thermocline 11:50
Gestion:	Réservoir alimenté par le canal de Jonage, hydroélectricité EDF
	EDF Centrale de Cusset
Common prominers.	Plan de prévention établi entre EDF et S.T.E.
Remarques, observations:	Le lac est utilisé pour les loisirs nautiques (voile, canoë) ainsi que pour la navigation (réglementée). Le plan d'eau peut être alimenté à la fois par l'amont, mais aussi par l'aval du canal de Jonage (niveau d'eau géré au barrage hydroélectrique de Cusset). La zone euphotique est limitée à la profondeur maximale mesurée.

DONNEES PHYSICO-CHIMIQUES

Plan d'eau : Grand Large (réservoir du -) Date : 20/05/2009

Type (naturel, artificiel,...): artificiel Code lac: V3005003

Organisme / opérateur : S.T.E. : Najmeh Rozitalab et Hervé Coppin Campagne 2

Organisme demandeur Agence de l'eau RM&C marché n° 08M082

TRANSPARENCE

Secchi en m: 2,4 Zone euphotique (2,5 x Secchi): 6,0 m

PROFIL VERTICAL

		_				_	
Moyen de mesure utilisé :		in-situ à ch	aque prof.		X	en surface da	ans un récipient
Volume prélevé (en litres) :	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
voidine preieve (en nues).	(m)	(°C)		(μS/cm 25°)	(mg/l)	(%)	
prélèvement intégré (2 L)	-0,1	21,2	8,64	239	13,0	148%	11:50
prélèvement intégré (2 L)	-0,5	20,8	8,64	244	13,4	152%	
prélèvement intégré (2 L)	-1,0	20,5	8,60	254	13,7	154%	
prélèvement intégré (2 L)	-1,5	20,1	8,50	276	14,4	161%	
prélèvement intégré (2 L)	-2,0	19,7	8,40	254	13,1	145%	
prélèvement intégré (2 L)	-2,5	19,2	8,17	269	12,7	139%	12:05
prélèvement de fond	-3,0	19,0	8,30	259	12,7	139%	12:10

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES

Plan d'eau : Grand Large (réservoir du -)

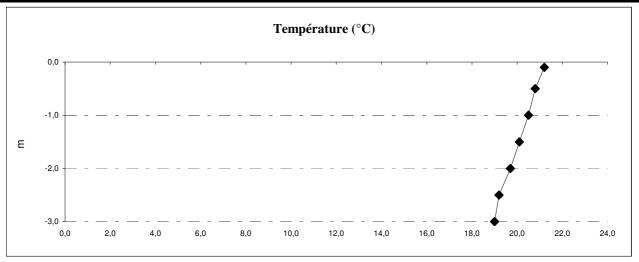
Type (naturel, artificiel,...):

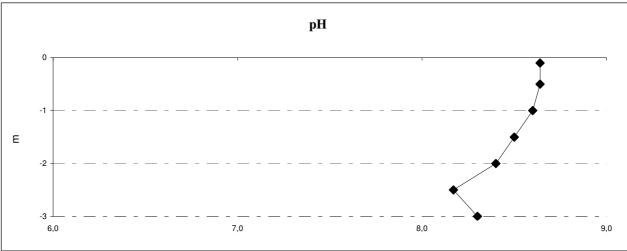
artificiel

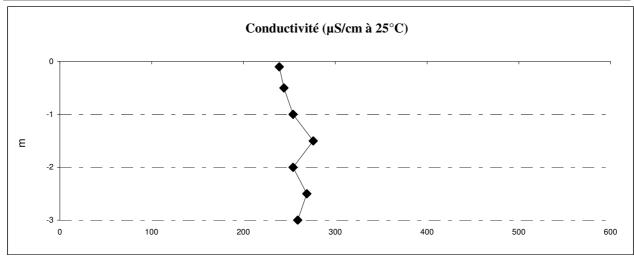
Organisme / opérateur :

S.T.E.: Najmeh Rozitalab et Hervé Coppin

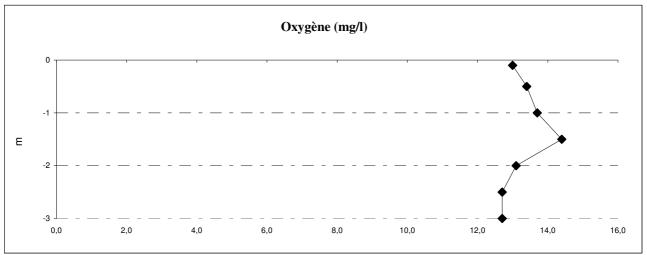
Campagne 2

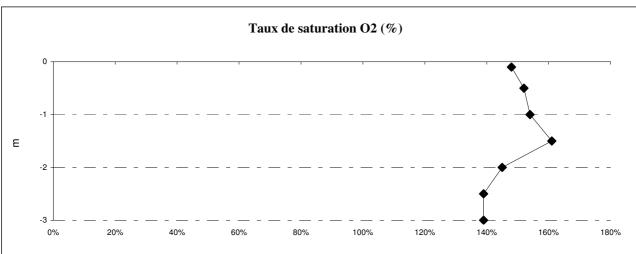

Organisme demandeur


Agence de l'eau RM&C


marché n° 08M082

Date: 20/05/2009


Code lac: V3005003



Distance au fond:	0.5 m soit à Zf =	3,0 m	
Remarques et observations :			
emise des échantillons :			
chantillons pour analyses phy	ysicochimiques (Laboratoir	e LDA26)	
échantillon intégré n°	1334251	Bon transport intégré :	
échantillon de fond n°	1337670	Bon transport fond:	
remise par S.T.E.:	au laboratoire LDA 26	le 20/05/09	à 18:00
Au transporteur :			
_			

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES GENERALES PLAN D'EAU - STATION Plan d'eau: Grand Large (réservoir du -) Date: 22/07/2009 Type (naturel, artificiel,...): Code lac: V3005003 artificiel **S.T.E.** : Nicolas Sanmartin et Campagne 3 Organisme / opérateur : Hervé Coppin $march\acute{e}~n^{\circ}~08M082$ Organisme demandeur Agence de l'eau RM&C LOCALISATION PLAN D'EAU Commune : Décines-Charpieu (69) Lac marnant: H.E.R.: Collines du Bas-Dauphiné non Superficie du bassin-versant : nd km² Superficie du plan d'eau : 160 ha Profondeur maximale: Carte: (extrait SCAN25, IGN 1/25 000) localisation du point de prélèvements angle de prise de vue de la photographie **STATION** Photo du site : depuis la mise à l'eau

Relevé phytoplanctonique et physic	* *		
DONNEES GENERALES CAMPA Plan d'eau :	Grand Large (réservoir du -)		Date: 22/07/2009
	artificiel		Code lac: V3005003
71 (S.T.E.: Nicolas Sanmartin et	Hamiá Cannin	Campagne 3
Organisme demandeur	Agence de l'eau RM&C	петче Сорріп	marché n° 08M082
STATION	Agence de Teau Kivi&C		marche ii USMU82
	relevées sur : GPS		
Lambert 93	X: 853757	Y: 6522373	alt.: 180 m
		Y:	
WGS 84 (système international)	GPS (en dms) X: 3,0 m	Υ;	alt.: m
Profondeur:	· · · · · · · · · · · · · · · · · · ·		
	vent: moyen		
	météo: très nuageux		
Conditions d'observation :	Surface de l'eau : agitée		
	Hauteur des vagues : 0,2	m P atm stanc	lard: 992,40 hPa
	Bloom algal: non	Pression at	
Marnage:		Hauteur de la band	
Trimings (non-		
Campagne:	3 campagne estivale : thermoc croissance du phytoplancton		2ème phase de
PRELEVEMENTS	12.00	1 0" 1 1 /	10.05
Heure de début du relevé :	12:00 Heure	de fin du relevé :	12:25
Prélèvements réalisés :	eau chlorophylle matéric phytoplancton macrophytes	el employé : j	pompe
Gestion:	Réservoir alimenté par le canal	de Jonage, hydroé	lectricité EDF
	EDF Centrale de Cusset	- •	
Remarques, observations:	Plan de prévention établi entre l vent violent	photique sont limit	_

DONNEES PHYSICO-CHIMIQUES

Plan d'eau : Grand Large (réservoir du -) Date : 22/07/2009

Type (naturel, artificiel,...): artificiel Code lac: V3005003

Organisme / opérateur : S.T.E. : Nicolas Sanmartin et Hervé Coppin Campagne 3

Organisme demandeur Agence de l'eau RM&C marché n° 08M082

TRANSPARENCE

Secchi en m: 2,0 Zone euphotique (2,5 x Secchi): 5,0 m

ממ	OFI	T 77	$\mathbf{r}\mathbf{p}$	A 1	
РК	() 14 (1 . V	HK.	 \mathbf{A}	

		_				_	
Moyen de mesure utilisé :		in-situ à ch	aque prof.		X	en surface d	ans un récipient
Volume prélevé (en litres) :	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
voidine preieve (en nues):	(m)	(°C)		(μS/cm 25°)	(mg/l)	(%)	
prélèvement intégré (2 L)	-0,1	23,5	8,36	283	8,3	100%	12:00
prélèvement intégré (2 L)	-0,5	23,5	8,32	284	8,2	99%	
prélèvement intégré (2 L)	-1,0	23,5	8,25	285	8,3	100%	
prélèvement intégré (2 L)	-1,5	23,5	8,22	285	8,2	99%	
prélèvement intégré (2 L)	-2,0	23,6	8,22	285	8,3	100%	12:20
prélèvement de fond	-2,5	23,6	8,17	284	8,1	98%	12:25

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES

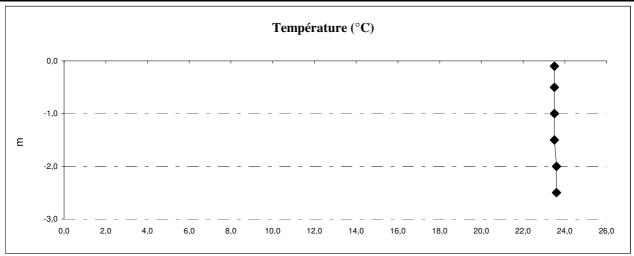
Type (naturel, artificiel,...):

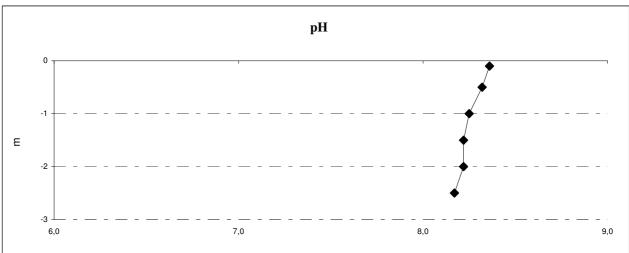
Grand Large (réservoir du -) artificiel

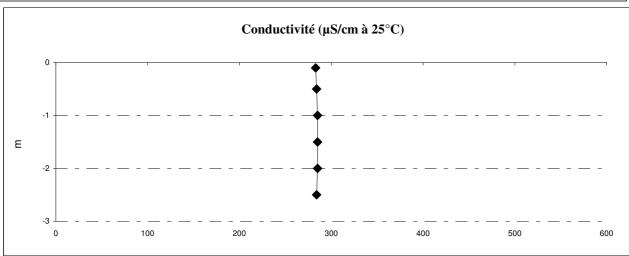
Organisme / opérateur :

S.T.E.: Nicolas Sanmartin et

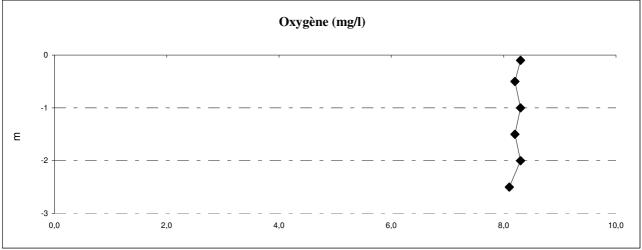
Organisme demandeur

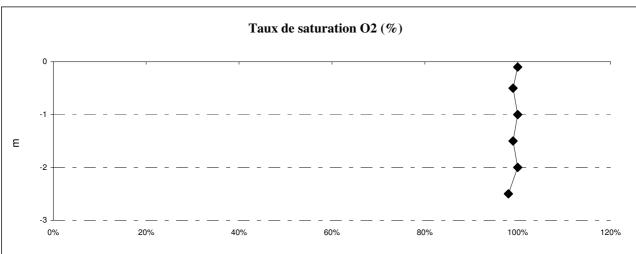

Plan d'eau:


Hervé Coppin Agence de l'eau RM&C


Code lac: V3005003 Campagne 3

marché n° 08M082


Date: 22/07/2009



Distance au fond:	0,5 m	soit à Zf =	2,5 m		
Remarques et observations :					
emise des échantillons :					
chantillons pour analyses ph	ysicochimique	s (Laboratoire l	LDA26)		
échantillon intégré n°	1334273		Bon transport intégré :	1425363844	
échantillon de fond n°	1337685		Bon transport fond:	1425363855	
remise par S.T.E.:			le	à	
Au transporteur :	TNT		le 22/07/09	à	14h 00
-	arrivée au lab	oratoire LDA 2	6 en mi-journée du :	23/07/09	
-	arrivée au lab	oratoire LDA 2	6 en mi-journée du :	23/07/09	

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES GENERALES PLAN D'EAU - STATION Plan d'eau: Grand Large (réservoir du -) Date: 30/09/2009 Type (naturel, artificiel,...): Code lac: V3005003 artificiel **S.T.E.**: Najmeh Gibon Campagne 4 Organisme / opérateur : Hervé Coppin et $march\acute{e}~n^{\circ}~08M082$ Organisme demandeur Agence de l'eau RM&C LOCALISATION PLAN D'EAU Commune : Décines-Charpieu (69) Lac marnant: H.E.R.: Collines du Bas-Dauphiné non Superficie du bassin-versant : nd km² Superficie du plan d'eau : 160 ha Profondeur maximale: Carte: (extrait SCAN25, IGN 1/25 000) angle de prise de vue de la photographie localisation du point de prélèvements **STATION** Photo du site : depuis la berge

Relevé phytoplanctonique et physi	co-chimique en plan d'eau		
DONNEES GENERALES CAMP	* *		
Plan d'eau:	Grand Large (réservoir du -)	Date: 30/09	9/2009
Type (naturel, artificiel,):	artificiel	Code lac: V300	05003
Organisme / opérateurs :	S.T.E.: Hervé Coppin et	Najmeh Gibon Campagne 4	
Organisme demandeur	Agence de l'eau RM&C	marché n° 08M0	82
STATION			
Coordonnées de la station	relevées sur : GPS		
Lambert 93	X: 853782	Y: 6522354 alt.: 1	80 m
WGS 84 (système international)		Y: alt.:	m
Profondeur:	3,0 m		
	vent: faible		
	météo: soleil		
Conditions d'observation :	Surface de l'eau : lisse		
	Hauteur des vagues : 0,0	m P atm standard: 992,40	hPa
	Bloom algal: non	Pression atm.: 999	hPa
Marnage:	non	Hauteur de la bande :	m
Campagne :	4 campagne de fin d'été : fin température	de stratification estivale, avant baisse	de la
PRELEVEMENTS			
Hans: 1, 121, 7, 1, 1, 7			
Heure de début du relevé :	11h 20 Heur	e de fin du relevé : 12h 20	
Heure de début du relevé : Prélèvements réalisés :	eau	e de fin du relevé : 12h 20 riel employé : pompe benne Ekmann	
Prélèvements réalisés :	eau chlorophylle maté phytoplancton sédiments	riel employé : pompe benne Ekmann	
Prélèvements réalisés : Gestion :	eau chlorophylle maté phytoplancton sédiments Réservoir alimenté par le cana	riel employé : pompe	
Prélèvements réalisés : Gestion :	eau chlorophylle matér phytoplancton sédiments Réservoir alimenté par le cana EDF Centrale de Cusset	riel employé : pompe benne Ekmann al de Jonage, hydroélectricité EDF	
Prélèvements réalisés : Gestion :	eau chlorophylle maté phytoplancton sédiments Réservoir alimenté par le cana	riel employé : pompe benne Ekmann al de Jonage, hydroélectricité EDF	
Prélèvements réalisés : Gestion :	eau chlorophylle matér phytoplancton sédiments Réservoir alimenté par le cana EDF Centrale de Cusset	riel employé : pompe benne Ekmann al de Jonage, hydroélectricité EDF	
Prélèvements réalisés : Gestion :	eau chlorophylle matér phytoplancton sédiments Réservoir alimenté par le cana EDF Centrale de Cusset	riel employé : pompe benne Ekmann al de Jonage, hydroélectricité EDF	
Prélèvements réalisés : Gestion : Contact préalable :	eau chlorophylle matér phytoplancton sédiments Réservoir alimenté par le cana EDF Centrale de Cusset	riel employé : pompe benne Ekmann al de Jonage, hydroélectricité EDF	
Prélèvements réalisés : Gestion :	eau chlorophylle matér phytoplancton sédiments Réservoir alimenté par le cana EDF Centrale de Cusset	riel employé : pompe benne Ekmann al de Jonage, hydroélectricité EDF	
Prélèvements réalisés : Gestion : Contact préalable :	eau chlorophylle matér phytoplancton sédiments Réservoir alimenté par le cana EDF Centrale de Cusset	riel employé : pompe benne Ekmann al de Jonage, hydroélectricité EDF	
Prélèvements réalisés : Gestion : Contact préalable :	eau chlorophylle matér phytoplancton sédiments Réservoir alimenté par le cana EDF Centrale de Cusset	riel employé : pompe benne Ekmann al de Jonage, hydroélectricité EDF	
Prélèvements réalisés : Gestion : Contact préalable :	eau chlorophylle matér phytoplancton sédiments Réservoir alimenté par le cana EDF Centrale de Cusset	riel employé : pompe benne Ekmann al de Jonage, hydroélectricité EDF	
Prélèvements réalisés : Gestion : Contact préalable :	eau chlorophylle matér phytoplancton sédiments Réservoir alimenté par le cana EDF Centrale de Cusset	riel employé : pompe benne Ekmann al de Jonage, hydroélectricité EDF	

DONNEES PHYSICO-CHIMIQUES

Plan d'eau : Grand Large (réservoir du -) Date : 30/09/2009

Type (naturel, artificiel,...): artificiel Code lac: V3005003

Organisme / opérateur : S.T.E. : Hervé Coppin et Najmeh Gibon Campagne 4

Organisme demandeur Agence de l'eau RM&C marché n° 08M082

TRANSPARENCE

Secchi en m: 3,0 Zone euphotique (2,5 x Secchi): 7,5 m

PROFIL VI	
PRCIBIL VI	H R I I ('A I

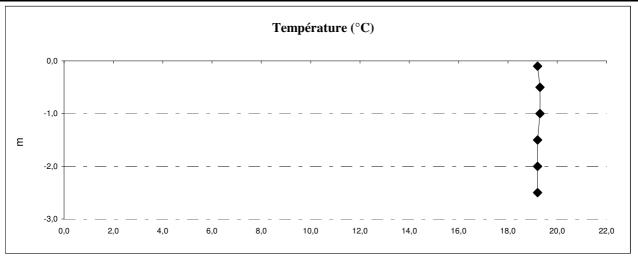
Moyen de mesure utilisé :	in-situ à chaque prof.				X	en surface dans un récipient	
Volume prélevé (en litres) :	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
	(m)	(°C)		(μS/cm 25°)	(mg/l)	(%)	
prélèvement intégré (2 L)	-0,1	19,2	8,34	268	13,7	150%	11:30
prélèvement intégré (2 L)	-0,5	19,3	8,10	263	13,1	144%	
prélèvement intégré (2 L)	-1,0	19,3	8,09	263	13,3	146%	
prélèvement intégré (2 L)	-1,5	19,2	7,92	262	13,2	145%	
prélèvement intégré (2 L)	-2,0	19,2	7,88	263	13,3	146%	
prélèvement de fond	-2,5	19,2	7,94	264	13,5	148%	12:00

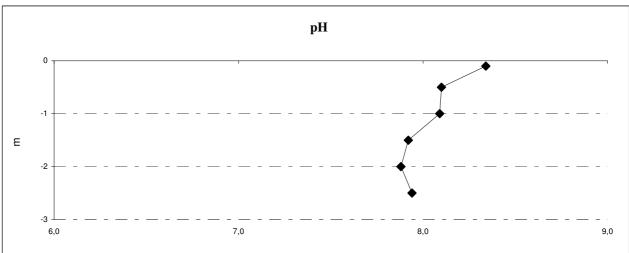
Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES

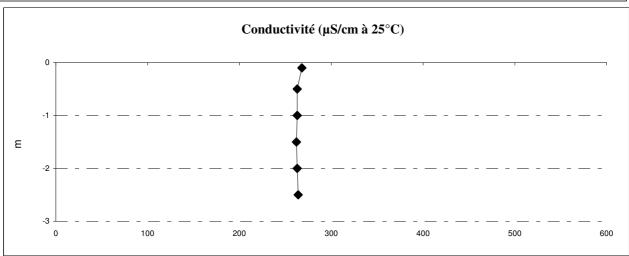
Plan d'eau : Grand Large (réservoir du -)

Type (naturel, artificiel,...):

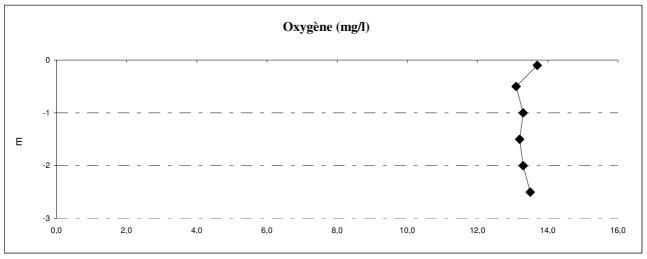
artificiel

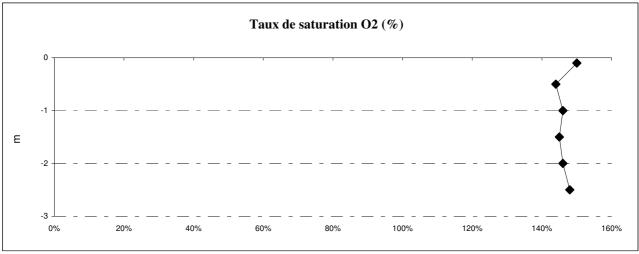

Organisme / opérateur : Organisme demandeur S.T.E.: *Hervé Coppin et* Agence de l'eau RM&C


Najmeh Gibon


Date: 30/09/2009 Code lac: V3005003

Campagne 4


marché n° 08M082



Prélèvement d'eau de fond, pour analyses physicochimiques :							
Distance au fond:	0,5 m	soit à Zf =	2,5 m				
Remarques et observations :							
Remise des échantillons :							
Echantillons pour analyses ph	ysicochimiqu	es (Laboratoire l	LDA26)				
échantillon intégré n°	1334283		Bon transpo	rt intégré :			
échantillon de fond n°	1337702	Bon transport fond:					
remise par S.T.E.:	au LDA26		le	30/09/09	à 16:00		
Au transporteur:			le		à		
	arrivée au laboratoire LDA 26 en mi-journée du : 30/09/09						
Echantillons pour analyses ph	ytoplanctonic	ques à BECQ'EA	U, le	12/10/09			

rélèvements de sédiments pou	r analyses phys	ico-chimiques	5					
OONNEES GENERALES PLA	AN D'EAU - ST	TATION						
lan d'eau :	Grand Large	(réservoir du -	.)	Date: 30/09/2009				
ype (naturel, artificiel,):	artificiel			Code lac: V3005003				
Organisme / opérateur :	S.T.E.: Hervé Coppin et			Najmeh Gibon heure: 12h10				
Organisme demandeur:	Agence de l'e	au RM&C		m	arché n° 08M	082		
Conditions de milieu								
chaud, ensoleillé X	période estim	ée favorable à	:	débits des affluents				
couvert	mort et sédimentation du plancton			X				
pluie, neige	sédimentation			X >>	turbidité afflu	ents		
Vent				Secchi (m) 3				
				L	3 2 2 2 11 (11.)			
Tatériel								
drague fond plat	pelle à main		benne X	piège	carot	tier		
dragae rona piat	pene a mam		oenne 7	prege	Caro	tier		
ocalisation générale de la zo	1 (1)		1. 37	Y Lambert II ét	1 6	1 \		
			1 0		, 1			
rélèvements		1	2	3	4	5		
profondeur (en m)		3	3					
épaisseur échantillonnée								
récents (<2cm)		X	X					
anciens (>2cm)								
indéterminé								
épaisseur, en cm	:	2	2					
granulomérie dominante								
blocs								
pierres galets								
graviers								
sables								
limons								
vases		X	X					
argile								
aspect du sédiment								
homogène		X	X					
hétérogène								
couleur		gris	gris sable					
odeur		non	non					
présence de débris végétx	non décomp	oui	oui					
présence d'hydrocarbures		non	non					
présence d'autres débris		oui	oui					
presence a addes debits		Our	Oul					

Remarques générales :

Le sédiment prélevé est constitué d'une vase grisâtre, sur laquelle on retrouve de nombreux débris végétaux ainsi que des coquilles de mollusques.

Remise des échantillons :

Echantillons pour analyses physicochimiques (Laboratoire LDA26)

échantillons n° 1466239 1466216 remise par S.T.E. : au LDA26 le 30/09/2009 à 16:00

Au transporteur : le à

arrivée au laboratoire LDA 26 en mi-journée du : 30/09/2009