

Agence de l'Eau Rhône Méditerranée Corse

ÉTUDE DES PLANS D'EAU DU PROGRAMME DE SURVEILLANCE DES BASSINS RHONE-MEDITERRANEE ET CORSE LOT N°2 CENTRE DU BASSIN RM RAPPORT DE DONNEES BRUTES ET INTERPRETATION RETENUE DE ROSELEND SUIVI ANNUEL 2019

Rapport n° 16-707B/2019 – Roselend – décembre 2020

Sciences et Techniques de l'Environnement – B.P. 90374 17, Allée du Lac d'Aiguebelette - Savoie Technolac 73372 Le Bourget du Lac cedex tél. : 04 79 25 08 06

SOMMAIRE

1	CAL	DRE DU PROGRAMME DE SUIVI	<u> 7</u>
<u>2</u>	DER	ROULEMENT DES INVESTIGATIONS	8
	2.1	PRESENTATION DU PLAN D'EAU ET LOCALISATION	8
	2.2	CONTENU DU SUIVI 2019	
	2.3	PLANNING DE REALISATION	11
	2.4	ÉTAPES DE LA VIE LACUSTRE	11
	2.5	BILAN CLIMATIQUE DE L'ANNEE 2019	13
<u>3</u>	RAP	PEL METHODOLOGIQUE	14
	3.1	INVESTIGATIONS PHYSICOCHIMIQUES	14
	3.1.1		
	3.1.2		
	3.2	INVESTIGATIONS HYDROBIOLOGIQUES	17
	3.2.1	Prélèvement des échantillons	17
	3.2.2	Détermination des taxons	17
	3.2.3	Traitement des données	18
<u>4</u>	RES	ULTATS DES INVESTIGATIONS	19
	4.1	INVESTIGATIONS PHYSICOCHIMIQUES	19
	4.1.1		
	4.1.2	Analyses physico-chimiques sur eau	22
	4.1.3	Analyses des sédiments	25
	4.2	PHYTOPLANCTON	28
	4.2.1	Prélèvements intégrés	28
	4.2.2	Listes floristiques	30
	4.2.3		32
	4.2.4	J 1 1	
	4.2.5	Comparaison avec les inventaires antérieurs	34
<u>5</u>	APP	RECIATION GLOBALE DE LA QUALITE DU PLAN D'EAU	34
_	ANNEX	ES	37
A	NNEXE	LISTE DES MICROPOLLUANTS ANALYSES SUR EAU	<u> 39</u>
A	NNEXE	22. <u>LISTE DES MICROPOLLUANTS ANALYSES SUR SEDIMENT</u>	<u> 47</u>
	NNEXE		
P	HYTOP	LANCTONIQUES	51

Liste des illustrations

Figure 1 : moyennes mensuelles de température à la station de Bourg –Saint-Maurice (<i>Info-climat</i>)	13
Figure 2 : cumuls mensuels de précipitations à la station de Bourg –Saint-Maurice (site Info-climat)	14
Figure 3 : Représentation schématique des différentes stratégies de comptage	18
Figure 4 : Seuils des classes d'état définis pour chaque métrique et pour l'IPLAC	19
Figure 5 : Profils verticaux de température au point de plus grande profondeur	
Figure 6 : Profils verticaux de conductivité au point de plus grande profondeur	
Figure 7 : Profils verticaux de pH au point de plus grande profondeur	
Figure 8 : Profils verticaux d'oxygène (mg/l) au point de plus grande profondeur	
Figure 9 : Profils verticaux d'oxygène (% sat.) au point de plus grande profondeur	
Figure 10 : profils verticaux des matières organiques dissoutes	
Figure 11 : Évolution de la transparence et de la zone euphotique lors de 4 campagnes	
Figure 12 : Répartition du phytoplancton sur la retenue de Roselend à partir des abondances (cellules/ml)	
Figure 13 : Évolution saisonnière des biovolumes des principaux groupes algaux de phytoplancton	
$\operatorname{mm}^3/1)$	
T-111 - C	7
Tableau 1 : Synoptique générique des investigations menées sur une année de suivi d'un plan d'eau	
Tableau 2 : liste des plans d'eau suivis sur le centre du bassin Rhône-Méditerranée	
Tableau 3 : Synoptique des interventions de terrain et de laboratoire sur le plan d'eau	
Tableau 4 : Résultats des paramètres de minéralisation	
Tableau 5 : Résultats des paramètres de physico-chimie classique sur eau	
Tableau 6 : Résultats d'analyses de métaux sur eau	
Tableau 7 : Résultats d'analyses de micropolluants organiques présents sur eau	25
Tableau 8 : Synthèse granulométrique sur le sédiment du point de plus grande profondeur	
Tableau 9 : Analyse de sédiments	
Tableau 10 : Résultats d'analyses de micropolluants minéraux sur sédiment	
Tableau 11 : Résultats d'analyses de micropolluants organiques présents sur sédiment	
Tableau 12 : analyses des pigments chlorophylliens	
Tableau 13 : Liste taxonomique du phytoplancton (en nombre de cellules/ml)	
Tableau 14: Liste taxonomique du phytoplancton (en mm³/l)	
Tableau 15 : évolution des Indices IPLAC depuis 2013	54
Carte 1 : localisation de la retenue de Roselend (Savoie)	9
Carte 2 : Présentation du point de prélèvement lors des 4 campagnes	

FICHE QUALITE DU DOCUMENT

	Agence de l'Eau Rhône Méditerranée Corse (AERMC)						
	Direction des Données et Redevances						
Maître d'ouvrage	2-4, Allée de Lodz						
	69363 Lyon Cedex 07						
	Interlocuteur : Mr IMBERT Loïc						
	Coordonnées : loic.imbert@eaurmc.fr						
Titre du projet	Étude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Rapport de données brutes et interprétation – Retenue de Roselend.						
Référence du document	Rapport n°16-707B /2019v1 - Roselend						
Date	Octobre 2020						
Auteur(s)	S.T.E. Sciences et Techniques de l'Environnement						

Contrôle qualité

Version	Rédigé par	Date	Visé par	Date
V0	Audrey Péricat, Lionel Bochu	15/10/2020	Éric Bertrand	15/10/2020
V1	Audrey Péricat, Lionel Bochu	09/12/2020	Corrections suite à par mail du 04/12 Imbert	

Thématique

Mots-clés	Géographiques : Bassin Rhône-Méditerranée – Savoie (73) – Retenue de Roselend
	Thématiques : Réseaux de surveillance – État trophique – Plan d'eau
Résumé	Le rapport rend compte de l'ensemble des données collectées sur la Retenue de Roselend lors des campagnes de suivi 2019. Une présentation du plan d'eau et du cadre d'intervention est menée, puis les résultats des investigations sont développés dans la suite du document.

Diffusion

Envoyé à :					
Nom	Organisme	Date Format(s)		Nombre d'exemplaire(s)	
Loïc IMBERT	AERMC	15/10/2020	Papier informatique	et	1
pour version provisoire				·	

1 CADRE DU PROGRAMME DE SUIVI

Dans le cadre de la mise en œuvre de la Directive Cadre européenne sur l'Eau (DCE), adoptée le 23 Octobre 2000 et transposée en droit français le 21 avril 2004, un programme de surveillance a été mis en place au niveau national afin de suivre l'état écologique et l'état chimique des eaux douces de surface (cours d'eau et plans d'eau).

L'Agence de l'Eau Rhône Méditerranée Corse a en charge le suivi des plans d'eau faisant partie du programme de surveillance sur les bassins Rhône-Méditerranée et Corse.

Le suivi comprend la réalisation de prélèvements d'eau et de sédiments répartis sur quatre campagnes dans l'année pour analyse des paramètres physico-chimiques et des micropolluants. Différents compartiments biologiques sont étudiés (phytoplancton, macrophytes, diatomées, faune benthique). Le tableau 1 synthétise les différentes mesures qui sont réalisées dans le cadre du suivi type (selon la nature des plans d'eau et les éléments déjà suivis antérieurement, le contenu du suivi n'englobera pas nécessairement l'ensemble des éléments listés dans le Tableau 1). Un suivi du peuplement piscicole doit également être réalisé dans le cadre du programme de surveillance sur certains types de plans d'eau.

Tableau 1 : Synoptique générique des investigations menées sur une année de suivi d'un plan d'eau

			Paramètres	Type de prélèvements/ Mesures	HIVER	PRINTEMPS	ЕТЕ	AUTOMNE
		Mesures in situ	O2 dis. (mg/l, %sat.), pH, COND (25°C), T°, transparence secchi	Profils verticaux	х	х	х	х
			DBO5, PO4, Ptot, NH4, NKJ, NO3,	Intégré	Χ	Х	Χ	Х
			dissoute	Ponctuel de fond	Х	Χ	Χ	Х
	Physico-chimie classique et		Micropolluants sur eau*	intégré	Х	Х	Х	Х
	Sur	micropolluants	Wildropolidanto Sal Cad	Ponctuel de fond	Х	Х	Х	Х
			O2 dis. (mg/l, %sat.), pH, COND (25°C), T°, transparence secchi DBO5, PO4, Ptot, NH4, NKJ, NO3, NO2, Corg, MEST, Turbidité, Si dissoute Micropolluants sur eau* Chlorophylle a + phéopigments Ca²+, Na+, Mg²+, K+, dureté, TAC, SO₄²-, Cl-, HCO₃- PO4, Ptot, NH4 Corg., Ptot, Norg, Granulomètrie, perte au feu Micropolluants sur sédiments* Phytoplancton Intégré - Protocole IRSTEA	Intégré	Х	Х	Х	Х
			Onlorophylic a 1 pheopiginents	Ponctuel de fond				
		Paramètres de		Intégré	Х			
	Minéralisation		SO ₄ ²⁻ , Cl ⁻ , HCO ₃ ⁻	Ponctuel de fond				
ည	E	au interst.: Physico-chimie	PO4, Ptot, NH4					
Sur SEDIMENTS	Phase solide	Physico-chimie classique		Prélèvement au point de plus grande profondeur				х
လ		Micropolluants	Micropolluants sur sédiments*					
			Phytoplancton	Intégré - Protocole IRSTEA/Utermöhl	Х	Х	Х	Х
		YDROBIOLOGIE et	Invertébrés	Protocole en cours de développement		Х		
	HY	DROMORPHOLOGIE	Diatomées	Protocole IRSTEA			Х	
			Macrophytes	Norme XP T 90-328			Χ	

^{*:} se référer à l'arrêté du 7 août 2015 établissant le programme de surveillance de l'état des eaux

Poissons et hydromorphologie en charge de l'ONEMA (un passage tous les 6 ans)

RCS : un passage par plan de gestion pour le suivi complet (soit une fois tous les six ans / tous les trois ans pour le phytoplacton)

CO: un passage tous les trois ans

Différents réseaux constituent le programme de surveillance. Parmi ceux-ci, deux réseaux sont actuellement mis en œuvre sur les plans d'eau :

- le réseau de contrôle de surveillance (RCS) vise à donner une image globale de la qualité des eaux. Tous les plans d'eau naturels de superficie supérieure à 50ha ont été pris en compte sur les bassins Rhône-Méditerranée et Corse. Pour les plans d'eau d'origine anthropique, une sélection a été opérée parmi les plans d'eau de superficie supérieure à 50 ha, afin de couvrir au mieux les différents types présents sur les bassins Rhône-Méditerranée et Corse (grandes retenues, plans d'eau de digue, plans d'eau de creusement);
- ✓ le contrôle opérationnel (CO) vise à suivre spécifiquement les plans d'eau (naturels ou anthropiques) de superficie supérieure à 50 ha qui risquent de ne pas atteindre leurs objectifs environnementaux (le bon état ou le bon potentiel).

Au total, 79 plans d'eau sont suivis sur les bassins Rhône-Méditerranée et Corse dans le cadre de ces deux réseaux.

La liste des plans d'eau suivis en 2019 sur le centre du bassin Rhône-Méditerranée, précisant pour chaque plan d'eau le réseau qui le concerne, est fournie dans le Tableau 2.

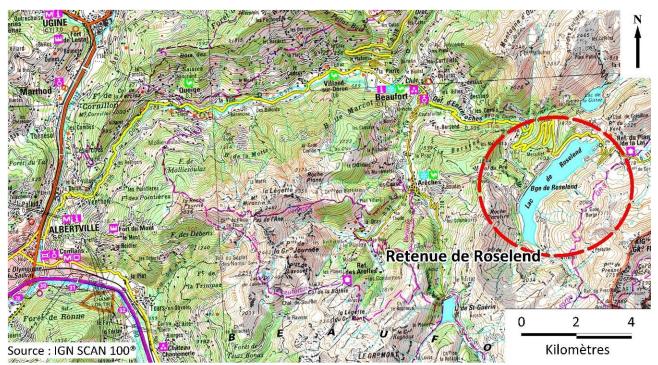
Code_lac	Libellé	Origine	Dept	Code MDO	Type cemagref	Réseaux	Altitude (m)	Type de suivi
V1235003	Annecy	Naturel	74	FRDL66	N4	RCS/CO	447	Suivi spécif. CO
V1335003	Bourget	Naturel	73	FRDL60	N4	RCS/CO	231	Classique
V03-4003	Léman	Naturel	74	FRDL65	N4	RCS/CO	372	Classique
V2515003	Nantua	Naturel	1	FRDL47	N4	RCS/CO	475	Classique
W2405023	Pierre-châtel	Naturel	38	FRDL79	N3	RCS/CO	923	Classique
W2715003	Chambon	MEFM	38	FRDL74	A5	RCS	1044	Classique
W0005083	Chevril	MEFM	73	FRDL55	A1	RCS	1790	Phytoplancton + Séd.
Y6705023	Mont-cenis	MEFM	73	FRDL53	A1	RCS	1974	Classique
W0435023	Roselend	MEFM	73	FRDL54	A1	RCS	1559	Classique
V3005063	Eaux bleues	MEA	69	FRDL50	A16	RCS/CO	170	Classique
V2705003	Allement	MEFM	1	FRDL44	А3	CO	268	Classique
V2525003	Charmines-Moux	MEFM	1	FRDL43	A2	CO	381	Classique
V23023	Cize-Bolozon	MEFM	01	FRDL42	A2	СО	283	Classique

Tableau 2 : liste des plans d'eau suivis sur le centre du bassin Rhône-Méditerranée

2 DÉROULEMENT DES INVESTIGATIONS

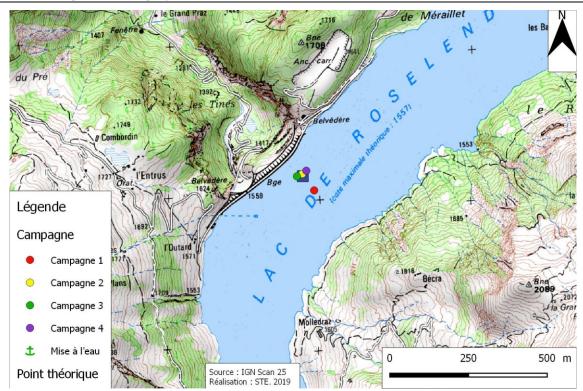
2.1 Presentation du plan d'eau et localisation

La retenue de Roselend est située dans le département de la Savoie (73), sur la commune de Beaufort, dans le massif du Beaufortain. Le barrage a été mis en eau en 1960. Il fait partie d'un complexe hydroélectrique reliant les barrages de la Gittaz et de Saint-Guérin à la centrale de La Bâthie.


La retenue est alimentée naturellement par les cours d'eau du bassin versant amont du Doron de Beaufort (ruisseau de Treicol et Nant des Lautarets) ; également, elle reçoit (restitution de l'usine de la Sausse) les eaux, artificiellement captées vers 1600-1700m, de l'ensemble des affluents rive droite de l'Isère depuis le torrent du Mercuel au-dessus de Sainte-Foy-Tarentaise.

Le plan d'eau présente une superficie de 315 ha. La profondeur maximale théorique est de 150 m pour une cote d'eau normale d'exploitation (CNE) à 1557 m NGF, mais elle peut être largement inférieure selon les cotes d'exploitation.

Le bassin versant du plan d'eau est essentiellement occupé par des prairies et des forêts de conifères. Le barrage de Roselend s'appuie sur des substrats cristallins, composés de gneiss et de micaschistes.


Cette région présente un climat typiquement montagnard aux hivers rudes et très enneigés et aux étés chauds et orageux. Le plan d'eau dégèle tardivement.

Le plan d'eau est géré par E.D.F. – groupement d'usines de Beaufort. Il est utilisé pour la production d'hydroélectricité.

Carte 1 : localisation de la retenue de Roselend (Savoie)

La zone de plus grande profondeur se situe à proximité du barrage dans la zone centrale. La plus grande profondeur observée pour cette année 2019 a été de 108 m (Carte 2). Le marnage maximal enregistré en 2019 était de 32 m lors de la 1^{ère} campagne mi-juin. Le remplissage de la retenue a été tardif et partiel pour cette année.

Carte 2 : Présentation du point de prélèvement lors des 4 campagnes

Le lac est dimictique, c'est-à-dire qu'il présente deux phases de stratification annuelle : une stratification thermique normale en période estivale et une stratification inverse en période hivernale (prise en glace superficielle).

2.2 Contenu du suivi 2019

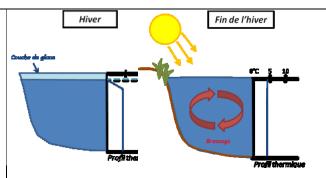
La retenue de Roselend est suivie au titre du Réseau de Contrôle de Surveillance (RCS). Selon l'arrêté «Surveillance » du 07/08/2015, les plans d'eau du RCS doivent être suivis pour tous les éléments de qualité à une fréquence de 6 ans (seul le compartiment phytoplancton est à suivre tous les 3 ans). Ainsi, en 2019, la retenue de Roselend a fait l'objet d'un suivi physicochimique complet (zone euphotique, intermédiaire et fond) ainsi que de l'étude du peuplement phytoplanctonique pour les paramètres biologiques.

Le précédent suivi de la qualité du lac de Roselend a eu lieu en 2016, il s'agissait d'un suivi allégé de type « phytoplancton ».

2.3 PLANNING DE REALISATION

Le tableau ci-dessous indique la répartition des missions aussi bien en phase terrain qu'en phase laboratoire/détermination. S.T.E. a, en outre, eu en charge de coordonner la mission et de collecter l'ensemble des données pour établir les rapports et mener l'exploitation des données.

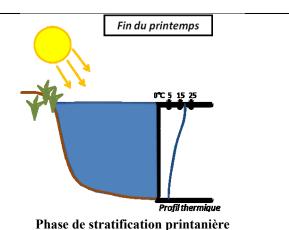
Tableau 3 : Synoptique des interventions de terrain et de laboratoire sur le plan d'eau


Retenue de Roselend		Phase t	Laboratoire - détermination		
Campagne	C1	C2	С3	C4	
Date	18/06/2019	16/07/2019	21/08/2019	17/09/2019	automne/hiver 2019-2020
Physicochimie des eaux	S.T.E.	S.T.E.	S.T.E.	S.T.E.	CARSO
Physicochimie des sédiments				S.T.E.	LDA26
Phytoplancton	S.T.E.	S.T.E.	S.T.E.	S.T.E.	LEMNA

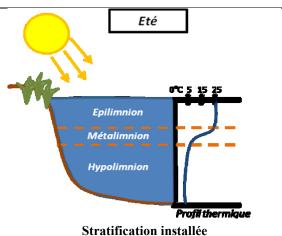
2.4 ÉTAPES DE LA VIE LACUSTRE

Les investigations physicochimiques ont été réalisées lors de quatre campagnes qui correspondent aux différentes étapes de développement de la vie lacustre.

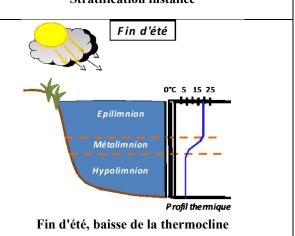
Campagne 1


La première campagne correspond à la phase d'homothermie du plan d'eau. La masse d'eau est homogène (en température et en oxygène). Sur les lacs dimictiques, cette phase (souvent brève) intervient en fin d'hiver à la suite du dégel. La période peut varier entre avril et juillet suivant l'altitude du plan d'eau.

Stratification hivernale - Brassage de fin d'hiver


Campagne 2

La seconde campagne correspond à la période de démarrage et de développement de l'activité biologique des lacs. Il s'agit de la période de mise en place de la stratification thermique conditionnée par le réchauffement. Cette phase intervient au printemps — début d'été et c'est à cette période que l'activité biologique atteint son maximum. Cette campagne est donc généralement réalisée durant le mois de juillet pour les plans d'eau d'altitude.


Campagne 3

La troisième campagne correspond à la période de stratification maximum du plan d'eau avec une thermocline bien installée, avec une 2ème phase de croissance du phytoplancton. Cette phase intervient en période estivale. La campagne est donc réalisée au mois d'août, lorsque l'activité biologique est maximale sur les plans d'eau de haute montagne.

Campagne 4

La quatrième campagne correspond à la fin de la stratification estivale du plan d'eau. Elle intervient avant la baisse de la température et la disparition de la thermocline. L'épilimnion présente alors son épaisseur maximale. Cette phase intervient en fin d'été : la campagne est donc réalisée durant le mois de septembre sur les plans d'eau de haute montagne.

2.5 BILAN CLIMATIQUE DE L'ANNEE 2019

Les conditions climatiques de l'année 2019 pour la retenue de Roselend sont analysées à partir de la station météorologique de Bourg-Saint-Maurice (865 m d'altitude), située à 13 km au Sud-Est du plan d'eau dans la vallée de la Tarentaise. Cette station dispose d'une longue chronique d'enregistrements (1973-2020).

L'année 2019 a été globalement assez chaude par rapport aux moyennes de saison (Figure 1), avec une température moyenne de 11,5°C en 2019 contre 10°C sur la période 1981-2010. Les moyennes mensuelles sont globalement plus élevées en 2019 sur tous les mois, sauf en mai.

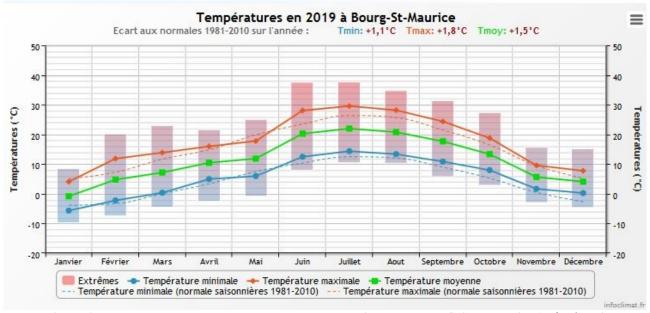


Figure 1 : moyennes mensuelles de température à la station de Bourg -Saint- Maurice (Info-climat)

Le cumul de précipitations en 2019 est légèrement déficitaire par rapport aux normales de saison (889 mm en 2019 contre 986 mm mesuré en moyenne sur la période 1981-2010), soit -10% de pluviométrie. Ces données sont présentées sur la Figure 2.

Il ressort les éléments suivants :

- ✓ déficits de précipitations en février, avril, juin et septembre (-40 à -60%) par rapport à la période 1981-2010 ;
- ✓ précipitations importantes sur l'automne : 110 à 150 mm sur les mois d'octobre, novembre et décembre, soit 30 à 80% de plus que les cumuls mensuels 1981-2010.

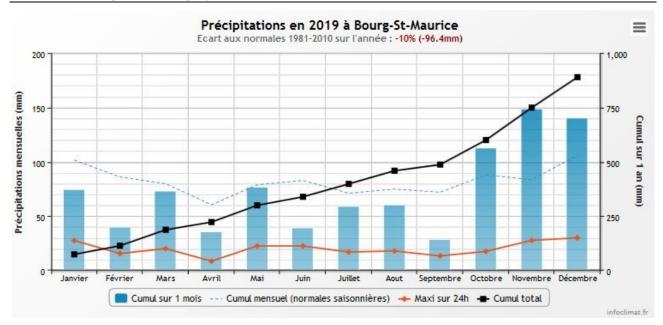


Figure 2 : cumuls mensuels de précipitations à la station de Bourg -Saint- Maurice (site Info-climat)

L'enneigement a été conforme à la normale pendant l'hiver 2019 dans le Beaufortin (source : Météo-France). Grâce à un démarrage assez précoce, des précipitations conformes et une fonte printanière assez tardive, l'enneigement a été assez satisfaisant durant toute la saison.

Les conditions climatiques n'ont cependant pas permis le remplissage complet de la retenue de Roselend en 2019. Notamment mi-juin, le remplissage de la retenue présentait un déficit notoire.

3 RAPPEL MÉTHODOLOGIQUE

3.1 Investigations physicochimiques

3.1.1 METHODOLOGIE

Le contenu des investigations physicochimiques est similaire sur les quatre campagnes, excepté un point : un échantillon de sédiment est prélevé lors de la dernière campagne.

Le profil vertical et les prélèvements sont réalisés dans le secteur de plus grande profondeur que l'on recherche à partir des données collectées au préalable (bathymétrie, étude, communication avec les gestionnaires). Dans le cas des retenues, cette zone se situe en général à proximité du barrage dans le chenal central. Sur le terrain, la recherche du point de plus grande profondeur est menée à l'aide d'un échosondeur.

Au point de plus grande profondeur, on effectue, dans l'ordre :

a) une mesure de transparence au disque de Secchi, avec lecture côté "ombre" du bateau pour une parfaite acuité visuelle. Chacun des deux opérateurs fait la lecture en aveugle (1^{ère} lecture non indiquée au 2^e lecteur);

- b) un profil vertical de température (°C), conductivité (μS/cm à 25°C), pH (u. pH) et oxygène dissous (% sat. et mg/l). Il est réalisé à l'aide de 2 sondes multiparamètres OTT MS5 qui peuvent effectuer des mesures jusqu'à 200 m de profondeur. Elles disposent d'une mémoire interne pouvant être programmée pour enregistrer les données à une fréquence de temps définie préalablement (5 secondes). Leur capteur de pression intégré permet d'enregistrer la profondeur de la mesure.
 - Les deux sondes sont descendues en parallèle sur la colonne d'eau pour le recueil du profil vertical ;
- c) un profil vertical du paramètre matières organiques dissoutes fdom est également mené lors de toutes les campagnes à l'aide d'une sonde EXO. Cet appareil a également été équipé d'une sonde pH et conductivité en cours d'année 2019 ;

d) trois prélèvements pour analyses physicochimiques :

- l'échantillon intégré est en général constitué de prélèvements ponctuels tous les mètres¹ sur la zone euphotique (soit 2,5 fois la transparence) ; ces prélèvements unitaires, de même volume, sont réalisés à l'aide d'une bouteille Kemmerer 1,2 L (téflon) et disposés dans une bonbonne en verre pyrex de 20 litres graduée et équipée d'un robinet verre/téflon pour conditionner les échantillons. Pour les analyses physicochimiques (uniquement micropolluants minéraux et organiques), 10 litres sont nécessaires. Une fois l'échantillon finalisé, le conditionnement est réalisé sur le bateau, en respectant l'ensemble des prescriptions du laboratoire ;
- l'échantillon intermédiaire est prélevé à 1/3 de la profondeur maximale mesurée lors de la campagne. Les prélèvements sont réalisés à l'aide d'une bouteille Niskin X *General Oceanics* téflonnée (5,4 L) et disposés dans une bonbonne en verre pyrex de 20 litres graduée et équipée d'un robinet verre/téflon pour conditionner les échantillons ;
- l'échantillon ponctuel de fond est prélevé à environ 1 m du fond, pour éviter la mise en suspension des sédiments. Les prélèvements sont réalisés à l'aide d'une bouteille Niskin X *General Oceanics* téflonnée (5,4 L) et disposés dans une bonbonne en verre pyrex de 20 litres graduée et équipée d'un robinet verre/téflon pour conditionner les échantillons. Pour les analyses physicochimiques (physicochimie classique, micropolluants minéraux et organiques), 15 litres sont nécessaires. Une fois l'échantillon finalisé, le conditionnement est réalisé sur le bateau, en respectant l'ensemble des prescriptions du laboratoire.

Pour chaque échantillon, le laboratoire CARSO fournit une glacière avec les flaconnages préalablement étiquetés adaptés aux analyses demandées par l'Agence de l'Eau RM&C.

Les échantillons sont conservés dans une enceinte isolée au contact de blocs réfrigérants et de glace fondante, puis envoyés par transporteur TNT pour un acheminement au laboratoire CARSO dans un délai de 24h, sauf cas particuliers.

e) un prélèvement intégré destiné à l'analyse du phytoplancton et de la chlorophylle et aux analyses de physico-chimie classique :

Les prélèvements doivent être obligatoirement intégrateurs de la colonne d'eau correspondant à la zone euphotique. Pour l'échantillonnage, 7 litres sont nécessaires. Ainsi, selon la profondeur de la zone euphotique, plusieurs matériels peuvent être utilisés, l'objectif étant de limiter les aliquotes, et donc les manipulations afin que l'échantillon soit le plus homogène possible :

- ✓ le tuyau intégrateur (système décrit dans le protocole de l'IRSTEA) est adaptable pour toute profondeur, le volume échantillonné dépend du diamètre du tuyau. S.T.E. a mis au point 2 tuyaux :
 - o l'un de 5 ou 9 m de diamètre élevé (Ø18 mm) pour les zones euphotiques réduites ;

¹ Compte tenu de la transparence Tr. de certains plans d'eau, exprimable en plusieurs mètres, la règle du Tr. x 2,5 a parfois conduit à une valeur calculée supérieure à la profondeur du plan d'eau. Dans ces cas, le prélèvement a été arrêté à 1 m du fond, pour éviter le prélèvement d'eau de contact avec le sédiment, qui peut, selon les cas, présenter des caractéristiques spécifiques. Inversement, lorsque la transparence est très faible, amenant à une épaisseur de zone euphotique d'à peine quelques mètres, les prélèvements peuvent être resserrés à un pas moindre que 1 m (par exemple : tous les 50 cm).

- o l'autre de 30 m (Ø14 mm) pour les transparences élevées ;
- ✓ la cloche intégratrice « Pelletier » ; dans la pratique, ce type de préleveur est rarement utilisé, au bénéfice du tuyau intégrateur.

Le choix du matériel respecte l'objectif de ne pas multiplier les prélèvements élémentaires.

La filtration de la chlorophylle est effectuée sur le terrain par le préleveur S.T.E. à l'aide d'un kit de filtration de terrain Nalgène.

Pour l'analyse du phytoplancton, 2 échantillons sont réalisés dans des flacons blancs opaques en PP de 500 et 250 ml dûment étiquetés (nom du lac, date, préleveur, campagne). On y ajoute un volume connu de lugol (3 à 5 ml) pour fixation. Les échantillons sont conservés au réfrigérateur. Un des deux échantillons est ensuite transmis au bureau d'études LEMNA en charge de la détermination et du comptage du phytoplancton. L'autre échantillon est conservé dans les locaux de S.T.E dans le cadre du contrôle qualité.

Pour les analyses de physico-chimie classique, le laboratoire CARSO fournit une glacière avec les flaconnages préalablement étiquetés adaptés aux analyses demandées par l'Agence de l'Eau RM&C. Les échantillons sont conservés dans une enceinte isolée au contact de blocs réfrigérants et de glace fondante, puis envoyés par transporteur TNT pour un acheminement au laboratoire CARSO dans un délai de 24h, sauf cas particuliers.

f) un prélèvement de sédiment :

Ce type de prélèvement n'est réalisé que lors d'une seule campagne, celle de fin d'été (septembre), susceptible de représenter la phase la plus critique pour ce compartiment. Le prélèvement de sédiments est réalisé impérativement **après** les prélèvements d'eau afin d'éviter tout risque de mise en suspension de particules du sédiment lors de son échantillonnage, et donc de contamination du prélèvement d'eau (surtout celui du fond).

Il est réalisé par une série de prélèvements à la benne Ekman. Au vu de sa taille et de la fraction ramenée par ce type de benne (en forme de secteur angulaire), on réalise de 2 à 5 prélèvements pour ramener une surface de l'ordre de 1/10 m². On observe sur chacun de ces échantillons la structure du sédiment dans le double but de :

- ✓ description (couleur, odeur, aspect, granulométrie,..);
- ✓ sélection de la seule tranche superficielle (environ 2-3 premiers cm) destinée à l'analyse.

Pour chaque échantillon, le laboratoire LDA26 fournit une glacière avec le flaconnage adapté aux analyses demandées par l'Agence de l'Eau RM&C.

Les échantillons sont conservés dans une enceinte isolée au contact de blocs réfrigérants et de glace fondante, puis envoyés par transporteur Chronopost pour un acheminement au Laboratoire de la Drôme (LDA26) dans un délai de 24h, sauf cas particuliers.

3.1.2 PROGRAMME ANALYTIQUE

Concernant les analyses, les paramètres suivants sont mesurés :

- ✓ sur le prélèvement intégré destiné aux analyses de physico-chimie classique et de la chlorophylle :
 - o turbidité, MES, COD, DBO₅, DCO, PO₄³⁻, Ptot, NH₄⁺, NKJ, NO₃⁻, NO₂⁻, silicates;
 - o chlorophylle a et indice phéopigments ;
 - o dureté, TAC, HCO₃-, Ca⁺⁺, Mg⁺⁺, Na⁺, K⁺, Cl⁻, SO₄--, F⁻;
- ✓ sur le prélèvement intégré destiné aux analyses de micropolluants minéraux et organiques :
 - o micropolluants minéraux et organiques : liste des substances fournie en annexe 1 ;
- ✓ sur les prélèvements intermédiaire et de fond :
 - o turbidité, MES, COD, DBO₅, DCO, PO₄³⁻, Ptot, NH₄⁺, NKJ, NO₃⁻, NO₂⁻, silicates;
 - o micropolluants minéraux et organiques : liste des substances fournie en annexe 1.

Les paramètres analysés sur les **sédiments** prélevés lors de la 4^{ème} campagne sont les suivants :

- ✓ sur la phase solide (fraction < 2 mm) :
 - o granulométrie;
 - o matières sèches minérales, perte au feu, matières sèches totales ;
 - o carbone organique;
 - o phosphore total;
 - o azote Kjeldahl;
 - o ammonium;
 - o micropolluants minéraux et organiques : liste des substances fournie en annexe 2 ;
- ✓ sur l'eau interstitielle :
 - o orthophosphates;
 - o phosphore total;
 - o ammonium.

3.2 Investigations hydrobiologiques

Les investigations hydrobiologiques menées en 2019 sur la retenue de Roselend comprennent uniquement :

✓ l'étude des peuplements phytoplanctoniques à partir de la norme XP T 90-719, « Échantillonnage du phytoplancton dans les eaux intérieures » pour la phase d'échantillonnage. Pour la partie détermination, on se réfère à la Norme guide pour le dénombrement du phytoplancton par microscopie inversée (norme NF EN 15204, décembre 2006), correspondant à la méthode d'Utermöhl, et suivant les spécifications particulières décrites au chapitre 5 du «Protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan pour la mise en œuvre de la DCE » - Version 3.3.1, septembre 2009.

Les prélèvements ont été effectués par S.T.E. lors des campagnes de prélèvements pour analyses physicochimiques. La détermination a été réalisée par Sonia Baillot du bureau d'études LEMNA, spécialiste en systématique et écologie des algues d'eau douce.

3.2.1 Prelevement des echantillons

Les prélèvements ont été réalisés selon la méthodologie présentée au point e) du §3.1.1 « Méthodologie » du présent chapitre « Rappel méthodologique ».

3.2.2 Determination des taxons

La détermination est faite au microscope inversé, à l'espèce dans la mesure du possible.

À noter: la systématique du phytoplancton est en perpétuelle évolution, les références bibliographiques se confortent ou se complètent, mais s'opposent quelquefois. Il est donc important de rappeler qu'il vaut mieux une bonne détermination à un niveau taxonomique moindre, qu'une mauvaise à un niveau supérieur (Laplace-Treyture et al., 2009).

L'analyse quantitative implique l'identification et le dénombrement des taxons observés dans une surface connue de la chambre de comptage. Selon la concentration en algues décroissante, le comptage peut être réalisé de trois manières différentes (Figure 3).

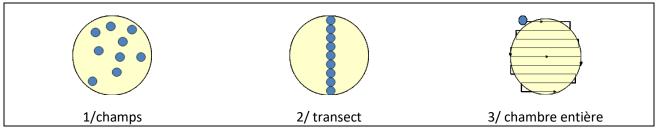


Figure 3 : Représentation schématique des différentes stratégies de comptage

Le comptage est réalisé en balayant des champs strictement aléatoires, ou des transects, ou la chambre entière jusqu'à atteindre 400 individus algaux. La stratégie de comptage utilisée est fonction de la concentration des algues.

Différentes règles de comptage sont appliquées, en respect des échanges inter-opérateurs issus des réunions d'harmonisation phytoplancton INRA 2015-2016. Il est entendu que :

- ✓ tout filament, colonie, ou cœnobe, compte pour un individu algal à X cellules. Le nombre de cellules présentes dans le champ et par individu est dénombré (cellules/individus algaux);
- ✓ seules les cellules contenant un plaste (exceptés pour les cyanobactéries et chrysophycées à logettes) sont comptées. Les cellules vides des colonies, des cœnobes, des filaments ou des diatomées ne sont pas dénombrées;
- ✓ les logettes des chrysophycées (ex : *Dinobryon, Kephyrion,...*) sont dénombrées même si elles sont vides, les cellules de flagellés isolées ne sont pas dénombrées ;
- ✓ pour les diatomées, en cas de difficulté d'identification et de fortes abondances (supérieures à 20% de l'abondance totale), une préparation entre lame et lamelle selon le mode préparatoire décrit par la norme NF T 90-354 (AFNOR) est effectuée.

3.2.3 Traitement des données

Les résultats sont exprimés en nombre de cellules par millilitre. Ils sont également exprimés en biovolume (mm³/l), ce qui reflète l'occupation des différentes espèces. En effet, les espèces de petite taille n'occupent pas un même volume que les espèces de grandes tailles. Les biovolumes sont obtenus de trois manières :

- 1. grâce aux données proposées par le logiciel Phytobs (version 3.1.3), d'aide au dénombrement ;
- 2. si les données sont absentes, les mesures sur 30 individus lors de l'observation au microscope sont employées pour calculer un biovolume robuste ;
- 3. si l'ensemble des dimensions utiles au calcul n'est pas observé, les données complémentaires issues de la bibliographie sont employées.

Le comptage terminé, la liste bancarisée dans l'outil de comptage PHYTOBS est exportée au format .xls ou .csv. Cet outil permet de présenter des résultats complets.

Le calcul de l'indice Phytoplancton lacustre ou IPLAC est réalisé à l'aide du Système d'Évaluation de l'État des Eaux (SEEE). Il s'appuie sur 2 métriques :

- ✓ la Métrique de biomasse algale ou MBA est basée sur la concentration moyenne de la chlorophylle a sur la période de végétation ;
- ✓ la Métrique de Composition Spécifique ou MCS exprime une note en fonction de la présence (exprimée en biovolume) de taxons indicateurs, figurant dans une liste de référence de 165 taxons (SEEE 1.1.0). À chaque taxon correspond une cote spécifique et une note de sténoécie, représentant l'amplitude écologique du taxon. La note finale est obtenue en mesurant l'écart avec la valeur prédite en condition de référence.

La note IPLAC résulte de l'agréation par somme pondérée de ces deux métriques.

Figure 4 : Seuils des classes d'état définis pour chaque métrique et pour l'IPLAC

L'interprétation des caractéristiques écologiques du peuplement permet d'établir si une dégradation de la note indicielle peut être expliquée par la présence de taxons polluotolérants ou favorisés par une abondance de nutriments liée à l'eutrophisation du milieu, ou être liée au fonctionnement du milieu (stratification, anoxie,...).

L'utilisation de la bibliographie et des groupes morpho-fonctionnels permet d'affiner notre analyse et d'évaluer la robustesse de la note IPLAC obtenue.

4 RÉSULTATS DES INVESTIGATIONS

4.1 INVESTIGATIONS PHYSICOCHIMIQUES

Les comptes rendus des campagnes de prélèvements physicochimiques et phytoplanctoniques sont présentés en Annexe 3.

4.1.1 Profils verticaux et evolutions saisonnières

Le suivi prévoit la réalisation de profils verticaux sur la colonne d'eau à chaque campagne. Quatre paramètres sont mesurés : la température, la conductivité, l'oxygène (en concentration et en % saturation) et le pH. Les graphiques regroupant ces résultats pour chaque paramètre lors des 4 campagnes sont affichés dans ce chapitre.

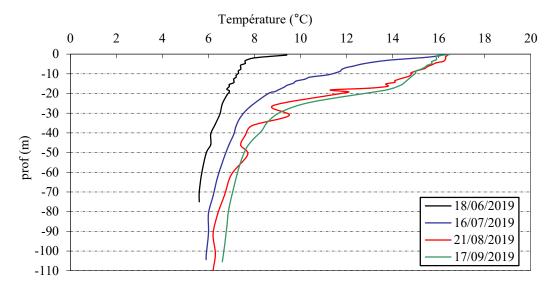


Figure 5 : Profils verticaux de température au point de plus grande profondeur

Lors de la 1^{ère} campagne, effectuée tardivement en raison des difficultés d'accès, un net réchauffement des eaux de surface est mesuré (9,4°C) tandis que le reste de la colonne d'eau est à 6°C.

La thermocline s'installe au fil de l'été avec un hypolimnion (de 30 m à 110 m), se maintenant vers 6 - 7°C :

- ✓ en campagne 2, la température est de 15,9°C en surface, l'épilimnion est assez mal distingué ;
- ✓ lors des campagnes 3 et 4, on atteint 16 à 16,5°C en surface avec un épilimnion plus ou moins bien dessiné (0-17 m).

Le gradient de température est voisin de 10°C pour les trois campagnes estivales.

Ainsi, sur la retenue de Roselend, la stratification thermique est typique de celle d'un lac d'altitude : elle se met en place tardivement et n'est pas observable chaque année, car sous la dépendance des conditions météorologiques.

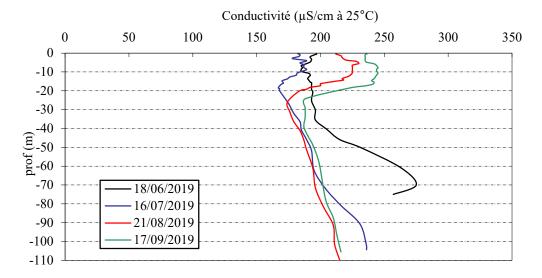


Figure 6 : Profils verticaux de conductivité au point de plus grande profondeur

La conductivité indique une eau moyennement minéralisée, elle est comprise entre 170 et 244 μ S/cm typiquement en lien avec la nature mixte des terrains traversés. La minéralisation augmente dans l'épilimnion (225 à 240 μ S/cm) lors des campagnes 3 et 4 tandis qu'elle reste stable dans la couche profonde (180 à 210 μ S/cm). En particulier dans l'épilimnion, l'évolution au fil des saisons est plutôt atypique en apparence, et potentiellement influencé par les débits respectifs des différents modes d'alimentation naturel et artificiel de la retenue.

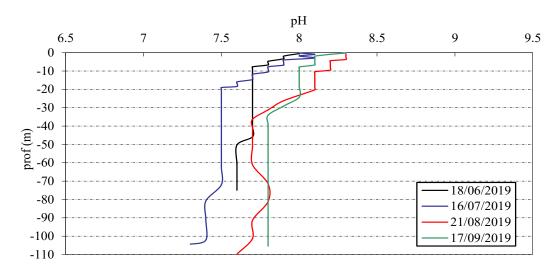


Figure 7: Profils verticaux de pH au point de plus grande profondeur

Le pH est légèrement alcalin, compris entre 7,3 et 8,3. Il semble influencé par les différentes sources d'apports, comme la conductivité. Les profils sont assez similaires lors des 4 campagnes :

- le pH est plus élevé en surface (7,9 à 8,3) où l'activité photosynthétique peut entraîner une augmentation du pH;
- le pH est plus faible (7,5 à 7,8) est homogène dans la couche profonde où les processus de respiration et de décomposition entraînent une diminution des valeurs.

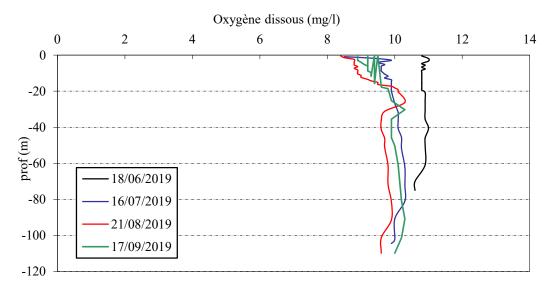


Figure 8 : Profils verticaux d'oxygène (mg/l) au point de plus grande profondeur

Lors des 4 campagnes, les eaux de la retenue de Roselend sont bien oxygénées sur l'ensemble de la colonne d'eau (96% à 116% de saturation). Aucun signe de désoxygénation n'est relevé dans la couche profonde.

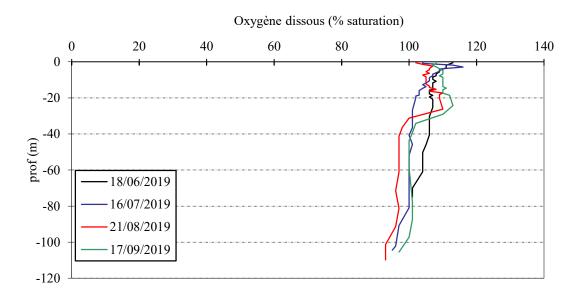


Figure 9: Profils verticaux d'oxygène (% sat.) au point de plus grande profondeur

La synthèse de ces paramètres pH, conductivité et oxygène, met en évidence la succession, de la surface vers le fond, des effets classiques de la photosynthèse dans les couches supérieures et de la dégradation en zone tropholytique, avec une modulation potentiellement apportée par la gestion hydraulique du complexe hydro-électrique.

Les matières organiques dissoutes sont étudiées à l'aide d'une sonde EXO équipée d'un capteur fdom qui mesure les matières organiques dissoutes (MOD) en ppb QSU sulfate de quinine. Les profils des 3 campagnes² disponibles sont présentés sur la Figure 10.

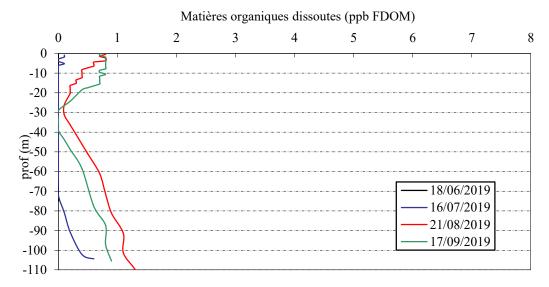


Figure 10 : profils verticaux des matières organiques dissoutes

Les teneurs en MOD sont très faibles dans la retenue de Roselend (<1 ppb QSU). Elles témoignent d'une faible charge organique dans les eaux.

4.1.2 <u>Analyses Physico-Chimiques sur eau</u>

4.1.2.1 Paramètres de constitution et typologie du lac

N.B. pour tous les tableaux suivants : LQ = limite de quantification.

Les résultats des paramètres de minéralisation des quatre campagnes sont présentés dans le Tableau 4.

Lac de Roselend		Unité	Code sandre	LQ	1:	8/06/201	9	10	6/07/201	9	2	1/08/201	9	1'	7/09/201	9
Code pla	Code plan d'eau: V1335003		sanare		intégré	50 m	fond	intégré	66 m	fond	intégré	75 m	fond	intégré	75 m	fond
	Bicarbonates	mg(HCO ₃)/L	1327	6.1	81	96	96	69	82	90	66	86	81	66	72	81
	Calcium	mg(Ca)/L	1374	0.1	32.2	43.1	44.4	29.1	32.5	37.4	34.1	36.2	32.3	35.3	32.7	35.9
u o	Chlorures	mg(Cl)/L	1337	0.1	0.5	0.3	0.4	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
sati	Dureté	°F	1345	0.5	9.2	12.7	13.1	8.5	9.4	11.0	10.0	10.5	9.4	10.4	9.4	10.4
ra H	Magnésium	mg(Mg)/L	1372	0.05	2.9	4.6	4.8	2.9	3.1	3.9	3.6	3.6	3.1	3.9	3.0	3.5
Minéralisation	Potassium	mg(K)/L	1367	0.1	0.2	0.2	0.3	0.2	0.2	0.2	0.3	0.2	0.2	0.3	0.2	0.2
Σ	Sodium	mg(Na)/L	1375	0.2	0.5	0.4	0.5	0.5	0.9	0.5	0.5	0.3	0.5	0.4	0.4	0.4
	Sulfates	mg(SO ₄)/L	1338	0.2	25.7	45.7	53.0	33.1	29.5	41.0	46.2	28.5	31.9	45.6	27.4	31.6
	TAC	°F	1347	0	6.7	7.9	7.9	5.7	6.8	7.4	5.4	7.1	6.6	5.5	5.9	6.6

Tableau 4 : Résultats des paramètres de minéralisation

Les résultats indiquent une eau relativement peu carbonatée et assez douce (9 à 13°F), conforme à la nature assez largement cristalline des bassins versants des différentes sources d'apports hydriques.

2

² Panne de sonde pour la 1^{ère} campagne

4.1.2.2 Analyses physicochimiques des eaux (hors micropolluants)

Tableau 5 : Résultats des paramètres de physico-chimie classique sur eau

Lac de	Roselend	Unité	Code	LQ	13	8/06/201	9	1	6/07/201	9	2	1/08/201	9	17	7/09/201	9
Code plan d'	eau: W0435023	Cinte	sandre	LQ	intégré	50 m	fond	intégré	66 m	fond	intégré	75 m	fond	intégré	75 m	fond
	Ammonium	mg(NH4)/L	1335	0.01	<lq< th=""><th>0.03</th><th>0.01</th><th><lq< th=""><th>0.01</th><th>0.09</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0.02</th><th>0.01</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	0.03	0.01	<lq< th=""><th>0.01</th><th>0.09</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0.02</th><th>0.01</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	0.01	0.09	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0.02</th><th>0.01</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0.02</th><th>0.01</th><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th>0.02</th><th>0.01</th><th><lq< th=""></lq<></th></lq<>	0.02	0.01	<lq< th=""></lq<>
	Azote Kjeldahl	mg(N)/L	1319	0.5	<lq< td=""><td><lq< td=""><td>0.55</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.55</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.55</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.55</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.55</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.55</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.55</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.55</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.55</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.55</td></lq<></td></lq<>	<lq< td=""><td>0.55</td></lq<>	0.55
	Carbone organique	mg(C)/L	1841	0.2	0.5	0.5	0.5	0.4	0.6	0.4	0.4	0.3	0.4	0.2	0.3	0.3
	DBO5	mg(O2)/L	1313	0.5	<lq< td=""><td>0.5</td><td>0.5</td><td>0.5</td><td>1</td><td>0.7</td><td>1.2</td><td><lq< td=""><td><lq< td=""><td>1</td><td>0.7</td><td>0.7</td></lq<></td></lq<></td></lq<>	0.5	0.5	0.5	1	0.7	1.2	<lq< td=""><td><lq< td=""><td>1</td><td>0.7</td><td>0.7</td></lq<></td></lq<>	<lq< td=""><td>1</td><td>0.7</td><td>0.7</td></lq<>	1	0.7	0.7
	DCO	mg(O2)/L	1314	20	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
PC eau	MeS	mg/L	1305	1	2.1	<lq< td=""><td>2.3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2.3	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
r C eau	Nitrates	mg(NO3)/L	1340	0.5	1.5	1.1	1.1	<lq< td=""><td>0.6</td><td>1.1</td><td><lq< td=""><td>0.9</td><td>1</td><td>0.5</td><td>0.9</td><td>1.1</td></lq<></td></lq<>	0.6	1.1	<lq< td=""><td>0.9</td><td>1</td><td>0.5</td><td>0.9</td><td>1.1</td></lq<>	0.9	1	0.5	0.9	1.1
	Nitrites	mg(NO2)/L	1339	0.01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.02</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.02</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.02</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.02</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.02</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.02</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0.02</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0.02	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Phosphates	mg(PO4)/L	1433	0.01	0.01	0.02	0.02	<lq< td=""><td><lq< td=""><td>0.01</td><td><lq< td=""><td>0.01</td><td>0.01</td><td><lq< td=""><td><lq< td=""><td>0.01</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0.01</td><td><lq< td=""><td>0.01</td><td>0.01</td><td><lq< td=""><td><lq< td=""><td>0.01</td></lq<></td></lq<></td></lq<></td></lq<>	0.01	<lq< td=""><td>0.01</td><td>0.01</td><td><lq< td=""><td><lq< td=""><td>0.01</td></lq<></td></lq<></td></lq<>	0.01	0.01	<lq< td=""><td><lq< td=""><td>0.01</td></lq<></td></lq<>	<lq< td=""><td>0.01</td></lq<>	0.01
	Phosphore total	mg(P)/L	1350	0.005	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Silicates	mg(SiO2)/L	1342	0.05	2.1	2.5	2.6	2	2.1	2.4	2	2.1	2.2	2.1	2.1	2.3
	Turbidité	NFU	1295	0.1	5.7	2.7	3.4	1.75	0.9	2.6	0.8	0.62	1.2	0.25	1.1	1.6

Les analyses des fractions dissoutes ont été réalisées sur eau filtrée (COD, NH4, NO3, NO2, PO4, Si).

La turbidité des eaux est moyenne durant la phase de remplissage de la retenue (campagne 1) puis elle devient quasiment nulle lors des campagnes suivantes (MES \leq 1 mg/l).

La charge en matière organique est très faible dans les eaux de Roselend. La concentration en carbone organique dissous est très faible sur les 4 campagnes, comprise entre 0,2 et 0,6 mg/l. La DCO comme l'azote Kjeldahl sont sous les seuils de quantification. La DBO₅ est également faible (0,5 à 1,2 mg/l).

En première campagne, les concentrations en nutriments disponibles sont faibles : les nitrates sont présents à 1,5 mg/l en zone euphotique et les phosphates sont à 0,01 mg/l. Le rapport N/P³ est donc très élevé (> 100) en début de saison : le phosphore est limitant par rapport à l'azote. Les teneurs en nutriments diminuent au fil de la saison, les nitrates et les phosphates deviennent \leq LQ.

Les nitrites et le phosphore total sont sous les LQ pour quasiment tous les échantillons sauf C3 intermédiaire pour les nitrites. L'ammonium est peu quantifié en zone euphotique, il est en revanche présent dans l'échantillon de fond du 16 juillet (0,09 mg/l).

La teneur en silicates est faible et stable lors des 4 campagnes : elle est comprise entre 2 et 2,6 mg/l.

³ le rapport N/P est calculé à partir de [Nminéral]/ [P-PO₄³⁻] avec N minéral = [N-NO₃⁻]+[N-NO₂⁻]+[N-NH₄⁺] sur la campagne de fin d'hiver.

4.1.2.3 Micropolluants minéraux

Lac de	Roselend	TT 147	Code	LO	1	8/06/201	9	10	6/07/201	9	21	1/08/201	9	17/09/2019		
Code plan d'	eau: V1335003	Unité	sandre	LŲ	intégré	50 m	fond	intégré	66 m	fond	intégré	75 m	fond	intégré	75 m	fond
	Aluminium	μg(Al)/L	1370	2	6.5	4.9	4.3	4.8	4	3.7	7.1	4.1	4.1	6.5	4.4	4.5
	Antimoine	μg(Sb)/L	1376	0.5	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Argent	μg(Ag)/L	1368	0.01	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Arsenic	μg(As)/L	1369	0.05	0.45	0.72	0.59	0.66	0.47	0.53	0.7	0.39	0.44	0.66	0.43	0.48
	Baryum	μg(Ba)/L	1396	0.5	9.3	17.1	17.2	7.3	9.4	13.4	8.3	10.2	11.1	8.7	10	11.5
	Beryllium	μg(Be)/L	1377	0.01	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Bore	μg(B)/L	1362	10	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Cadmium	μg(Cd)/L	1388	0.01	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Chrome	μg(Cr)/L	1389	0.5	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Cobalt	μg(Co)/L	1379	0.05	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Cuivre	μg(Cu)/L	1392	0.1	0.2	0.21	0.2	0.27	<lq< td=""><td><lq< td=""><td>0.34</td><td>0.15</td><td>0.16</td><td>0.35</td><td>0.13</td><td>0.19</td></lq<></td></lq<>	<lq< td=""><td>0.34</td><td>0.15</td><td>0.16</td><td>0.35</td><td>0.13</td><td>0.19</td></lq<>	0.34	0.15	0.16	0.35	0.13	0.19
	Etain	μg(Sn)/L	1380	0.5	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Métaux	Fer	μg(Fe)/L	1393	1	5.4	4.4	4.1	4	3.6	3.8	2.8	1.2	1.4	2.2	2.2	2.2
Mét	Lithium	μg(Li)/L	1364	0.5	1.1	1.4	1.5	0.8	1	1.2	1.2	1.1	1.1	1.2	1	1.2
_	Manganèse	μg(Mn)/L	1394	0.5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.6</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.9</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.6</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.9</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.6</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.9</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.6</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.9</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0.6</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.9</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0.6	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.9</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.9</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.9</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.9</td></lq<></td></lq<>	<lq< td=""><td>0.9</td></lq<>	0.9
	Mercure	μg(Hg)/L	1387	0.01	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Molybdène	μg(Mo)/L	1395	1	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Nickel	μg(Ni)/L	1386	0.5	0.6	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Plomb	μg(Pb)/L	1382	0.05	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.05</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.05</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.05</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.05</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.05</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.05</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.05</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.05</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0.05</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	0.05	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Sélénium	μg(Se)/L	1385	0.1	0.12	0.12	0.14	0.18	0.14	0.15	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.16</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.16</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.16</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.16</td></lq<></td></lq<>	<lq< td=""><td>0.16</td></lq<>	0.16
	Tellure	μg(Te)/L	2559	0.5	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Thallium	μg(Tl)/L	2555	0.01	<lq< td=""><td><lq< td=""><td>0.011</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0.011</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0.011	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Titane	μg(Ti)/L	1373	0.5	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Uranium	μg(U)/L	1361	0.05	0.39	0.55	0.6	0.43	0.39	0.47	0.59	0.42	0.44	0.55	0.42	0.42
	Vanadium	μg(V)/L	1384	0.1	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Zinc	μg(Zn)/L	1383	1	3.59	1.07	2.05	1.96	2.27	1.76	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1.16</td><td>2.58</td><td>1.83</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1.16</td><td>2.58</td><td>1.83</td></lq<></td></lq<>	<lq< td=""><td>1.16</td><td>2.58</td><td>1.83</td></lq<>	1.16	2.58	1.83

Tableau 6 : Résultats d'analyses de métaux sur eau

Les analyses sur les métaux ont été effectuées sur eau filtrée.

Plusieurs micropolluants minéraux sont présents dans l'eau en quantité plus ou moins importante :

- ✓ l'Arsenic est présent sur tous les échantillons à des concentrations comprises entre 0,39 et 0,72 μg/l;
- ✓ le Cuivre est présent dans quasiment tous les échantillons à des teneurs faibles, comprises entre 0,13 et $0,35 \mu g/l$;
- ✓ le Lithium est présent sur tous les échantillons à des concentrations voisines de 1,2 μg/l;
- ✓ le Sélénium est présent dans l'eau en C1 et C2 à des teneurs voisines de 0,15 μg/l;
- ✓ l'Uranium est présent dans l'eau à des concentrations voisines de 0,5 μg/l;
- ✓ le Zinc est présent dans les échantillons de C1, C2, et C4 à des concentrations non négligeables, comprises entre 1 et 3,6 mg/l;

Les eaux présentent également de l'Aluminium, du Baryum et du Fer de par la nature des substrats.

4.1.2.4 Micropolluants organiques

Le Tableau 7 indique les micropolluants organiques qui ont été quantifiés lors des campagnes de prélèvements. La liste de l'ensemble des substances analysées est fournie en annexe 1.

Lac de Roselend Code 18/06/2019 16/07/2019 17/09/2019 LQUnité Code plan d'eau: V1335003 sandre intégré 50 m fond intégré 66 m fond intégré 75 m fond 75 m intégré fond 0,02 antioxydan 4-tert-butylphénol μg/1 2610 0,038 0,062 <LQ 0,005 0,0084 1815 <1.0 <1.0 <1.0 <1.0 <1.0 divers BDF209 $\mu g/l$ 0.0005 HAP 1116 <LQ <LQ <LQ <LQ 0,0006 Benzo (b) Fluoranthèn $\mu g/1$ <LQ stimulants Cafeine μg/l 6519 0.01 0.011 0.011 <LO 0,015 0.028 <LO divers Cyanures libres 1084 0,2 <LQ <LQ <1.0 0.45 $\mu g/1$ 0,23 plastifiants DEHP $\mu g/1$ 6616 0,4 0,5 0,4 <LQ <LQ Semi-volatils divers Formaldéhyde $\mu g/l$ 1702 1 2 <LQ n-Butyl Phtalate 0,05 0,79 1462 0.05 0.08 0.06 <LO plastifiants <LO 0,06 <LO <LO <LO <LO <LO $\mu g/1$ stimulants Nicotine $\mu g/l$ 5657 0,02 0,025 0,059 hormones Progesterone $\mu g/l$ 5402 0.02

Tableau 7 : Résultats d'analyses de micropolluants organiques présents sur eau

10 micropolluants organiques ont été détectés dans les eaux de la retenue de Roselend. Il s'agit de quantifications ponctuelles : aucune substance n'est retrouvée dans tous les échantillons.

NB: Aucun micropolluant n'est mesuré dans l'échantillon intermédiaire du 17 septembre.

Les substances retrouvées ponctuellement sont les suivantes :

- ✓ le 4-tert-butylphénol, un antioxydant, est retrouvé dans les échantillons intégré et fond du 16 juillet ;
- ✓ le BDE209 est retrouvé à 8,4 ng/l dans l'échantillon intermédiaire du 18 juin ;
- ✓ les cyanures libres sont retrouvés dans 3 échantillons en C2 et C3 ;
- ✓ 1 HAP : benzo(b) fluoranthène est présent dans l'échantillon de fond en C4 à une concentration très faible de 0.006 μg/l;
- ✓ une hormone, la progestérone est détectée dans l'échantillon de fond du 21 août ;
- ✓ 2 substances plastifiantes :
 - o le n-butylPhtalate, indicateur plastique, est mesuré dans les prélèvements intermédiaire et fond en C1 et dans les échantillons intégrés en C2, C3 et C4 entre 0,06 et 0,8 μg/l;
 - o le Di(2-ethylhexyl)phtalate (DEHP) dans les échantillons intégré et fond du 18 juin ;
- ✓ le formol est mesuré dans l'intégré en C1 (2 μg/l);
- ✓ un stimulant d'origine naturelle végétale, la caféine, est mesuré entre 0,011 et 0,028 μg/l dans les échantillons des deux premières campagnes ;
- ✓ un autre stimulant, la nicotine, est mesuré entre 0,025 et 0,059 μg/l dans les échantillons de la C3.

4.1.3 Analyses des sediments

4.1.3.1 Analyses physicochimiques des sédiments (hors micropolluants)

Le Tableau 8 fournit la synthèse de l'analyse granulométrique menée sur les sédiments prélevés.

Tableau 8 : Synthèse granulométrique sur le sédiment du point de plus grande profondeur

Composition granulométrique du sédiment										
Retenue de Roselend	Unité	Code sandre	17/09/2019							
Code plan d'eau: W0435023	Office	Code sanare	17/09/2019							
fraction inférieure à 20 µm	% MS	6228	70.6							
fraction de 20 à 63 µm	% MS	3054	22.9							
fraction de 63 à 150 µm	% MS	7042	6.4							
fraction de 150 à 200 µm	% MS	7043	0.1							
fraction supérieure à 200 μm	% MS	7044	0.0							

Il s'agit de sédiments très fins, de nature limono-argileuse avec 99,9% de particules < 150 μm.

Les analyses de physico-chimie classique menées sur la fraction solide et sur l'eau interstitielle du sédiment sont rapportées au Tableau 9.

Physi	co-chimie du sédi	ment		
Retenue de Roselend	Unité	Code	LQ	17/09/2019
Code plan d'eau: W0435023	SIN C	sandre	Lg	1770972019
Matière sèche à 105°C	%	1307		57
Matière Sèche Minérale	% MS	5539		95,3
Perte au feu à 550°C	% MS	6578		4,7
Carbone organique	mg(C)/kg MS	1841	1000	13600
Azote Kjeldahl	mg(N)/kg MS	1319	1000	1800
Phosphore total	mg(P)/kg MS	1350	2	734
Physico-chimic	e du sédiment : Ea	u interstitiel	le	
Ammonium	mg(NH4)/L	1335	0,5	1,51
Phosphates	mg(PO4)/L	1433	0,015	0,144
Phosphore total	mg(P)/L	1350	0,01	0,31

Tableau 9 : Analyse de sédiments

Dans les sédiments, la teneur en matière organique est faible avec 4,7 % de perte au feu. La concentration en azote organique est également très faible avec une concentration de 1,8 g(N)/kg MS. Ce qui induit un rapport C/N de 7,6 : Le sédiment est formé de matière algale récemment déposée dont une fraction sera recyclée en tant qu'azote minéral. La teneur en phosphore est moyenne avec 0,73 g/kg MS. Le sédiment présente une bonne qualité physico-chimique.

L'eau interstitielle contient les minéraux facilement mobilisables dans les sédiments. La concentration en éléments nutritifs est faible pour l'ammonium et moyenne pour le phosphore. Ces analyses ne suggèrent aucun processus de relargage, d'autant que les conditions d'oxygénation restent très bonnes dans le fond du plan d'eau.

4.1.3.2 Micropolluants minéraux

Ils ont été dosés sur la fraction solide du sédiment.

Tableau 10 : Résultats d'analyses de micropolluants minéraux sur sédiment

Sédiment	t : micropolluants m	inéraux		
Retenue de Roselend	Unité	Code	LQ	17/09/2019
Code plan d'eau: W0435023	51110	sandre	22	17.09.2019
Aluminium	mg(Al)/kg MS	1370	5	89900
Antimoine	mg(Sb)/kg MS	1376	0,2	1,7
Argent	mg(Ag)/kg MS	1368	0,1	0,2
Arsenic	mg(As)/kg MS	1369	0,2	27,9
Baryum	mg(Ba)/kg MS	1396	0,4	593
Béryllium	mg(Be)/kg MS	1377	0,2	2,9
Bore	mg(B)/kg MS	1362	1	146
Cadmium	mg(Cd)/kg MS	1388	0,2	0,3
Chrome	mg(Cr)/kg MS	1389	0,2	131
Cobalt	mg(Co)/kg MS	1379	0,2	23,9

Cuivre	mg(Cu)/kg MS	1392	0,2	37,8
Etain	mg(Sn)/kg MS	1380	0,2	4,9
Fer	mg(Fe)/kg MS	1393	5	55000
Lithium	mg(Li)/kg MS	1364	1	91,2
Manganèse	mg(Mn)/kg MS	1394	0,4	1240
Mercure	mg(Hg)/kg MS	1387	0,01	0,09
Molybdène	mg(Mo)/kg MS	1395	0,2	1,7
Nickel	mg(Ni)/kg MS	1386	0,2	62,3
Plomb	mg(Pb)/kg MS	1382	0,2	34,4
Sélénium	mg(Se)/kg MS	1385	0,2	1,1
Tellure	mg(Te)/kg MS	2559	0,2	< LQ
Thallium	mg(Th)/kg MS	2555	0,2	1,1
Titane	mg(Ti)/kg MS	1373	1	3950
Uranium	mg(U)/kg MS	1361	0,2	2,4
Vanadium	mg(V)/kg MS	1384	0,2	161
Zinc	mg(Zn)/kg MS	1383	0,4	153

Les sédiments sont naturellement riches en Aluminium, en Fer, en Manganèse et en Titane.

Parmi les métaux lourds, les concentrations en Arsenic, en Chrome et en Nickel sont assez élevées, elles sont proches des seuils S1⁴ de contamination des sédiments de curage : on peut donc dire que les sédiments présentent une contamination en métaux attribuable au fond géochimique (formations métamorphiques du Beaufortain).

4.1.3.3 Micropolluants organiques

Le Tableau 11 indique les micropolluants organiques qui ont été quantifiés dans les sédiments lors de la campagne de prélèvements. La liste de l'ensemble des substances analysées est fournie en annexe 2.

Tableau 11 : Résultats d'analyses de micropolluants organiques présents sur sédiment

Sédiment : micropoll	uants organiqu	ues mis en évic	dence	
Retenue de Roselend	Unité	Code sandre	10	17/09/2019
Code plan d'eau: W0435023	Office	Code sanare	LQ	17/09/2019
Anthraquinone	μg/ kg MS	2013	4	4
Benzo (a) Anthracène	μg/ kg MS	1082	10	11
Benzo (a) Pyrène	μg/ kg MS	1115	10	14
Benzo (b) Fluoranthène	μg/ kg MS	1116	10	45
Benzo (ghi) Pérylène	μg/ kg MS	1118	10	20
Benzo (k) Fluoranthène	μg/ kg MS	1117	10	11
Dibenzo (ah) Anthracène	μg/ kg MS	1621	10	10
Fluoranthène	μg/ kg MS	1191	10	12
Indéno (123c) Pyrène	μg/ kg MS	1204	10	20

⁴ Seuil S1 : seuil édicté par l'Arrêté du 9 août 2006, utilisé ici en référentiel à titre indicatif de comparaison.

9 micropolluants organiques appartenant aux Hydrocarbures Aromatiques Polycycliques ont été détectés dans les sédiments pour une concentration totale en HAP de 147 µg/kg MS, valeur faible et inférieure au seuil d'effets.

Les sédiments de la retenue de Roselend ne présentent pas de pollution significative en micropolluants organiques.

4.2 PHYTOPLANCTON

4.2.1 Prelevements integres

Les prélèvements intégrés destinés à l'analyse du phytoplancton ont été réalisés en même temps que les prélèvements pour analyses physicochimiques classiques.

Sur la retenue de Roselend, la zone euphotique et la transparence mesurées sont représentées par le graphique de la Figure 11. La transparence est faible (1,6 m) en début de saison avec les apports de fonte des neiges. Elle devient élevée en juillet et août (5 à 6,6 m) et très élevée en fin de saison avec 14,7 m mesurés le 17 septembre. Les eaux deviennent très claires au fil de l'été avec la décantation des matières en suspension et une faible production algale.

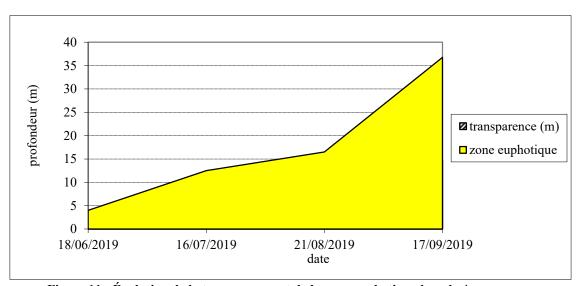


Figure 11 : Évolution de la transparence et de la zone euphotique lors de 4 campagnes

Les échantillons destinés à la détermination du phytoplancton et de la chlorophylle *a* sont constitués d'un prélèvement intégré sur la zone euphotique (équivalant à 2,5 fois la transparence lors de la campagne). Les échantillons en zone euphotique concernent une colonne d'eau qui augmente au fil de la saison entre 4 m en juin et 36,7 m! en septembre. Les concentrations en chlorophylle *a* et en phéopigments sont présentées dans le tableau suivant.

	Lac de Roselend Code plan d'eau: W0435023		Unité	Code	LQ	18/06/2019	16/07/2019	21/08/2019	17/09/2019
			Office	sandre	LQ	intégré	intégré	intégré	intégré
	indices	Chlorophylle a	μg/L	1439	1	1	1	0.5	0.5
	chlorophylliens	indice phéonigment	цо/Ц	1436	1	<1.0	<1.0	<1.0	<1.0

Tableau 12: analyses des pigments chlorophylliens

Si la concentration en chlorophylle ou phéopigments est <LQ, alors la valeur considérée est LQ/2 soit 0,5 μg/l.

Agence de l'Eau Rhône Méditerranée Corse Étude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Roselend (73)

Les concentrations en pigments chlorophylliens sont très faibles dans la retenue de Roselend (0,5 à 1 μ g/l). Cela traduit une très faible production primaire dans le plan d'eau. La moyenne estivale de concentration en chlorophylle a est évaluée à 0,7 μ g/l. La concentration en phéopigments reste faible toute l'année, elle est < 1 μ g/l. L'activité biologique est réduite, en cohérence avec le caractère oligotrophe de ce plan d'eau.

4.2.2 <u>Listes floristiques</u>

Tableau 13: Liste taxonomique du phytoplancton (en nombre de cellules/ml)

Embranchement	Nom taxon	Code Sandre	18/06/2019	16/07/2019	21/08/2019	17/09/20
	Achnanthidium	9356			0.3	0.1
	Achnanthidium pyrenaicum	10597			0.0	
	Amphora pediculus	7116			0.0	
	Brachysira neoexilis	7159			0.0	0.1
	Cocconeis placentula var. euglypta	7229	-		0.2	0.1
	Cyclotella costei Cyclotella ocellata	8615	-		0.2	6.9
	Cymbella excisa	8635 7295	-		0.1	0.1
	Delicata delicatula	20119	+		0.0	0.1
	Diatoma mesodon	6624		0.9	0.0	
	Diatoma vulgaris	6631			0.0	
	Diatomées centriques indét < 10 μm	6598	3.7	6.2		
	Diatomées centriques indét > 10 μm	6598		3.3		
	Diatomées pennées indét < 10 μm	6598	0.5			
	Diatomées pennées indét 30 - 100 μm	6598		4.2		
	Diploneis	7417	0.2			
	Encyonopsis	9450				0.1
	Eolimna minima	9419			0.0	
	Ep ithemia	9455			0.1	
BACILLARIOPHYTA	Fragilaria arcus	9527			0.1	
	Fragilaria saxop lanctonica	38467			2.3	3.2
	Fragilaria tenera	6713	0.5	2.4		
	Gomphonema	8781	1		0.0	ļ
	Gomphonema auritum	7637	+		0.0	-
	Gomphonema olivaceum	14060	1		0.0	-
	Gomphonema tergestinum	7731	0.2		0.0	-
	Navicula	9430	0.2		0.1	
	Navicula reichardtiana	9427 8190	+		0.0	
	Navicula tripunctata Nitzschia	9804	0.4		0.0	0.1
	Nitzschia Nitzschia acicularis	9804 8809	0.4		0.1	0.1
	Nitzschia aciettaris Nitzschia amphibia	8820			0.4	0.1
	Nitzschia dissipata	8875			0.3	0.1
	Nitzschia palea	8987	+		0.1	0.1
	Puncticulata radiosa	8731	+		0.5	3.8
	Reimeria sinuata	8419			0.1	3.0
	Sellaphora pupula	8444			0.1	0.1
	Stephanodiscus alpinus	8738			0.1	0.1
	Ulnaria grunowii	44401	0.2		0.1	
	Ulnaria ulna	6849			0.1	0.1
CHAROPHYTA	Cosmarium	1127			0.0	
CHAROPHYIA	Elakatothrix gelatinosa	5664	0.4		0.1	0.7
	Chlamy domonas 10 - 20 μm	6016	0.2		0.0	
	Chlorella vulgaris	5933	1.2	3.0	0.3	0.6
	Chlorophy cées flagellées indét diam 2 - 5 μm	3332		0.9		
	Chlorophy cées indét > 10 μm	3332		0.3		
CHLOROPHYTA	Chlorophy cées indét 2 - 5 μm	3332		3.0		
	Chlorophy cées indét 5 - 10 μm	3332			0.2	1.8
	Desmodesmus	29998	1	^ ′	0.1	ļ
	M onoraphidium circinale	5730	+	0.6	0.0	
	Oocystis lacustris	5757	4.0	0.0	0.0	0.3
	Tetraselmis cordiformis	5981	4.0	0.9	0.0	0.2
	Cryptomonas	6269 6273	0.2	0.3	0.1	0.3
CRYPTOPHYTA	Cryptomonas marssonii	6274	0.2	0.3	0.1	0.4
	Cryptomonas ovata Plagioselmis nannop lanctica	9634	20.3	20.2	0.3	2.5
	Dolichospermum spiroides	31961	20.5	20.2	0.5	1.2
CYANOBACTERIA	Oscillatoriales indét	6391	1	2.7	2.7	1.2
One HANA	Pseudanabaena galeata	6458	1	4.1	0.4	
	Euglena	6479	4.2	0.9	0.4	0.1
EUGLENOZOA	Euglénop hy cées indét	5014	2		0.3	J.,
	Ceratium hirundinella	6553	1		0.1	0.4
	Gymnodiniales indét < 20 μm	5011		0.6	0.2	
	Gymnodiniales indét 20 - 50 μm	5011				0.4
	Gymnodinium cnecoides	20338	4.2		0.0	0.6
MIO704	Gymnodinium helveticum	6558			0.0	
MIOZOA	Gymnodinium lantzschii	6559	9.1			
	Peridiniales indét 20 - 50 μm	4921			0.1	
	Peridiniopsis cunningtonii	6572		1.5	0.0	
	Peridinium	6577	0.2			
	Peridinium willei	6589		0.3	0.0	1.0
	Dinobry on crenulatum	9577				0.4
	Dinobry on sociale var. americanum	6137		47.9	0.2	0.6
OCHROPHYTA	Kephyrion littorale	6151	9.8	23.5	0.1	2.5
JCIMOI III IA	Kephyrion petasatum	20174		5.1		0.3
	Pseudokephyrion entzii f. granulata	34227	10.3			
	Pseudopedinella elastica	20753	1.4	0.6	0.0	1.3
non déterminés	Taxons indéterminés	0	0.7		0.0	0.1
	Nombre de taxons		22	23	55	33
	Nombre de cellules/ml		72	129	11	31

Tableau 14: Liste taxonomique du phytoplancton (en mm³/l)

Code Code												
Embranchement	Nom taxon	Code Sandre	18/06/2019	16/07/2019	21/08/2019	17/09/2019						
	Achnanthidium	9356			0.00003	0.00001						
	Achnanthidium pyrenaicum	10597			0.00000	0.00001						
	Amphora pediculus	7116			0.00001							
	Brachy sira neoexilis	7159			0.00001	0.00001						
	Cocconeis placentula var. euglypta	7229				0.00007						
	Cyclotella costei	8615			0.00005	0.00175						
	Cyclotella ocellata	8635			0.00001	0.0000#						
	Cymbella excisa	7295			0.00001	0.00005						
	Delicata delicatula Diatoma mesodon	20119		0.00026	0.00001							
	Diatoma mesodon Diatoma vulgaris	6624 6631		0.00036	0.00002 0.00014							
	Diatoma vulgaris Diatomées centriques indét < 10 μm	6598	0.00041	0.00069	0.00014							
	Diatomées centriques indét > 10 µm	6598	0.00011	0.00176								
	Diatomées pennées indét < 10 μm	6598	0.00008	0.000								
	Diatomées pennées indét 30 - 100 μm	6598		0.00218								
	Diploneis	7417	0.00075									
	Encyonopsis	9450				0.00003						
	Eolimna minima	9419			0.00000							
	Ep ithemia	9455			0.00250							
BACILLARIOPHYTA	Fragilaria arcus	9527			0.00012	0.000#4						
	Fragilaria saxop lanctonica	38467	0.00012	0.00000	0.00053	0.00073						
	Fragilaria tenera Gomphonema	6713 8781	0.00013	0.00060	0.00004							
	Gomphonema auritum	7637			0.00004							
	Gomphonema olivaceum	14060			0.00001							
	Gomphonema tergestinum	7731			0.00002							
	Navicula	9430	0.00021		0.00014							
	Navicula reichardtiana	9427			0.00001							
	Navicula tripunctata	8190			0.00002							
	Nitzschia	9804	0.00028		0.00009	0.00012						
	Nitzschia acicularis	8809			0.00011							
	Nitzschia amphibia	8820			0.00006	0.00003						
	Nitzschia dissipata	8875			0.00002	0.00002						
	Nitzschia palea Puncticulata radiosa	8987			0.00003	0.00003						
	Reimeria sinuata	8731 8419			0.00048 0.00001	0.00380						
	Sellaphora pupula	8444			0.00001	0.00014						
	Stephanodiscus alpinus	8738			0.00009	0.00014						
	Ulnaria grunowii	44401	0.00039		0.00013	0.00013						
	Ulnaria ulna	6849			0.00036	0.00069						
CHA DODINZEA	Cosmarium	1127			0.00027							
CHAROPHYTA	Elakatothrix gelatinosa	5664	0.00007		0.00002	0.00013						
	Chlamydomonas 10 - 20 μm	6016	0.00008		0.00001							
	Chlorella vulgaris	5933	0.00012	0.00030	0.00003	0.00006						
	lorophycées flagellées indét diam 2 - 5 p	3332		0.00004								
	Chlorophycées indét > 10 μm	3332		0.00013								
CHLOROPHYTA	Chlorophycées indét 2 - 5 µm	3332		0.00015	0.00004	0.00020						
	Chlorophycées indét 5 - 10 μm	3332			0.00004	0.00039						
	Desmodesmus Monoraphidium circinale	29998 5730		0.00001	0.00001							
	Oocystis lacustris	5757		0.00001	0.00000	0.00003						
	Tetraselmis cordiformis	5981	0.00802	0.00177	0.00004	0.00003						
	Cryptomonas	6269	2.00002	2.00111	2.00001	0.00052						
CDVDTCDIBT	Cryptomonas marssonii	6273	0.00021	0.00036	0.00009	0.00053						
CRYPTOPHYTA	Cryptomonas ovata	6274	0.00074	0.00062								
	Plagioselmis nannoplanetica	9634	0.00142	0.00142	0.00002	0.00017						
	Dolichospermum spiroides	31961				0.00028						
CYANOBACTERIA	Oscillatoriales indét	6391		0.00025	0.00026							
	Pseudanabaena galeata	6458	0.00===	0.00=-:	0.00000	0.00						
EUGLENOZOA	Euglena Euglena	6479	0.02503	0.00531	0.00103	0.00087						
	Euglénophycées indét	5014			0.00219	0.01751						
	Ceratium hirundinella Gymnodiniales indét < 20 μm	6553 5011		0.00026	0.00308 0.00007	0.01751						
	Gymnodiniales indet < 20 μm	5011		0.00020	0.00007	0.00744						
	Gymnodinium enecoides	20338	0.00960		0.00009	0.00744						
MOZO	Gymnodinium helveticum	6558	0.00700		0.00033	0.00133						
MIOZOA	Gymnodinium lantzschii	6559	0.01098									
	Peridiniales indét 20 - 50 μm	4921			0.00098							
	Peridiniopsis cunningtonii	6572		0.01215	0.00031							
	Peridinium	6577	0.00161									
	Peridinium willei	6589		0.00982	0.00127	0.03371						
	Dinobryon crenulatum	9577		0.01=	0.000	0.00009						
	Dinobryon sociale var. americanum	6137	0.00004	0.01729	0.00008	0.00021						
OCHROPHYTA	Kephyrion littorale	6151	0.00094	0.00226	0.00001	0.00024						
	Rephyrion petasatum	20174	0.00024	0.00015		0.00001						
	Pseudokephyrion entzii f. granulata Pseudopedinella elastica	34227 20753	0.00024 0.00190	0.00081	0.00005	0.00178						
non déterminés	Taxons indéterminés	0	0.00190	0.00081	0.00003	0.00178						
non acter mines	Nombre de taxons	0	22	23	55	33						
	Biovolume (mm ³ /l)		0.065	0.059	0.015	0.073						

4.2.3 EVOLUTIONS SAISONNIERES DES GROUPEMENTS PHYTOPLANCTONIQUES

Les graphiques suivants présentent la répartition du phytoplancton (relative) par groupe algal à partir des résultats exprimés en cellules/ml d'une part, et à partir des biovolumes (mm³/l) d'autre part. Sur chacun des graphiques, la courbe représente l'abondance totale par échantillon (Figure 12), et le biovolume de l'échantillon (Figure 13).

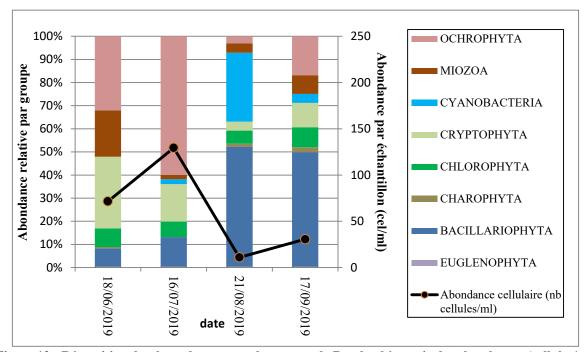


Figure 12 : Répartition du phytoplancton sur la retenue de Roselend à partir des abondances (cellules/ml)

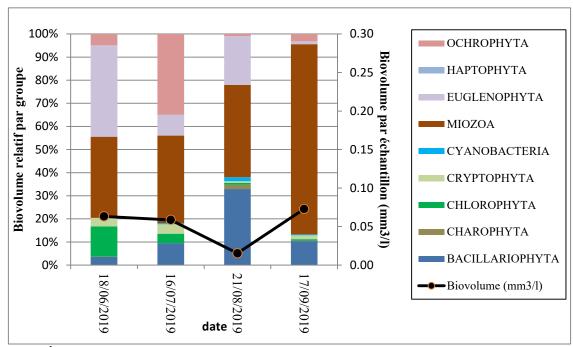


Figure 13 : Évolution saisonnière des biovolumes des principaux groupes algaux de phytoplancton (en mm³/l)

Sur l'ensemble des campagnes de prélèvement, la productivité algale est extrêmement faible. Les concentrations en chlorophylle a ne dépassent pas les 1 μ g/l et les concentrations cellulaires de phytoplancton sont ≤ 130 cel./ml. On notera que le phytoplancton est très peu abondant en C3 : 0,015 mm³/l et 11 cel/m. Le peuplement est alors très diversifié avec 55 taxons dont 22 espèces de diatomées qui sont considérées comme benthiques. Si l'on exclut ces diatomées benthiques, la diversité reste relativement élevée entre 22 et 33 taxons, appartenant à sept embranchements taxonomiques différents.

L'embranchement des miozoa est très bien représenté au cours des quatre campagnes, notamment par des espèces de grandes tailles qui occupent 35 à 82% du biovolume. Ainsi se succèdent *Gymnodinium cnecoides* et *Gymnodinium lantzschii* (1^{ère} campagne), puis *Peridinium cunningtonii* et *Peridinium willei* (2^{nde} campagne); et enfin *Ceratium hirundinella* toujours accompagnée de *Peridinium willei* (3ème et 4ème campagnes). L'ensemble de ces individus utilise la phagotrophie pour se nourrir : ils reflètent donc la faible présence de matières nutritives dans le milieu.

Le taxon *Euglena* (de grande taille) appartenant aux *euglenozoa* domine le biovolume de la première campagne. En termes d'abondance cellulaire, les embranchements majoritaires lors des deux premières campagnes sont les ochrophytes (30% puis 59% de la concentration cellulaire) et les cryptophytes (29% puis 16% de la concentration cellulaire). Ils sont représentés par des espèces de plus petite taille, principalement *Kephyrion littorale*, *Dinobryon sociale var. americanum* et *Plagioselmis nannoplanctica*.

Lors des deux dernières campagnes, les diatomées se diversifient. On remarque notamment la présence de *Fragilaria saxoplanctonica*, *Puncticulata radiosa* et *Cyclotella costei*. De nombreuses espèces benthiques sont également présentes (*Gomphonema sp.*, *Nitzschia sp.*,...), elles sont, à cette période, probablement issues des arrivées d'eau gérées par EDF.

Des cyanobactéries filamenteuses se développent également à partir de la troisième campagne ; principalement *Dolichospermum spiroides* et *Pseudanabaena galeata*. Leur présence reste anecdotique au regard de la faible concentration (2 cel/ml).

4.2.4 Indice Phytoplanctonique IPLAC

L'indice phytoplancton lacustre ou IPLAC est calculé à partir du SEEE (v1.1.0 en date du 07/04/2020). Il s'appuie sur la moyenne pondérée de 2 métriques : l'une basée sur les teneurs en chlorophylle a (µg/l) (MBA ou métrique de biomasse algale totale), et l'autre sur la présence d'espèces indicatrices quantifiée en biovolume (mm³/l) (MCS ou métrique de composition spécifique). Plus la valeur d'une métrique tend vers 1, plus la qualité est proche de la valeur prédite en conditions de référence. Les 5 classes d'état sont fournies sur la Figure 4.

Les classes d'état pour les deux métriques et l'IPLAC sont données pour Roselend dans le tableau suivant.

Code Lac	Nom Lac	année	MBA	MCS	IPLAC	Classe IPLAC
W0435023	Roselend	2019	0,990	0,869	0,905	TB

L'activité algale est faible, il en résulte une note MBA de 0,990. La métrique de composition spécifique MCS confirme également le faible degré de trophie du milieu avec une note de 0,869. Il en résulte une note IPLAC qui indique une très bonne qualité (0,905).

L'indice IPLAC de la retenue de Roselend obtient la valeur de 0,905, ce qui correspond à une très bonne classe d'état pour l'élément de qualité phytoplancton.

4.2.5 Comparaison avec les inventaires anterieurs

En 2019, l'évolution saisonnière des peuplements phytoplanctoniques est similaire à celle observée lors du suivi 2016, avec une domination des ochrophyta (*Kephyrion*) en début de saison puis un développement des diatomées jusqu'à la fin de saison (*Fragilaria* puis *Cyclotella costei*).

La production algale reste très faible dans la retenue de Roselend lors des différents suivis. L'étude des peuplements phytoplanctoniques ne montre pas de déséquilibres majeurs.

L'historique des valeurs IPLAC acquises sur le plan d'eau de Roselend est présenté dans le Tableau 15 (valeurs issues du SEEE V1.0.2 base du 07/01/2019).

Nom lac	code_Lac	année	MBA	MCS	IPLAC	Classe IPLAC
Roselend	W0435023	2013	1,000	0,839	0,888	TB
Roselend	W0435023	2016	0,990	0,721	0,802	TB
Roselend	W0435023	2019	0,990	0,869	0,905	TB

Tableau 15: évolution des Indices IPLAC depuis 2013

Les indices IPLAC sont assez stables depuis 2013, ils varient entre 0,8 et 0,9, classant la retenue de Roselend en très bon état.

La production phytoplanctonique reste très faible et proche de la référence comme le révèle la métrique MBA (0,99 à 1) lors des suivis 2013, 2016 et 2019.

La métrique de composition spécifique varie entre 0,72 et 0,87 soit en état bon à très bon. En 2016, l'indice MCS affichait seulement un bon état contrairement aux suivis 2013 et 2019 où il indiquait un très bon état.

Ces éléments tendent à indiquer que la retenue de Roselend présente un état du compartiment phytoplancton très bon depuis plusieurs années.

5 APPRECIATION GLOBALE DE LA QUALITE DU PLAN D'EAU

Le suivi physicochimique et biologique 2019 sur la retenue de Roselend s'est déroulé conformément aux prescriptions de suivi de l'état écologique et l'état chimique des eaux douces de surface. On rappelle que ce plan d'eau est suivi dans le cadre du réseau de contrôle de surveillance (RCS).

L'année 2019 a été globalement chaude mais bien arrosée au printemps et à l'automne.

Les résultats obtenus sont proches de ceux de 2013 et 2016 pour tous les compartiments, ils sont synthétisés dans le tableau suivant.

Compartiment	Synthèse de la qualité du plan d'eau ⁵
Profils verticaux	Stratification thermique assez courte avec réchauffement modéré de l'épilimnion (16°C) Bonne oxygénation de la masse d'eau Transparence élevée en fin de saison
Qualité physico-chimique des eaux	Absence de pollution organique Teneurs faibles en nutriments Turbidité naturelle en début de saison Présence d'arsenic et de zinc dans les eaux Peu de micropolluants organiques
Qualité physico-chimique des sédiments	Bonne qualité des sédiments : faible charge en matière organique et en nutriments. Concentrations assez élevées en arsenic, chrome et nickel (fond géochimique) Très faible présence de HAP
Biologie – chlorophylle a	Production chlorophyllienne très faible – Moyenne estivale : 0.7 μg/l – Transparence très élevée (9,7 m en moyenne estivale)
Biologie - phytoplancton	Peuplement de très bonne qualité – production algale très faible IPLAC : Très bon état

L'ensemble des suivis physico-chimiques et biologiques 2019 indique un milieu aquatique de très bonne qualité avec absence de pollutions organiques. La retenue de Roselend est utilisée pour l'hydroélectricité. Cette gestion entraîne une variation de niveaux d'eau avec un transfert inter-saisonnier des débits. Le marnage dépassait les 30 m lors de la campagne du 18 juin 2019.

Ce plan d'eau situé en haute montagne (1557 m) présente des conditions géo-climatiques peu favorables au développement biologique. Les analyses physico-chimiques des eaux montrent l'absence de pollutions organiques et d'apports en nutriments. La production primaire résultante dans le plan d'eau est réduite. Le peuplement algal affiche une très bonne qualité biologique.

Quelques métaux sont retrouvés dans les eaux (As, Zn). Il n'est pas recensé de contamination récurrente en micropolluants organiques.

Le compartiment sédiments affiche également une très bonne qualité avec un faible stockage en matière organique et en nutriments. Une contamination des sédiments en métaux arsenic, chrome et nickel est

⁵ il s'agit d'une interprétation des valeurs brutes observées (analyses physico-chimiques, peuplements biologiques) mais pas d'une stricte évaluation de l'Etat écologique et chimique selon les arrêtés en vigueur

détectée (origine = fond géochimique). Quelques HAP sont également mis en en évidence dans les sédiments.

Les résultats du suivi 2019 confirment la très bonne qualité de la retenue de Roselend. Le plan d'eau peut être qualifié d'oligotrophe.

Annexe 1. LISTE DES MICROPOLLUANTS ANALYSES SUR EAU

Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Uni
1368	Argent	0.01	μg(Ag)/L	6456	Acebutolol	0.005	μg/L	6594	Anilofos	0.005	μg,
1370	Aluminium	2	1	1453	Acénaphtène	0.01	μg/L	1458	Anthracène	0.01	μg,
			μg(Al)/L	1622	Acénaphtylène	0.01	μg/L	2013	Anthraquinone	0.005	μg,
1369	Arsenic	0.05	μg(As)/L	1100	Acéphate	0.005	μg/L	1965	Asulame	0.02	μg,
1362	Bore	10	μg(B)/L	1454	Acétaldéhyde	5	μg/L	5361	Atenolol	0.005	μg
1396	Baryum	0.5	μg(Ba)/L	5579	Acetamiprid	0.02	μg/L	1107	Atrazine	0.005	μg
1377	Beryllium	0.01	μg(Be)/L	6856	Acetochlor ESA	0.03	μg/L	1832	Atrazine 2 hydroxy	0.02	μд
1388	Cadmium	0.01	μg(Cd)/L	6862	Acetochlor OXA	0.03	μg/L	1109	Atrazine déisopropyl	0.01	μд
				1903	Acétochlore	0.005	μg/L	1108	Atrazine déséthyl	0.01	μе
1084	Cyanures libres	0.2	μg(CN)/L	5581	Acibenzolar-S-Methyl	0.02	μg/L	1830	Atrazine déséthyl	0.03	μе
1379	Cobalt	0.05	μg(Co)/L	6735	Acide acetylsalicylique	0.05		2014	Azaconazole	0.005	μе
1389	Chrome	0.5	μg(Cr)/L				μg/L	2015	Azaméthiphos	0.02	με
1392	Cuivre	0.1	μg(Cu)/L	5408	Acide clofibrique	0.005	μg/L	2937	Azimsulfuron	0.02	με
1393	Fer	1	μg(Fe)/L	5369	Acide fenofibrique	0.005	μg/L	1110	Azinphos éthyl	0.02	με
				6538	Acide mefenamique	0.005	μg/L	1111	Azinphos méthyl	0.005	με
1387	Mercure	0.01	μg(Hg)/L	1465	Acide	0.2	μg/L	7817	Azithromycine	0.5	με
1364	Lithium	0.5	μg(Li)/L	1521	Acide nitrilotriacétique	5	μg/L	1951	Azoxystrobine	0.02	με
1394	Manganèse	0.5	μg(Mn)/L	6549	Acide	0.2	/1	6231	BDE 181	0.0005	με
1395	Molybdène	1	μg(Mo)/L	0349	pentacosafluorotridecan	0.2	μg/L	5986	BDE 203	0.0015	με
1386	Nickel	0.5	μg(Ni)/L		Acide perfluorodecane			5997	BDE 205	0.0015	με
				6550	sulfonique (PFDS)	0.005	μg/L	2915	BDE100	0.0002	με
1382	Plomb	0.05	μg(Pb)/L		Acide perfluoro-			2913	BDE138	0.00015	με
1376	Antimoine	0.5	μg(Sb)/L	6509	decanoïque (PFDA)	0.002	μg/L	2912	BDE153	0.0002	με
1385	Sélénium	0.1	μg(Se)/L					2911	BDE154	0.0002	με
1380	Etain	0.5	μg(Sn)/L	6507	Acide perfluoro-	0.02	μg/L	2921	BDE17	0.00015	με
					dodecanoïque (PFDoA)		-	2910	BDE183	0.0005	μ
2559	Tellure	0.5	μg(Te)/L	6542	Acide perfluoroheptane	0.001	μg/L	2909	BDE190	0.0005	με
1373	Titane	0.5	μg(Ti)/L		sulfonique		r-or =	1815	BDE209	0.005	μ
2555	Thallium	0.01	μg(TI)/L		Acide			2920	BDE28	0.0002	μ
1361	Uranium	0.05	μg(U)/L	6830	perfluorohexanesulfoni	0.002	μg/L	2919	BDE47	0.0002	μ
1384	Vanadium	0.1	μg(V)/L		que (PFHS)			2918	BDE66	0.00015	μ
				5980	Acide perfluoro-n-	0.2	μg/L	2917	BDE71	0.00015	με
1383	Zinc	1	μg(Zn)/L		Acide perfluoro-n-			7437	BDE77	0.00013	μ
	1-(3-chloro-4-			5977	heptanoïque (PFHpA)	0.002	μg/L	2914	BDE85	0.0002	
2934	methylphenyl)uree	0.02	μg/L								με
	methyrphenyrjaree			5978	Acide perfluoro-n-	0.002	μg/L	2916	BDE99	0.0002	με
6751	1,7-Dimethylxanthine	0.1	μg/L		hexanoïque (PFHxA)			7522	Beflubutamide	0.01	με
				6508	Acide perfluoro-n-	0.02	μg/L	1687	Bénalaxyl	0.005	με
7041	14-	0.005	μg/L	0300	nonanoïque (PFNA)	0.02	μg/ L	7423	BENALAXYL-M	0.1	με
5399	17alpha-Estradiol	0.005	μg/L	CF10	Acide perfluoro-n-	0.02	/1	1329	Bendiocarbe	0.005	μ
7011	1-Hydroxy Ibuprofen	0.01	μg/L	6510	undecanoïque (PFUnA)	0.02	μg/L	1112	Benfluraline	0.005	με
1264	245T	0.02	μg/L		Acide			2924	Benfuracarbe	0.05	με
				6560	perfluorooctanesulfoniq	0.02	μg/L	2074	Benoxacor	0.005	μ
1141	24D	0.02	μg/L		Acide perfluoro-			5512	Bensulfuron-methyl	0.02	μ
2872	24D isopropyl ester	0.005	μg/L	5347	octanoïque (PFOA)	0.002	μg/L	6595	Bensulide	0.005	με
2873	24D méthyl ester	0.005	μg/L					1113	Bentazone	0.03	με
1142	2 4 DB	0.1	μg/L	6547	Acide	0.02	μg/L	7460	Benthiavalicarbe-	0.02	με
1212	2 4 MCPA	0.02			Perfluorotetradecanoiqu			1764	Benthiocarbe	0.005	με
			μg/L	5355	Acide salicylique	0.05	μg/L	1114	Benzène	0.5	με
1213	2 4 MCPB	0.03	μg/L	1970	Acifluorfen	0.02	μg/L	1082	Benzo (a) Anthracène	0.001	μ
2011	2 6 Dichlorobenzamide	0.005	μg/L	1688	Aclonifen	0.001	μg/L	1115	Benzo (a) Pyrène	0.01	μ
	2-(3-			1310	Acrinathrine	0.005	μg/L	1116	Benzo (b) Fluoranthène	0.0005	με
6870	trifluoromethylphenoxy	0.005	μg/L	6800	Alachlor ESA	0.03	μg/L	1118	Benzo (ghi) Pérylène	0.0005	με
3070		5.005	μ6/ L	6855	Alachlor OXA	0.03	μg/L	1117	Benzo (k) Fluoranthène	0.0005	με
)nicotinamide		 	1101	Alachlore	0.005	μg/L	1924	Benzyl butyl phtalate	0.05	μ
7815	2,6-di-tert-butyl-4-	0.05	μg/L	6740	Albendazole	0.005	μg/L	3209	Beta cyfluthrine	0.01	με
6022	2.4+2.5-dichloroanilines	0.05	μg/L		Aldicarbe	0.005		6652	beta-	0.05	μ
7012	2-Hydroxy Ibuprofen	0.1	μg/L	1102			μg/L	6457	Betaxolol	0.005	μ
3159	2-hydroxy-desethyl-	0.02		1807	Aldicarbe sulfone	0.02	μg/L	5366	Bezafibrate	0.005	μ
2132		0.02	μg/L	1806	Aldicarbe sulfoxyde	0.02	μg/L	1119	Bifénox	0.005	μ
5352	2-Naphthaleneacetic	0.1	μg/L	1103	Aldrine	0.001	μg/L	1119	Bifenthrine	0.005	
JJJL	acid, 6-hydroxy-alph	0.1	MP/ ₽	1697	Alléthrine	0.03	μg/L	1502	Bioresméthrine	0.005	μ <u>ε</u> μ <u>ε</u>
2613	2-nitrotoluène	0.02	μg/L	7501	Allyxycarbe	0.005	μg/L				
5695	3,4,5-Trimethacarb	0.005	μg/L	6651	alpha-	0.05	μg/L	1584	Biphényle	0.005	μ
				1812	Alphaméthrine	0.005	μg/L	6453	Bisoprolol	0.005	μ
2820	3-Chloro-4	0.05	μg/L	5370	Alprazolam	0.01	μg/L	7594	Bisphenol S	0.02	μ
5367	4-Chlorobenzoic acid	0.1	μg/L	7842	Ametoctradine	0.01		2766	Bisphénol-A	0.02	μ
7046	4-méthoxycinnamate de						μg/L	1529	Bitertanol	0.005	με
7816	2-éthylhexyle	0.65	μg/L	1104	Amétryne	0.02	μg/L	7104	Bithionol	0.1	με
6526	· · · · · · · · · · · · · · · · · · ·	0.02	110/1	5697	Amidithion	0.005	μg/L	7345	Bixafen	0.02	μ
6536	4-Methylbenzylidene	0.02	μg/L	2012	Amidosulfuron	0.02	μg/L	5526	Boscalid	0.02	με
5474	4-n-nonylphénol	0.1	μg/L	5523	Aminocarbe	0.02	μg/L	1686	Bromacil	0.005	με
1958	4-nonylphénols ramifiés	0.1	μg/L	2537	Aminochlorophénol-2,4	0.1	μg/L	1859	Bromadiolone	0.05	με
2610	4-tert-butylphénol	0.02	μg/L	7580	Aminopyralid	0.1	μg/L	5371	Bromazepam	0.01	μ
				1105	Aminotriazole	0.03	μg/L	1121	Bromochlorométhane	0.5	με
1959	4-tert-octylphénol	0.03	μg/L	7516	Amiprofos-methyl	0.005	μg/L	1122	Bromoforme	0.5	μ
								1123	Bromophos éthyl	0.005	μ
				1308	Amitraze	0.005	μg/L	1124	Bromophos méthyl	0.005	μ
				6967	Amitriptyline	0.005	μg/L	1685	Bromopropylate	0.005	μ
				6781	Amlodipine	0.05	μg/L	1125	Bromoxynil	0.003	
				6719	Amoxicilline	0.02	μg/L	1941		0.02	με
				1907	AMPA	0.02	μg/L		Bromoxynil octanoate	0.01	με
								1860	Bromuconazole	0.02	μ

Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Uni
7502	Bufencarbe	0.02	μg/L	1471	Chlorophénol-2	0.05	μg/L	7801	Cyprosulfamide	0.02	μg,
6742	Buflomedil	0.05	μg/L	1651	Chlorophénol-3	0.05	μg/L	2897	Cyromazine	0.02	μg,
1861	Bupirimate	0.01	μg/L	1650	Chlorophénol-4	0.05	μg/L	7503	Cythioate	0.02	μg,
				2611	Chloroprène	0.5	μg/L	5930	Daimuron	0.005	μg
6518	Bupivacaine	0.005	μg/L	2065	Chloropropène-3	0.5	μg/L	2094	Dalapon	0.02	μg
1862	Buprofézine	0.005	μg/L					5597	Daminozide	0.03	μе
5710	Butamifos	0.005	μg/L	1473	Chlorothalonil	0.01	μg/L	6677	Danofloxacine	0.1	με
1126	Butraline	0.005	μg/L	1602	Chlorotoluène-2	0.5	μg/L	1869	Dazomet	0.05	με
1531	Buturon	0.02	μg/L	1601	Chlorotoluène-3	0.5	μg/L	1929	DCPMU (métabolite du	0.02	щ
7038	Butylate	0.03	μg/L	1600	Chlorotoluène-4	0.5	μg/L	1323	Diuron)	0.02	r
				1683	Chloroxuron	0.005	μg/L	1930	DCPU (métabolite	0.05	щ
1855	Butylbenzène n	0.5	μg/L	1474	Chlorprophame	0.005	μg/L	1930	Diuron)	0.03	
1610	Butylbenzène sec	0.5	μg/L	1083	Chlorpyriphos éthyl	0.005	μg/L	1143	DDD-o,p'	0.001	щ
1611	Butylbenzène tert	0.5	μg/L	1540	Chlorpyriphos méthyl	0.005		1144	DDD-p,p'	0.001	μ
1863	Cadusafos	0.02	μg/L				μg/L	1145	DDE-o,p'	0.001	щ
6519	Cafeine	0.01	μg/L	1353	Chlorsulfuron	0.02	μg/L	1146	DDE-p,p'	0.001	щ
1127	Captafol	0.01	μg/L	6743	Chlortetracycline	0.02	μg/L	1147	DDT-o,p'	0.001	щ
				2966	Chlorthal dimethyl	0.005	μg/L	1148	DDT-p,p'	0.001	щ
1128	Captane	0.01	μg/L	1813	Chlorthiamide	0.01	μg/L	6616	DEHP	0.4	Щ
5296	Carbamazepine	0.005	μg/L	5723	Chlorthiophos	0.02	μg/L	1149	Deltaméthrine	0.001	Щ
6725	Carbamazepine epoxide	0.005	μg/L	1136	Chlortoluron	0.02	μg/L	1153	Déméton S méthyl	0.005	Щ
1463	Carbaryl	0.02	μg/L						Déméton S méthyl		
1129	Carbendazime	0.005	μg/L	2715	Chlorure de Benzylidène	0.1	μg/L	1154	sulfone	0.01	μ
				2977	CHLORURE DE CHOLINE	0.1	μg/L	1150		0.01	
1333	Carbétamide	0.02	μg/L	1753	Chlorure de vinyle	0.05	μg/L	1150	Déméton-O	0.01	Щ
1130	Carbofuran	0.005	μg/L	1476	Chrysène	0.01	μg/L	1152	Déméton-S	0.01	μ
1805	Carbofuran 3 hydroxy	0.02	μg/L	5481	Cinosulfuron	0.005	μg/L	2051	Déséthyl-terbuméthon	0.02	μ
1131	Carbophénothion	0.005	μg/L	6540	Ciprofloxacine	0.02	μg/L	2980	Desmediphame	0.02	μ
1864	Carbosulfan	0.02	μg/L	6537	Clarithromycine	0.005		2738	Desméthylisoproturon	0.02	μ
					·		μg/L	1155	Desmétryne	0.02	μ
2975	Carboxine	0.02	μg/L	6968	Clenbuterol	0.005	μg/L	6574	Dexamethasone	0.05	μ
6842	Carboxyibuprofen	0.1	μg/L	2978	Clethodim	0.02	μg/L	1156	Diallate	0.02	μ
2976	Carfentrazone-ethyl	0.005	μg/L	6792	Clindamycine	0.005	μg/L	5372	Diazepam	0.005	μ
1865	Chinométhionate	0.005	μg/L	2095	Clodinafop-propargyl	0.02	μg/L	1157	Diazinon	0.005	μ
7500	Chlorantraniliprole	0.02	μg/L	1868	Clofentézine	0.005	μg/L	4624	5:1 (1) 4 (1)	0.04	
1336	Chlorbufame	0.02		2017	Clomazone	0.005	μg/L	1621	Dibenzo (ah) Anthracène	0.01	μ
			μg/L						Dibromo-1,2 chloro-		
7010	Chlordane alpha	0.005	μg/L	1810	Clopyralide	0.02	μg/L	1479	3propane	0.5	щ
1757	Chlordane beta	0.005	μg/L	2018	Cloquintocet mexyl	0.005	μg/L	1158	Dibromochlorométhane	0.05	щ
1758	Chlordane gamma	0.005	μg/L	6748	Clorsulone	0.01	μg/L	1498	Dibromoéthane-1,2	0.05	щ
5553	Chlorefenizon	0.005	μg/L	6389	Clothianidine	0.03	μg/L	1513	Dibromométhane	0.5	щ
1464	Chlorfenvinphos	0.02	μg/L	5360	Clotrimazole	0.005	μg/L	7074	Dibutyletain cation	0.0025	Щ
2950	Chlorfluazuron	0.01	μg/L	6520	Cotinine	0.005	μg/L	1480	Dicamba	0.03	Щ
				2972	Coumafène	0.005	μg/L	1679	Dichlobénil	0.005	Щ
1133	Chloridazone	0.005	μg/L	1682	Coumaphos	0.02	μg/L	1159	Dichlofenthion	0.005	μ
5522	Chlorimuron-ethyl	0.02	μg/L					1360	Dichlofluanide	0.005	μ
5405	Chlormadinone	0.01	μg/L	2019	Coumatétralyl	0.005	μg/L	1160	Dichloréthane-1,1	0.005	
1134	Chlorméphos	0.005	μg/L	1640	Crésol-ortho	0.05	μg/L				μ
5554	Chlormequat	0.03	μg/L	5724	Crotoxyphos	0.005	μg/L	1161	Dichloréthane-1,2	0.5	μ
2097				5725	Crufomate	0.005	μg/L	1162	Dichloréthylène-1,1	0.5	μ
	Chlormequat chlorure	0.038	μg/L	6391	Cumyluron	0.03	μg/L	1456	Dichloréthylène-1,2 cis	0.05	μ
1955	Chloroalcanes C10-C13	0.15	μg/L	1137	Cyanazine	0.02	μg/L	1727	Dichloréthylène-1,2	0.5	μ
1593	Chloroaniline-2	0.05	μg/L	5726	Cyanofenphos	0.1			trans		
1592	Chloroaniline-3	0.05	μg/L				μg/L	2929	Dichlormide	0.01	μ
1591	Chloroaniline-4	0.05	μg/L	5567	Cyazofamid	0.05	μg/L	1586	Dichloroaniline-3,4	0.015	μ
1467	Chlorobenzène	0.5	μg/L	5568	Cycloate	0.02	μg/L	1585	Dichloroaniline-3,5	0.02	μ
				6733	Cyclophosphamide	0.001	μg/L	1165	Dichlorobenzène-1,2	0.05	μ
2016	Chlorobromuron	0.005	μg/L	2729	CYCLOXYDIME	0.02	μg/L	1164	Dichlorobenzène-1,3	0.5	μ
1853	Chloroéthane	0.5	μg/L	1696	Cycluron	0.02	μg/L	1166	Dichlorobenzène-1,4	0.05	μ
1135	Chloroforme	0.5	μg/L	7748	cyflufénamide	0.05	μg/L	1167	Dichlorobromométhane	0.05	μ
1736	Chlorométhane	0.5	μg/L	1681	Cyfluthrine			1405	Dichlorodifluorométhan	0.5	
2821	Chlorométhylaniline-4,2	0.02	μg/L			0.005	μg/L	1485	e	0.5	μ
				5569	Cyhalofop-butyl	0.05	μg/L	1168	Dichlorométhane	5	μ
1636	Chlorométhylphénol-4,3	0.05	μg/L	1138	Cyhalothrine	0.005	μg/L		Dichloronitrobenzène-		
1341	Chloronèbe	0.005	μg/L	1139	Cymoxanil	0.02	μg/L	1617	2,3	0.05	щ
1594	Chloronitroaniline-4,2	0.1	μg/L	1140	Cyperméthrine	0.005	μg/L		Dichloronitrobenzène-		
1469	Chloronitrobenzène-1,2	0.02	μg/L	1680	Cyproconazole	0.02	μg/L	1616	2,4	0.05	μ
1468	Chloronitrobenzène-1,3	0.02	μg/L	1359	Cyprodinil	0.005					-
				1333	сургошни	0.005	μg/L	1615	Dichloronitrobenzène-	0.05	щ
1470	Chloronitrobenzène-1,4	0.05	μg/L						2,5		H.,
1684	Chlorophacinone	0.02	μg/L					1614	Dichloronitrobenzène- 3,4	0.05	щ
								1613	Dichloronitrobenzène- 3,5	0.05	μ

Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unite
1645	Dichlorophénol-2,3	0.05	μg/L	6791	Doxycycline	0.005	μg/L	1825	Fluazifop-butyl	0.02	μg/L
1647	Dichlorophénol-3,4	0.05		7515	DPU (Diphenylurée)	0.01	μg/L	1404	Fluazifop-P-butyl	0.1	μg/L
	· ·		μg/L	6714	Dydrogesterone	0.02	μg/L	2984	Fluazinam	0.1	μg/l
1655	Dichloropropane-1,2	0.2	μg/L	5751	Edifenphos	0.005	μg/L	2022	Fludioxonil	0.02	μg/L
1654	Dichloropropane-1,3	0.5	μg/L	1493	EDTA	5	μg/L	6863	Flufenacet oxalate	0.01	μg/l
2081	Dichloropropane-2,2	0.05	μg/L	8102	Emamectine	0.1	μg/L	6864	Flufenacet sulfonic acid	0.01	μg/l
2082	Dichloropropène-1,1	0.5	μg/L	1178	Endosulfan alpha	0.001	μg/L	1676	Flufénoxuron	0.02	μg/L
1834	Dichloropropylène-1,3	0.05	μg/L	1179	Endosulfan beta	0.001	μg/L	5635 2023	Flumequine Flumioxazine	0.02	μg/L
1835	Dichloropropylène-1,3	0.05	μg/L	1742	Endosulfan sulfate	0.001	μg/L	1501	Fluométuron	0.003	μg/l μg/l
1653	Dichloropropylène-2,3	0.5	μg/L	1181	Endrine	0.001	μg/L	7499	Fluopicolide	0.02	μg/L
1169	Dichlorprop	0.03	μg/L	2941	Endrine aldehyde	0.005	μg/L	7649	Fluopyram	0.02	μg/L
2544	Dichlorprop-P	0.03	μg/L	6768	Enoxacine	0.02	μg/L	1191	Fluoranthène	0.005	μg/L
1170	Dichlorvos	0.00025	μg/L	6784	Enrofloxacine	0.02	μg/L	1623	Fluorène	0.005	μg/L
5349	Diclofenac	0.01	μg/L	1494	Epichlorohydrine	0.1	μg/L	5373	Fluoxetine	0.005	μg/L
1171	Diclofop méthyl	0.05	μg/L	1873	EPN	0.005	μg/L	2565	Flupyrsulfuron methyle	0.02	μg/L
1172	Dicofol	0.005	μg/L	1744	Epoxiconazole	0.02	μg/L	2056	Fluquinconazole	0.02	μg/L
5525	Dicrotophos	0.005	μg/L	1182	EPTC	0.1	μg/L	1974	Fluridone	0.02	μg/L
6696	Dicyclanil	0.003		7504	Equilin	0.005	μg/L	1675	Flurochloridone	0.005	μg/l
	,		μg/L	6522	Erythromycine	0.005	μg/L	1765	Fluroxypyr	0.03	μg/l
2847	Didéméthylisoproturon	0.02	μg/L	1809	Esfenvalérate	0.005	μg/L	2547	Fluroxypyr-meptyl	0.02	μg/L
1173	Dieldrine	0.001	μg/L	5397	Estradiol	0.005	μg/L μg/L	2024	Flurprimidol	0.005	μg/L
7507	Dienestrol	0.005	μg/L	6446	Estracion	0.005		2008	Flurtamone	0.02	μg/L
1402	Diéthofencarbe	0.02	μg/L	5396	Estrone	0.005	μg/L	1194	Flusilazole	0.02	μg/L
1527	Diéthyl phtalate	0.05	μg/L	5529	Ethametsulfuron-methyl		μg/L	2985	Flutolanil	0.02	μg/L
2826	Diéthylamine	6	μg/L			0.005	μg/L	1503	Flutriafol	0.02	μg/l
2628	Diethylstilbestrol	0.005	μg/L	2093	Ethephon	0.02	μg/L	6739	Fluvoxamine	0.01	μg/l
2982	Difenacoum	0.005	μg/L	1763	Ethidimuron	0.02	μg/L	7342	fluxapyroxade	0.01	μg/I
1905	Difénoconazole	0.003	μg/L	5528	Ethiofencarbe sulfone	0.005	μg/L	1192	Folpel	0.01	μg/I
				6534	Ethiofencarbe sulfoxyde	0.02	μg/L	2075	Fomesafen	0.05	μg/
5524	Difenoxuron Difethialone	0.005	μg/L	1183	Ethion	0.02	μg/L	1674	Fonofos	0.005	μg/
2983		0.02	μg/L	1874	Ethiophencarbe	0.02	μg/L	2806	Foramsulfuron	0.03	μg/
1488	Diflubenzuron	0.02	μg/L	1184	Ethofumésate	0.005	μg/L	5969	Forchlorfenuron	0.005	μg/l
1814	Diflufénicanil	0.001	μg/L	1495	Ethoprophos	0.02	μg/L	1702	Formaldéhyde	1	μg/
6647	Dihydrocodeine	0.005	μg/L	5527	Ethoxysulfuron	0.02	μg/L	1975	Foséthyl aluminium	0.02	μg/
5325	Diisobutyl phthalate	0.4	μg/L	2673	Ethyl tert-butyl ether	0.5	μg/L	1816 2744	Fosetyl	0.0185	μg/
6729	Diltiazem	0.005	μg/L	1497	Ethylbenzène	0.5	μg/L	1908	Fosthiazate Furalaxyl	0.02	μg/
1870	Diméfuron	0.02	μg/L	5648	EthylèneThioUrée	0.1	μg/L	2567	Furathiocarbe	0.003	μg/ μg/
7142	Dimepiperate	0.005	μg/L	6601	EthylèneUrée	0.1	μg/L	7441	Furilazole	0.02	μg/
2546	Dimétachlore	0.005	μg/L	6644	Ethylparaben	0.01	μg/L	5364	Furosemide	0.02	μg/I
5737	Dimethametryn	0.005	μg/L	2629	Ethynyl estradiol	0.001	μg/L	7602	Gabapentine	0.01	μg/I
				5625	Etoxazole	0.005	μg/L		gamma-		
6865	Dimethenamid ESA	0.01	μg/L	5760	Etrimfos	0.005	μg/L	6653	Hexabromocyclododeca	0.05	μg/
1678	Diméthénamide	0.005	μg/L	2020	Famoxadone	0.005	μg/L	5365	Gemfibrozil	0.02	μg/
7735	Diméthénamide OXA	0.01	μg/L	5761	Famphur	0.005	μg/L	1526	Glufosinate	0.02	μg/
5617	Dimethenamid-P	0.03	μg/L	2057	Fénamidone	0.02	μg/L	1506	Glyphosate	0.03	μg/
1175	Diméthoate	0.01	μg/L	1185	Fénarimol	0.005	μg/L	5508	Halosulfuron-methyl	0.02	μg/
1403	Diméthomorphe	0.02	μg/L	2742	Fénazaguin	0.02	μg/L	2047	Haloxyfop	0.05	μg/
2773	Diméthylamine	10	μg/L	6482	Fenbendazole	0.005	μg/L	1833	Haloxyfop-éthoxyéthyl	0.02	μg/
1641	Diméthylphénol-2,4	0.02	μg/L	1906	Fenbuconazole	0.003	μg/L	1909	Haloxyfop-R	0.005	μg/
6972	Dimethylvinphos	0.005	μg/L	2078	Fenbutatin oxyde	0.0217	μg/L μg/L	1200	HCH alpha	0.001	μg/
1698	Dimétilan	0.003	μg/L	7513	Fenchlorazole-ethyl	0.0217	μg/L μg/L	1201	HCH beta	0.001	μg/
5748		0.02	μg/L μg/L	1186	Fenchlorphos	0.005	μg/L μg/L	1202	HCH delta	0.001	μg/
	dimoxystrobine			2743	Fenhexamid	0.005	μg/L μg/L	2046	HCH epsilon	0.005	μg/
1871	Diniconazole	0.02	μg/L	1187	Fénitrothion	0.005		1203	HCH gamma	0.001	μg/
1578	Dinitrotoluène-2,4	0.5	μg/L	5627	Fenitrothion	0.001	μg/L	1197	Heptachlore	0.005	μg/
1577	Dinitrotoluène-2,6	0.5	μg/L				μg/L	1748	Heptachlore époxyde cis	0.005	μg/
5619	Dinocap	0.05	μg/L	5763	Fenobucarb	0.005	μg/L	1749	Heptachlore époxyde	0.005	μg/
1491	Dinosèbe	0.02	μg/L	5368	Fenofibrate	0.01	μg/L	1910	Heptenophos	0.005	μg/
1176	Dinoterbe	0.03	μg/L	6970	Fenoprofen	0.05	μg/L	1199	Hexachlorobenzène	0.001	μg/
7494	Dioctyletain cation	0.0025	μg/L	5970	Fenothiocarbe	0.005	μg/L	1652	Hexachlorobutadiène	0.02	μg/
5743	Dioxacarb	0.005	μg/L	1973	Fénoxaprop éthyl	0.02	μg/L	1656	Hexachloroéthane	0.3	μg/
7495	Diphenyletain cation	0.00046	μg/L	1967	Fénoxycarbe	0.005	μg/L	2612	Hexachloropentadiène	0.1	μg/
1699	Diquat	0.0040		1188	Fenpropathrine	0.005	μg/L	1405	Hexaconazole	0.02	μg/
	Diquat		μg/L	1700	Fenpropidine	0.01	μg/L	1875	Hexaflumuron	0.005	μg/
1492		0.005	μg/L	1189	Fenpropimorphe	0.005	μg/L	1673	Hexazinone	0.02	μg/
5745	Ditalimfos	0.05	μg/L	1190	Fenthion	0.005	μg/L	1876	Hexythiazox	0.02	μg/
1966	Dithianon	0.1	μg/L	1500	Fénuron	0.02	μg/L	5645	Hydrazide maleique	0.5	μg/
1177	Diuron	0.02	μg/L	1701	Fenvalérate	0.01	μg/L	6746	Hydrochlorothiazide	0.005	μg/
1490	DNOC	0.02	μg/L	2021	Ferbam	10000	μg/L	6730	Hydroxy-metronidazole	0.01	μg/
2933	Dodine	0.02	μg/L	2009	Fipronil	0.005	μg/L	5350	Ibuprofene Ifosfamide	0.01	μg/
6969	Doxepine	0.005	μg/L	1840	Flamprop-isopropyl	0.005	μg/L	6727	Imazalil	0.005	μg/
			r 01 =	6539	Flamprop-methyl	0.005	μg/L	1704 1695	Imazaııı	0.02	μg/ μg/
				1939	Flazasulfuron	0.02	μg/L	1911	Imazamethabenz méthyl	0.02	μg/ μg/
				6393	Flonicamid	0.005	μg/L	1511	mazamethabenz methyl	0.01	μg/
				2810	Florasulam	0.02	μg/L				
				6764	Florfenicol	0.1	μg/L				
				6545	Fluazifop	0.02	μg/L μg/L				

Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Un
2986	Imazamox	0.02	μg/L	2752	Mecoprop-2-	0.005	μg/L	1881	Myclobutanil	0.02	μе
2090	Imazapyr	0.02	μg/L	2753	Mecoprop-2-ethylhexyl	0.005	μg/L	6380	N-(2,6-dimethylphenyl)-	0.01	μе
2860	IMAZAQUINE	0.02	μg/L	2754	Mecoprop-2-octyl ester	0.005	μg/L		N-(2-methoxyethyl		
				2755	Mecoprop-methyl ester	0.005	μg/L	6443	Nadolol	0.005	μе
7510	Imibenconazole	0.005	μg/L	2084	Mécoprop-P	0.1	μg/L	1516	Naled	0.005	μе
1877	Imidaclopride	0.02	μg/L	1968	Méfenacet	0.005		1517	Naphtalène	0.005	μе
6971	Imipramine	0.005	μg/L				μg/L	1519	Napropamide	0.005	με
1204	Indéno (123c) Pyrène	0.0005	μg/L	2930	Méfenpyr diethyl	0.005	μg/L	5351	Naproxene	0.05	με
6794	Indometacine	0.02	μg/L	2568	Mefluidide	0.02	μg/L	1937	Naptalame	0.05	μ
5483	Indoxacarbe	0.02	μg/L	2987	Méfonoxam	0.02	μg/L	1462	n-Butyl Phtalate	0.05	Щ
6706	Iobitridol	0.1	μg/L	5533	Mepanipyrim	0.005	μg/L	1520	Néburon	0.02	μ
2741	Iodocarbe	0.02		5791	Mephosfolan	0.005	μg/L	1882	Nicosulfuron	0.01	μ
			μg/L	1969	Mépiquat	0.03	μg/L	5657	Nicotine	0.02	μ
2025	Iodofenphos	0.005	μg/L	2089	Mépiquat chlorure	0.04	μg/L	2614	Nitrobenzène	0.1	μ
2563	Iodosulfuron	0.02	μg/L	6521	Mepivacaine	0.01	μg/L	1229	Nitrofène	0.005	μ
5377	Iopromide	0.1	μg/L	1878	Mépronil	0.005	μg/L	1637	Nitrophénol-2	0.05	μ
1205	loxynil	0.02	μg/L	1677	·	1		5400	Norethindrone	0.001	μ
2871	loxynil methyl ester	0.005	μg/L		Meptyldinocap		μg/L	6761	Norfloxacine	0.1	μ
1942	loxynil octanoate	0.01	μg/L	1510	Mercaptodiméthur	0.01	μg/L	6772	Norfluoxetine	0.005	μ
7508	Ipoconazole	0.02	μg/L	1804	Mercaptodiméthur	0.02	μg/L	1669	Norflurazon	0.005	μ
	·			2578	Mesosulfuron methyle	0.02	μg/L	2737	Norflurazon desméthyl	0.005	μ
5777	Iprobenfos	0.005	μg/L	2076	Mésotrione	0.03	μg/L	1883	Nuarimol	0.005	μ
1206	Iprodione	0.005	μg/L	1706	Métalaxyl	0.02	μg/L	6767	O-Demethyltramadol	0.005	μ
2951	Iprovalicarbe	0.02	μg/L	1796	Métaldéhyde	0.02	μg/L	6533	Ofloxacine	0.02	μ
6535	Irbesartan	0.005	μg/L	1215	Métamitrone	0.02	μg/L	2027	Ofurace	0.005	μ
1935	Irgarol (Cybutryne)	0.0025	μg/L	6894	Metazachlor oxalic acid	0.1	μg/L	1230	Ométhoate	0.0005	μ
1976	Isazofos	0.02	μg/L	6895	Metazachlor sulfonic	0.1	μg/L	1668	Oryzalin	0.1	μ
1836	Isobutylbenzène	0.5	μg/L	1670	Métazachlore	0.005	μg/L	2068	Oxadiargyl	0.005	μ
1207	Isodrine	0.001	μg/L		Metconazole			1667	Oxadiazon	0.005	μ
				1879		0.02	μg/L	1666	Oxadixyl	0.005	μ
1829	Isofenphos	0.005	μg/L	6755	Metformine	0.005	μg/L	1850	Oxamyl	0.02	μ
5781	Isoprocarb	0.005	μg/L	1216	Méthabenzthiazuron	0.005	μg/L	5510	Oxasulfuron	0.005	μ
1633	Isopropylbenzène	0.5	μg/L	5792	Methacrifos	0.02	μg/L	5375	Oxazepam	0.005	μ
2681	Isopropyltoluène o	0.5	μg/L	1671	Méthamidophos	0.02	μg/L	7107	Oxyclozanide	0.005	μ
1856	Isopropyltoluène p	0.5	μg/L	1217	Méthidathion	0.02	μg/L	6682	Oxycodone	0.01	μ
1208	Isoproturon	0.02	μg/L	1218	Méthomyl	0.02	μg/L	1231	Oxydéméton méthyl	0.02	μ
6643	Isoquinoline	0.01	μg/L	6793	Methotrexate	0.005	μg/L	1952	Oxyfluorfène	0.002	μ
2722	Isothiocyanate de	0.05	μg/L	1511	Méthoxychlore	0.005	μg/L	6532	Oxytetracycline	0.005	μ
				5511	Methoxyfenoside	0.1	μg/L	1920	p-(n-octyl)phénol	0.03	μ
1672	Isoxaben	0.02	μg/L	1619	Méthyl-2-Fluoranthène	0.001	μg/L	2545	Paclobutrazole	0.02	μ
2807	Isoxadifen-éthyle	0.005	μg/L	1618		0.001		5354	Paracetamol	0.025	μ
1945	Isoxaflutol	0.02	μg/L		Méthyl-2-Naphtalène		μg/L	5806	Paraoxon	0.005	μ
5784	Isoxathion	0.005	μg/L	6695	Methylparaben	0.01	μg/L	1232	Parathion éthyl	0.01	μ
7505	Karbutilate	0.005	μg/L	2067	Metiram	0.03	μg/L	1233	Parathion méthyl	0.005	μ
5353	Ketoprofene	0.01	μg/L	1515	Métobromuron	0.02	μg/L	6753	Parconazole	0.1	μ
7669	Ketorolac	0.01	μg/L	6854	Metolachlor ESA	0.02	μg/L	1242	PCB 101	0.0012	μ
1950	Kresoxim méthyl	0.02	μg/L	6853	Metolachlor OXA	0.02	μg/L	1627	PCB 105	0.0003	μ
1094	Lambda Cyhalothrine	0.00006	μg/L	1221	Métolachlore	0.005	μg/L	5433	PCB 114	0.00003	μ
				5796	Metolcarb	0.005	μg/L	1243	PCB 118	0.0012	μ
1406	Lénacile	0.005	μg/L	5362	Metoprolol	0.005	μg/L	5434 2943	PCB 123 PCB 125	0.00003	μ
6711	Levamisole	0.005	μg/L	1912	Métosulame	0.005	μg/L			0.0000	μ
6770	Levonorgestrel	0.02	μg/L	1222	Métoxuron	0.02	μg/L	1089 1884	PCB 126 PCB 128	0.0000	μ
7843	Lincomycine	0.005	μg/L	5654	Metrafenone	0.005	μg/L	1244	PCB 128	0.0012	μ
1209	Linuron	0.02	μg/L	1225	Métribuzine	0.003		1885	PCB 138 PCB 149		μ
5374	Lorazepam	0.005	μg/L		Metronidazole		μg/L	1245	PCB 149	0.0012 0.0012	μ
1210	Malathion	0.005	μg/L	6731		0.005	μg/L	2032	PCB 153	0.0012	μ
5787	Malathion-o-analog	0.005	μg/L	1797	Metsulfuron méthyl	0.02	μg/L	5435		0.00012	μ
	Mancozèbe			1226	Mévinphos	0.005	μg/L		PCB 157		μ
1211		0.03	μg/L	7143	Mexacarbate	0.005	μg/L	5436 1090	PCB 167 PCB 169	0.00003	Į.
6399	Mandipropamid	0.02	μg/L	1707	Molinate	0.005	μg/L	1626	PCB 169	0.0000	μ
1705	Manèbe	0.03	μg/L	2542	Monobutyletain cation	0.0025	μg/L	1246	PCB 170	0.0012	μ
6700	Marbofloxacine	0.1	μg/L	1880	Monocrotophos	0.02	μg/L	5437	PCB 180	0.00012	μ
2745	MCPA-1-butyl ester	0.005	μg/L	1227	Monolinuron	0.02	μg/L	1625	PCB 189		μ
2746	MCPA-2-ethylhexyl	0.005	μg/L	7496	Monooctyletain cation	0.001	μg/L	1624	PCB 194 PCB 209	0.0012	μ
2747	MCPA-butoxyethyl ester	0.005	μg/L	7497	Monophenyletain cation	0.001					μ
							μg/L	1239	PCB 28	0.0012	μ
2748	MCPA-ethyl-ester	0.01	μg/L	1228	Monuron	0.02	μg/L	1886	PCB 31	0.005	μ
2749	MCPA-methyl-ester	0.005	μg/L	6671	Morphine	0.02	μg/L	1240	PCB 35	0.005	μ
5789	Mecarbam	0.005	μg/L	7475	Morpholine	2	μg/L	2031	PCB 37	0.005	μ
1214	Mécoprop	0.02	μg/L	1512	MTBE	0.5	μg/L	1628	PCB 44	0.0012	μ
2870	Mecoprop n isobutyl	0.005	μg/L	6342	Musc xylène	0.1	μg/L	1241	PCB 52	0.0012	μ
								2048	PCB 54	0.0012	μ
	Mecoprop-1-octvl ester	0.005	μg/L					F000	DCD CC	0.005	
2750 2751	Mecoprop-1-octyl ester Mecoprop-2,4,4-	0.005	μg/L μg/L					5803 1091	PCB 66 PCB 77	0.005 0.00006	μ μ

Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité
1762	Penconazole	0.02	μg/L	1092	Prosulfocarbe	0.03	μg/L	2085	Sulfosufuron	0.02	μg/L
1887		0.02		2534	Prosulfuron	0.02	μg/L	1894	Sulfotep	0.005	μg/L
	Pencycuron		μg/L	5603	Prothioconazole	0.05	μg/L	5831	Sulprofos	0.02	μg/L
1234	Pendiméthaline	0.005	μg/L	7442	Proximpham	0.005	μg/L	1193	Taufluvalinate	0.005	μg/L
6394	Penoxsulam	0.02	μg/L	5416	Pymétrozine	0.003	μg/L	1694	Tébuconazole	0.02	μg/L
1888	Pentachlorobenzène	0.001	μg/L		'			1895	Tébufénozide	0.02	μg/L
1235	Pentachlorophénol	0.03	μg/L	6611	Pyraclofos	0.005	μg/L	1896	Tébufenpyrad	0.005	μg/L
7670	Pentoxifylline	0.005	μg/L	2576	Pyraclostrobine	0.02	μg/L	7511	Tébupirimfos	0.02	μg/L
6219	Perchlorate	0.1	μg/L	5509	Pyraflufen-ethyl	0.1	μg/L	1661	Tébutame	0.005	μg/L
	Perfluorooctanesulfona			1258	Pyrazophos	0.02	μg/L	1542	Tébuthiuron	0.005	μg/L
6548	mide (PFOSA)	0.02	μg/L	6386	Pyrazosulfuron-ethyl	0.005	μg/L	5413	Tecnazène	0.01	μg/L
1523	Perméthrine	0.01	/1	6530	Pyrazoxyfen	0.005	μg/L	1897	Téflubenzuron	0.005	μg/L
			μg/L	1537	Pyrène	0.005	μg/L	1953	Téfluthrine	0.005	μg/L
7519	Pethoxamide	0.02	μg/L	5826	Pyributicarb	0.005	μg/L	7086	Tembotrione	0.05	μg/L
1499	Phénamiphos	0.005	μg/L	1890	Pyridabène	0.005	μg/L	1898	Téméphos	0.02	μg/L
1524	Phénanthrène	0.005	μg/L	5606	Pyridaphenthion	0.005		1659	Terbacile	0.005	μg/L
5420	Phénazone	0.005	μg/L		· · · · · ·		μg/L	1266	Terbuméton	0.02	μg/L
1236	Phenmédiphame	0.02	μg/L	1259	Pyridate	0.01	μg/L	1267	Terbuphos	0.005	μg/L
5813	Phenthoate	0.005	μg/L	1663	Pyrifénox	0.01	μg/L	6963	Terbutaline	0.02	μg/L
7708			μg/L	1432	Pyriméthanil	0.005	μg/L	1268	Terbuthylazine	0.02	μg/L
	Phenytoin	0.05		1260	Pyrimiphos éthyl	0.02	μg/L	2045	Terbuthylazine déséthyl	0.005	μg/L
1525	Phorate	0.005	μg/L	1261	Pyrimiphos méthyl	0.005	μg/L		Terbuthylazine desethyl-	0.00	
1237	Phosalone	0.005	μg/L	5499	Pyriproxyfène	0.005	μg/L	7150	2-hydroxy	0.02	μg/L
1971	Phosmet	0.02	μg/L	7340	Pyroxsulam	0.05	μg/L	1954	Terbuthylazine hydroxy	0.02	μg/L
1238	Phosphamidon	0.005	μg/L	1891	Quinalphos	0.02	μg/L	1269	Terbutryne	0.02	μg/L
1665	Phoxime	0.005	μg/L	2087	Quinmerac	0.02	μg/L	5384	Testosterone	0.005	μg/L
1489	Phtalate de diméthyle	0.4	μg/L					1936	Tetrabutyletain	0.00058	μg/L
	Piclorame	0.03		2028	Quinoxyfen	0.005	μg/L	1270	Tétrachloréthane-1,1,1,2		μg/L
1708			μg/L	1538	Quintozène	0.01	μg/L	1271	Tétrachloréthane-1,1,2,2		μg/L
5665	Picolinafen	0.005	μg/L	2069	Quizalofop	0.02	μg/L	1272	Tétrachloréthylène	0.5	μg/L
2669	Picoxystrobine	0.02	μg/L	2070	Quizalofop éthyl	0.1	μg/L	2735	Tétrachlorobenzène	0.02	μg/L
7057	Pinoxaden	0.05	μg/L	6529	Ranitidine	0.005	μg/L	2010	Tétrachlorobenzène-	0.02	μg/L
1709	Piperonil butoxide	0.005	μg/L	1892	Rimsulfuron	0.005	μg/L	1276	Tétrachlorure de C	0.5	μg/L
5819	Piperophos	0.005	μg/L	2029	Roténone	0.005	μg/L	1277	Tétrachlorvinphos	0.005	μg/L
1528	Pirimicarbe	0.02	μg/L	5423	Roxythromycine	0.05	μg/L	1660	Tétraconazole	0.02	μg/L
				7049		0.03		6750	Tetracycline	0.1	μg/L
5531	Pirimicarbe Desmethyl	0.02	μg/L		RS-Iopamidol		μg/L	1900	Tétradifon	0.005	μg/L
5532	Pirimicarbe Formamido	0.005	μg/L	2974	S Métolachlore	0.1	μg/L	5249	Tétraphénylétain	0.005	μg/L
	Desmethyl		P-6/ -	6527	Salbutamol	0.005	μg/L	5837	Tetrasul	0.01	μg/L
7668	Piroxicam	0.02	μg/L	1923	Sébuthylazine	0.02	μg/L	1713	Thiabendazole	0.02	μg/L
5821	p-Nitrotoluene	0.15	μg/L	6101	Sebuthylazine 2-hydroxy	0.005	μg/L	5671	Thiacloprid	0.05	μg/L
6771	Pravastatine	0.02	μg/L	5981	Sebutylazine desethyl	0.005	μg/L	1940	Thiafluamide	0.02	μg/L
6734	Prednisolone	0.02	μg/L	1262	Secbumeton	0.02	μg/L	6390	Thiamethoxam	0.02	μg/L
				7724	Sedaxane	0.02	μg/L	1714	Thiazasulfuron	0.02	μg/L μg/L
1949	Pretilachlore	0.005	μg/L	6769	Sertraline	0.005	μg/L	5934	Thidiazuron	0.02	μg/L
6531	Prilocaine	0.005	μg/L	1808	Séthoxydime	0.02	μg/L	7517	Thiencarbazone-methyl	0.03	μg/L
6847	Pristinamycine IIA	0.02	μg/L		· · · · · · · · · · · · · · · · · · ·			1913	Thifensulfuron méthyl	0.02	μg/L
1253	Prochloraze	0.001	μg/L	1893	Siduron	0.005	μg/L	7512	Thiocyclam hydrogen	0.02	
1664	Procymidone	0.005	μg/L	5609	Silthiopham	0.02	μg/L	1093	Thiodicarbe	0.01	μg/L μg/L
1889	Profénofos	0.005	μg/L	1539	Silvex	0.02	μg/L			0.02	μg/L
5402	Progesterone	0.02	μg/L	1263	Simazine	0.005	μg/L	1715 5476	Thiofanox		μg/L
1710	Promécarbe	0.005		1831	Simazine hydroxy	0.02	μg/L	5475	Thiofanox sulfone Thiofanox sulfoxyde	0.02	μg/L μg/L
			μg/L	5477	Simétryne	0.005	μg/L	2071	Thiométon	0.02	
1711	Prométon	0.005	μg/L		somme de	0.07		5838	Thionazin	0.005	μg/L μg/L
1254	Prométryne	0.02	μg/L	5855	Méthylphénol-3 et de	0.05	μg/L	7514	Thiophanate-ethyl	0.05	μg/L μg/L
1712	Propachlore	0.01	μg/L		Somme du 1,2,3,5			1717	Thiophanate-ethyl	0.05	
6398	Propamocarb	0.02	μg/L	6326	tetrachlorobenzene et1,	0.02	μg/L		Thirame		μg/L
1532	Propanil	0.005	μg/L					1718		0.1	μg/L
6964	Propaphos	0.005	μg/L	3336	Somme du	0.02	μg/L	6524	Ticlopidine	0.01	μg/L
1972	Propaguizafop	0.003			Dichlorophenol-2,4 et du			7965	Timolol	0.005	μg/L
			μg/L	5424	Sotalol	0.005	μg/L	5922	Tiocarbazil	0.005	μg/L
1255	Propargite	0.005	μg/L	5610	Spinosad	0.01	μg/L	5675	Tolclofos-methyl	0.005	μg/L
1256	Propazine	0.02	μg/L	7506	Spirotetramat	0.02	μg/L	1278	Toluène	0.5	μg/L
5968	Propazine 2-hydroxy	0.02	μg/L	2664	Spiroxamine	0.02	μg/L	1719	Tolylfluanide	0.005	μg/L
1533	Propétamphos	0.005	μg/L		s-Triazin-2-ol, 4-amino-6-			6720	Tramadol	0.005	μg/L
1534	Prophame	0.02	μg/L	3160	(ethylamino)-	0.05	μg/L	1544	Triadiméfon	0.005	μg/L
1257	Propiconazole	0.005	μg/L	1541	Styrène	0.5	μg/L	1280	Triadiménol	0.02	μg/L
1535	Propoxur	0.003									
			μg/L	1662	Sulcotrione	0.03	μg/L				
5602	Propoxycarbazone-	0.02	μg/L	6525	Sulfamethazine	0.005	μg/L				
5363	Propranolol	0.005	μg/L	6795	Sulfamethizole	0.005	μg/L				
1837	Propylbenzène	0.5	μg/L	5356	Sulfamethoxazole	0.005	μg/L				
6214	Propylene thiouree	0.5	μg/L	6575	Sulfaquinoxaline	0.05	μg/L				
6693	Propylparaben	0.01	μg/L	6572	Sulfathiazole	0.005	μg/L				
5421	Propyphénazone	0.005	μg/L	5507	Sulfomethuron-methyl	0.005	μg/L				
							1-0/ -				
1414	Propyzamide	0.005	μg/L	6561	Sulfonate de	0.02	μg/L				
7422	Proquinazid	0.02	μg/L		perfluorooctane		'	1			

Code			
SANDRE	Libellé paramètre	LQ	Unité
paramètre			
1281	Triallate	0.02	μg/L
1914	Triasulfuron	0.02	μg/L
1901	Triazamate	0.005	μg/L
1657	Triazophos	0.005	μg/L
2064	Tribenuron-Methyle	0.02	μg/L
5840	Tributyl phosphorotrithioite	0.02	μg/L
2879	Tributyletain cation	0.0002	μg/L
1847	Tributylphosphate	0.005	μg/L
1288	Trichlopyr	0.02	μg/L
1284	Trichloréthane-1,1,1	0.05	μg/L
1285	Trichloréthane-1,1,2	0.25	μg/L
1286	Trichloréthylène	0.5	μg/L
1630	Trichlorobenzène-1,2,3	0.05	μg/L
1283	Trichlorobenzène-1,2,4	0.05	μg/L
1629	Trichlorobenzène-1,3,5	0.05	μg/L
1195	Trichlorofluorométhane	0.05	μg/L
1548	Trichlorophénol-2,4,5	0.05	μg/L
1549	Trichlorophénol-2,4,6	0.05	μg/L μg/L
1854		0.05	
	Trichloropropane-1,2,3		μg/L
1196	Trichlorotrifluoroéthane-1,1,2	0.5	μg/L
6989	Triclocarban	0.005	μg/L
5430	Triclosan	0.05	μg/L
2898	Tricyclazole	0.02	μg/L
2885	Tricyclohexyletain cation	0.0005	μg/L
5842	Trietazine	0.005	μg/L
6102	Trietazine 2-hydroxy	0.005	μg/L
5971	Trietazine desethyl	0.005	μg/L
2678	Trifloxystrobine	0.02	μg/L
1902	Triflumuron	0.02	μg/L
1289	Trifluraline	0.005	μg/L
2991	Triflusulfuron-methyl	0.005	μg/L
1802	Triforine	0.005	μg/L
6732	Trimetazidine	0.005	μg/L
5357	Trimethoprime	0.005	μg/L
1857	Triméthylbenzène-1,2,3	1	μg/L
1609	Triméthylbenzène-1,2,4	1	μg/L
1509	Triméthylbenzène-1,3,5	1	μg/L
2096	Trinexapac-ethyl	0.02	μg/L
2886	Trioctyletain cation	0.0005	μg/L μg/L
6372	Triphenyletain cation	0.00059	μg/L
2992	Triticonazole	0.00033	
			μg/L
7482	Uniconazole	0.005	μg/L
1290	Vamidothion	0.005	μg/L
1291	Vinclozoline	0.005	μg/L
1293	Xylène-meta	0.5	μg/L
1292	Xylène-ortho	0.5	μg/L
1294	Xylène-para	1	μg/L
1722	Zirame	100	μg/L
5376	Zolpidem	0.005	μg/L
2858	Zoxamide	0.02	μg/L

Annexe 2. LISTE DES MICROPOLLUANTS ANALYSES SUR SEDIMENT

Code SANDRE	Paramètre	LQ	Unité	Code SANDRE	Paramètre	LQ	Uni
1370	Aluminium	5	mg/(kg MS)	2916	BDE99	10	μg/(kg
376	Antimoine	0.2	mg/(kg MS)	1114	Benzène	5	μg/(kg
368 369	Argent	0.1	mg/(kg MS)	1607	Benzidine	100	μg/(kg
5	Arsenic	0.2	mg/(kg MS)	1082	Benzo (a) Anthracène	10	μg/(kg
	Baryum	0.4	mg/(kg MS)	1115	Benzo (a) Pyrène	10	μg/(kg
	Beryllium	0.2	mg/(kg MS)	1116	Benzo (b) Fluoranthène	10	μg/(kg
	Bore	1	mg/(kg MS)	1118	Benzo (ghi) Pérylène	10	μg/(kg
	Cadmium	0.1	mg/(kg MS)	1117	Benzo (k) Fluoranthène	10	μg/(kg
9	Chrome	0.2	mg/(kg MS)	1924	Benzyl butyl phtalate	100	μg/(kg
'9)2	Cobalt	0.2	mg/(kg MS) mg/(kg MS)	6652	beta-Hexabromocyclododecane	10	μg/(kg
80	Cuivre Etain	0.2	mg/(kg MS)	1119 1584	Bifénox	50	μg/(k
93	Fer	5	mg/(kg MS)	1122	Biphényle	20 5	μg/(k μg/(k
364	Lithium	0.2	mg/(kg MS)	1464	Bromoforme	20	
394	Manganèse	0.4	mg/(kg MS)	1134	Chlorentinphos	10	μg/(k
387	Mercure	0.01	mg/(kg MS)	1955	Chlorméphos		μg/(k
395	Molybdène	0.2	mg/(kg MS)	1593	Chloroalcanes C10-C13	2000 50	μg/(k
386	Nickel	0.2	mg/(kg MS)		Chloroaniline-2		μg/(k
382	Plomb	0.2	mg/(kg MS)	1467 1135	Chlorobenzène	10 5	μg/(k
385	Sélénium	0.2	mg/(kg MS)		Chloroforme (Trichlorométhane)		μg/(k
559	Tellure	0.2	mg/(kg MS)	1635	Chlorométhylphénol-2,5	50	μg/(k
555	Thallium	0.2	mg/(kg MS)	1636 1469	Chlorométhylphénol-4,3	50	μg/(k
373	Titane	1	mg/(kg MS)		Chloronitrobenzène-1,2	20	μg/(k
361	Uranium	0.2	mg/(kg MS)	1468 1470	Chloronitrobenzène-1,3	20	μg/(k
384	Vanadium	0.2	mg/(kg MS)	1470	Chloronitrobenzène-1,4	50	μg/(k
383	Zinc	0.4	mg/(kg MS)	1651	Chlorophénol-2	50	μg/(k
536	4-Methylbenzylidene camphor	10	μg/(kg MS)	1650	Chlorophénol-3	50	μg/(k
474	4-n-nonylphénol	40	μg/(kg MS)	2611	Chlorophénol-4	20	μg/(k μg/(k
369	4-nonylphenol diethoxylate (mélange d'is	15	μg/(kg MS)	2065	Chloroprène	5	μg/(k
958	4-nonylphénols ramifiés	40	μg/(kg MS)	1602	Chloropropène-3	5	μg/(k
101	4-sec-Butyl-2,6-di-tert-butylphenol	20	μg/(kg MS)	1601	Chlorotoluène-2	5	μg/(k
610	4-tert-butylphénol	40	μg/(kg MS)	1600	Chlorotoluène-3	5	μg/(k
959	4-tert-octylphénol	40	μg/(kg MS)	1474	Chlorotoluène-4	4	
453	Acénaphtène	10	μg/(kg MS)	1083	Chlorprophame	10	μg/(k μg/(k
622	Acénaphtylène	10	μg/(kg MS)	1540	Chlorpyriphos éthyl	20	μg/(k
903	Acétochlore	4	μg/(kg MS)	1476	Chlorpyriphos méthyl Chrysène	10	μg/(k
509	Acide perfluoro-decanoïque (PFDA)	50	μg/(kg MS)	2017	Clomazone	4	μg/(k
830	Acide perfluorohexanesulfonique (PFHS)	50	μg/(kg MS)	5360	Clotrimazole	100	μg/(k
978	Acide perfluoro-n-hexanoïque (PFHxA)	50	μg/(kg MS)	1639	Crésol-méta	50	μg/(k
560	Acide perfluorooctanesulfonique (PFOS)	5	μg/(kg MS)	1640	Crésol-meta Crésol-ortho	50	μg/(k
347	Acide perfluoro-octanoïque (PFOA)	50	μg/(kg MS)	1638	Crésol-para	50	μg/(k
.688	Aclonifen	20	μg/(kg MS)	1140	Cyperméthrine	20	μg/(k
103	Aldrine	20	μg/(kg MS)	1680	Cyproconazole	10	μg/(k
651	alpha-Hexabromocyclododecane	10	μg/(kg MS)	1359	Cyprodinil	2	μg/(k
.812	Alphaméthrine	4	μg/(kg MS)	1143	DDD-o,p'	5	μg/(k
102	Anthanthrene	10	μg/(kg MS)	1144	DDD-p,p'	5	μg/(k
458	Anthracène	10	μg/(kg MS)	1145	DDE-o,p'	5	μg/(k
013	Anthraquinone	4	μg/(kg MS)	1146	DDE-p,p'	5	μg/(k
.951	Azoxystrobine	10	μg/(kg MS)	1147	DDT-o,p'	5	μg/(k
989	BDE 196	10	μg/(kg MS)	1148	DDT-p,p'	5	μg/(k
990	BDE 197	10	μg/(kg MS)	6616	DEHP	100	μg/(k
991	BDE 198	10	μg/(kg MS)	1149	Deltaméthrine	2	μg/(k
986	BDE 203	10	μg/(kg MS)	1157	Diazinon	25	μg/(k
996	BDE 204	10	μg/(kg MS)	1621	Dibenzo (ah) Anthracène	10	μg/(k
997	BDE 205	10	μg/(kg MS)	1158	Dibromochlorométhane	5	μg/(k
915	BDE100	10	μg/(kg MS)	1498	Dibromoéthane-1,2	5	μg/(k
913	BDE138	10	μg/(kg MS)	7074	Dibutyletain cation	10	μg/(k
912	BDE153	10	μg/(kg MS)	1160	Dichloréthane-1,1	10	μg/(k
2911	BDE154	10	μg/(kg MS)	1161	Dichloréthane-1,2	10	μg/(k
2910	BDE183	10	μg/(kg MS)	1162	Dichloréthylène-1,1	10	μg/(k
1815	BDE209	5	μg/(kg MS)	1456	Dichloréthylène-1,2 cis	10	μg/(k
2920	BDE28	10	μg/(kg MS)	1727	Dichlorethylène-1,2 trans	10	μg/(k
919	BDE47	10	μg/(kg MS)	1589	Dichloroaniline-2,4	50	μg/(k
437	BDE77	10	μg/(kg MS)	1588	Dichloroaniline-2,5	50	μg/(k
				1165	Dichlorobenzène-1,2	10	μg/(k
					· · · · · · · · · · · · · · · · · · ·		μg/(k
				1164	Dichlorobenzène-1,3	10	110/11

Code SANDRE	Paramètre	LQ	Unité	Code SANDRE	Paramètre	LQ 10	Unite
1167	Dichlorobromométhane	5	μg/(kg MS)	1094	Lambda Cyhalothrine	10	μg/(kg
1168	Dichlorométhane	10	μg/(kg MS)	6664	Methyl triclosan	20	μg/(kg
1617	Dichloronitrobenzène-2,3	50	μg/(kg MS)	1619	Méthyl-2-Fluoranthène	10	μg/(kg
1616	Dichloronitrobenzène-2,4	50	μg/(kg MS)	1618	Méthyl-2-Naphtalène	10	μg/(kg
1615	Dichloronitrobenzène-2,5	50	μg/(kg MS)	2542	Monobutyletain cation	75	μg/(kg
1614	Dichloronitrobenzène-3,4	50	μg/(kg MS)	7496	Monooctyletain cation	40	μg/(kg
1613	·	50	μg/(kg MS)	7497	Monophenyletain cation	41.5	μg/(kg
	Dichloronitrobenzène-3,5			1517	Naphtalène	25	μg/(kg
1645	Dichlorophénol-2,3	50	μg/(kg MS)	1519	Napropamide	10	μg/(kg
1486	Dichlorophénol-2,4	50	μg/(kg MS)	1462	n-Butyl Phtalate	100	μg/(kg
1649	Dichlorophénol-2,5	50	μg/(kg MS)	1637	Nitrophénol-2	50	μg/(kg
1648	Dichlorophénol-2,6	50	μg/(kg MS)	6598	Nonylphénols linéaire ou ramifiés	40	μg/(kg
1647	Dichlorophénol-3,4	50	μg/(kg MS)	1669	Norflurazon	4	μg/(kg
1646	Dichlorophénol-3,5	50	μg/(kg MS)	2609	Octabromodiphénylether	10	μg/(kg
1655	Dichloropropane-1,2	10	μg/(kg MS)	6686	Octocrylene	100	μg/(kg
				1667	Oxadiazon	10	μg/(kg
1654	Dichloropropane-1,3	10	μg/(kg MS)	1952	Oxyfluorfène	10	μg/(kg
2081	Dichloropropane-2,2	10	μg/(kg MS)	1920	p-(n-octyl)phénol	40	μg/(kg
2082	Dichloropropène-1,1	10	μg/(kg MS)	1232	Parathion éthyl	20	μg/(kg
1834	Dichloropropylène-1,3 Cis	10	μg/(kg MS)	1242	PCB 101	1	μg/(kg
1835	Dichloropropylène-1,3 Trans	10	μg/(kg MS)	1627	PCB 105	1	μg/(kg
1653	Dichloropropylène-2,3	10	μg/(kg MS)	5433	PCB 114	1	μg/(kg
1170	Dichlorvos	30	μg/(kg MS)	1243	PCB 114	1	μg/(kg
				5434	PCB 118 PCB 123	1	μg/(kg
1172	Dicofol	20	μg/(kg MS)	1089		1	μg/(kg
1173	Dieldrine	20	μg/(kg MS)	1089	PCB 126	1	μg/(kg μg/(kg
1814	Diflufénicanil	10	μg/(kg MS)	1885	PCB 138	1	
5325	Diisobutyl phthalate	100	μg/(kg MS)		PCB 149		μg/(kg
6658	Diisodecyl phthalate	10000	μg/(kg MS)	1245	PCB 153	1	μg/(kg
6215	Diisononyl phtalate	5000	μg/(kg MS)	2032	PCB 156	1	μg/(kg
1403	Diméthomorphe	10	μg/(kg MS)	5435	PCB 157	1	μg/(kg
1641	•	50	μg/(kg MS)	5436	PCB 167	1	μg/(kg
	Diméthylphénol-2,4			1090	PCB 169	1	μg/(kg
1578	Dinitrotoluène-2,4	50	μg/(kg MS)	1626	PCB 170	1	μg/(kg
1577	Dinitrotoluène-2,6	50	μg/(kg MS)	1246	PCB 180	1	μg/(kg
7494	Dioctyletain cation	102	μg/(kg MS)	5437	PCB 189	1	μg/(kg
7495	Diphenyletain cation	11.5	μg/(kg MS)	1625	PCB 194	1	μg/(kg
1178	Endosulfan alpha	20	μg/(kg MS)	1624	PCB 209	1	μg/(kg
1179	Endosulfan beta	20	μg/(kg MS)	1239	PCB 28	1	μg/(kg
1742	Endosulfan sulfate	20	μg/(kg MS)	1886	PCB 31	1	μg/(kg
1181		20		1240	PCB 35	1	μg/(kg
	Endrine		μg/(kg MS)	1628	PCB 44	1	μg/(kg
1744	Epoxiconazole	10	μg/(kg MS)	1241	PCB 52	1	μg/(kg
5397	Estradiol	20	μg/(kg MS)	1091	PCB 77	1	μg/(kg
1497	Ethylbenzène	5	μg/(kg MS)	5432	PCB 81	1	μg/(kg
2629	Ethynyl estradiol	20	μg/(kg MS)	1234	Pendiméthaline	10	μg/(kg
1187	Fénitrothion	10	μg/(kg MS)	1888	Pentachlorobenzène	5	μg/(kg
2022	Fludioxonil	4	μg/(kg MS)	1235	Pentachlorophénol	50	μg/(kg
1191		10		1523	Perméthrine	5	μg/(kg
	Fluoranthène		μg/(kg MS)	1524	Phénanthrène	10	μg/(kg
1623	Fluorène	10	μg/(kg MS)	1664	Procymidone	10	μg/(kg
2547	Fluroxypyr-meptyl	20	μg/(kg MS)		·		μg/(kg
1194	Flusilazole	20	μg/(kg MS)	1414	Propyzamide	10	
6618	Galaxolide	100	μg/(kg MS)	1537	Pyrène	10	μg/(kg
6653	gamma-Hexabromocyclododecane	10	μg/(kg MS)	2028	Quinoxyfen	10	μg/(kg
1200	HCH alpha	10	μg/(kg MS)	7128	Somme de 3 Hexabromocyclododecanes	10	μg/(kg
1201	·	10	μg/(kg MS)	1662	Sulcotrione	10	μg/(kg
	HCH beta			6561	Sulfonate de perfluorooctane	5	μg/(kg
1202	HCH delta	10	μg/(kg MS)	1694	Tébuconazole	10	μg/(kg
2046	HCH epsilon	10	μg/(kg MS)	1661	Tébutame	4	μg/(kg
1203	HCH gamma	10	μg/(kg MS)	1268	Terbuthylazine	10	μg/(kg
1197	Heptachlore	10	μg/(kg MS)	1269	Terbutryne	4	μg/(kg
1748	Heptachlore époxyde cis	10	μg/(kg MS)	1936	Tetrabutyletain	15	μg/(kg
1749	Heptachlore époxyde trans	10	μg/(kg MS)	1270	Tétrachloréthane-1,1,1,2	5	μg/(kg
1199	Hexachlorobenzène	10	μg/(kg MS)	1271	Tétrachloréthane-1,1,2,2	10	μg/(kg
1652				1272	Tétrachloréthylène	5	μg/(kg
	Hexachlorobutadiène	10	μg/(kg MS)		·		
1656	Hexachloroéthane	1	μg/(kg MS)				
1405	Hexaconazole	10	μg/(kg MS)				
1204	Indéno (123c) Pyrène	10	μg/(kg MS)				
1206	Iprodione	10	μg/(kg MS)				
7129	Irganox 1076	20	μg/(kg MS)				
1935	Irgarol (Cybutryne)	10	μg/(kg MS)				
1207	Isodrine	4	μg/(kg MS)				
1633	Isopropylbenzène	5	μg/(kg MS)				
1950	Kresoxim méthyl	10	μg/(kg MS)				

D	1.0	11-14-4
Parametre	LQ	Unité
Tétrachlorobenzène-1,2,3,4	10	μg/(kg MS)
Tétrachlorobenzène-1,2,3,5	10	μg/(kg MS)
Tétrachlorobenzène-1,2,4,5	10	μg/(kg MS)
Tétrachlorophénol-2,3,4,5	50	μg/(kg MS)
Tétrachlorophénol-2,3,4,6	50	μg/(kg MS)
Tétrachlorophénol-2,3,5,6	50	μg/(kg MS)
Tétrachlorure de C	5	μg/(kg MS)
Tétraconazole	10	μg/(kg MS)
Tetramethrin	40	μg/(kg MS)
Toluène	5	μg/(kg MS)
Tributyletain cation	25	μg/(kg MS)
,	4	μg/(kg MS)
7.1	10	μg/(kg MS)
	5	μg/(kg MS)
	5	μg/(kg MS)
	5	μg/(kg MS)
•	50	μg/(kg MS)
	50	μg/(kg MS)
		μg/(kg MS)
Trichlorophénol-2.3.4	50	μg/(kg MS)
		μg/(kg MS)
		μg/(kg MS)
		μg/(kg MS)
·	10	μg/(kg MS)
	100	μg/(kg MS)
		μg/(kg MS)
		μg/(kg MS)
•		μg/(kg MS)
•		μg/(kg MS)
, ,	2	μg/(kg MS)
	Tétrachlorobenzène-1,2,3,5 Tétrachlorobenzène-1,2,4,5 Tétrachlorophénol-2,3,4,5 Tétrachlorophénol-2,3,4,6 Tétrachlorophénol-2,3,5,6 Tétrachlorure de C Tétraconazole Tetramethrin	Tétrachlorobenzène-1,2,3,4 10 Tétrachlorobenzène-1,2,3,5 10 Tétrachlorobenzène-1,2,4,5 10 Tétrachlorophénol-2,3,4,5 50 Tétrachlorophénol-2,3,5,6 50 Tétrachlorure de C 5 Tétraconazole 10 Tetramethrin 40 Toluène 5 Tributyletain cation 25 Tributylphosphate 4 Trichloréthane-1,1,1 5 Trichloréthane-1,1,2 5 Trichloréthane-1,1,2 5 Trichloréthylène 5 Trichlorothylène 5 Trichlorobenzène-1,2,4 50 Trichlorobenzène-1,2,3 10 Trichlorobenzène-1,2,4 10 Trichlorobenzène-1,2,4 10 Trichlorobenzène-1,2,4 50 Trichlorophenol-2,3,5 10 Trichlorophénol-2,3,6 50 Trichlorophénol-2,3,6 50 Trichlorophénol-2,4,6 50 Trichlorophénol-3,4,5 50 Trichlorophénol-3,4,5

Annexe 3. COMPTES RENDUS DES CAMPAGNES PHYSICO-CHIMIQUES ET PHYTOPLANCTONIQUES

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES GENERALES PLAN D'EAU

Organisme demandeur: Organisme / opérateur : Types (naturel, artificiel ...): Agence de l'Eau RMC STE : Lionel Bochu & Artificiel Roselend Aurélien Morin Marché n°: 160000037 Date: Code lac: W0435023 18/06/2019

LOCALISATION PLAN D'EAU

Commune:	Beaufort	Type: A1
Lac marnant:	oui	retenues de hautes montagnes, profondes
Temps de séjour :	1024 jours	
Superficie du plan d'eau :	315 ha	
Profondeur maximale:	150 m	
	Carte (extrait SCAN 25 IGN 1/25 000	SCAN 25 IGN 1/25 000)

 Point théorique Mise à l'eau Point Mesuré Source : IGN scan 25 STATION 800 m Angle de prise de vue 人

Photo du site:

S.T.E Sciences Techniques de l'Environnement Page 1/6

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES GENERALES PLAN D'EAU

	THE RESERVE OF THE PARTY OF THE			
Plan d'eau :	Roselend		D	Date: 18/06/19
Types (naturel, artificiel):	<u>:</u> .			Code lac: W0435023
Organisme demandeur:	Agence de l'Eau RMC	Eau RMC		Marché n°: 160000037
		STATION		
Coordonnée de la station :	ion:	Système de Géolocalisation Portable	ation Portable	☐ Carte IGN
Lambert 93: WGS 84 (syst.internationnal GPS °"'):	×	982081 6°37′30,9″ E	Y : 6515845 45°41'02,0" N	alt. : 1559 m
Profondeur:	75 m			
Météo :	✓ 1- temps sec ensoleillé ✓ 4- pluie fine ✓ 7- gel	2- faiblement nuage 5- orage-pluie forte 8- fortement nuage	2- faiblement nuageux 5- orage-pluie forte 8- fortement nuageux] 3- temps humide] 6- neige
Patm.:	823 hPa			
Vent:	□ 0- nul□ 1- faible	2- moyen 3- fort		
Conditions d'observation : Surface de l'eau :	tion : ✓ 1- lisse ✓ 2- faiblement agitée	t agitée 🔲 3- agitée	4- très agitée	
Hauteur de vagues :	0 m			
Bloom algal:	NON			
Marnage:	OUI Hauteur	Hauteur de bande : 32	32 m Cote é	Cote échelle : 1527.5 m
Campagne 1	campagne de fin d'hiv	campagne de fin d'hiver : homothermie du plan d'eau avant démarrage de l'activité biologique	lan d'eau avant déi ue	marrage de l'activité
	REMARQUES	ES ET OBSERVATIONS	ONS	
Contact préalable :	EDF-DPIH-UP Alpes - plan de prévention	an de prévention		
Observation :	Profils homogènes			
Remarques:	Accès très difficile en raison du marnage. Pas de profil sonde Fdom en panne	on du marnage. en panne		

DONNEES GENERALES PLAN D'EAU

 Plan d'eau :
 Roselend
 Date :
 18/06/19

 Types (naturel, artificiel ...) :
 Artificiel Organisme / opérateur :
 Artificiel STE : Lionel Bochu & Aurélien Morin Organisme demandeur :
 Agence de l'Eau RMC
 Aurélien Morin Marché n° : 160000037

PRELEVEMENTS ZONE EUPHOTIQUE

Prélèvement pour analyses physico-chimiques et phytoplancton

Dépôt: TNT 🗸 C Date: 18/06/19	Code prélèvement zone euphotique: Code prélèvement vltt intermédiaire Code prélèvement de fond :	Profondeur : Volume prélevé : Matériel employé :	Heure de relevé :	Prélèvement pour a	Matériel employé :	Profondeur : Volume prélevé :	Heure de relevé :	Prélèvement pour a	Prélèvement pour a	Materiei empioye :	Volume prélevé :	Prélèvement :	Heure de relevé : Profondeur :	Prélèvement pour a	Phytoplancton:	Chlorophylle:	Heure de relevé : Profondeur : Volume prélevé : Matériel employé :
Chrono	euphotique: 624343 ntermédiaire 624387 ond : 624407	16 L Bouteille téflon 5,3 L REMISE	14:00	Prélèvement pour analyses physico-chimiques Prélèvement nour analyses micronolluants	Bouteille téflon 5,3 L PRELEVEMENT	72 m 16 L	14:30	Prélèvement pour analyses micropolluants	Prélèvement pour analyses physico-chimiques	Boutellie terion 1,2L PRELE	9.6 L	1 plvt tous les 0,5 m	15:00 0 à 4 m	Prélèvement pour analyses micropolluants	OUI Ajo	OUI Volume filtré sur place :	15:00 0 à 4 m 7 L 5 m tuyau intégrateur
Ville : Chambéry 18:45	B _O B _O	Nbre de prélèvements : n 5,3 L REMISE DES ECHANTILLONS		es	neille téflon 5,3 L PRELEVEMENTS INTERMEDIAIRE à 2/3 Zmax	Nbre de prélèvements :			es	PRELEVEMENTS DE FOND	Nbre de prélèvements :				Ajout de lugol : 5 ml	ré sur place : 1000 ml	Nbre de prélèvements :
	6913423500365048 6913424250081677 6913423500365050	ω		INO	//3 Zmax	ω		OUI	OUI		8			OUI			œ
					OUI			OI	O I	OUI				01			

S.T.E Sciences Techniques de l'Environnement Page 3/6

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES PHYSICO-CHIMIQUES

 Plan d'eau :
 Roselend
 Date :
 18/06/19

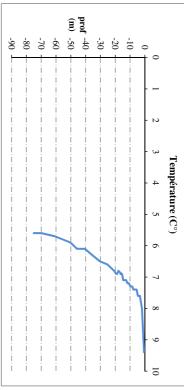
 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 W0435023

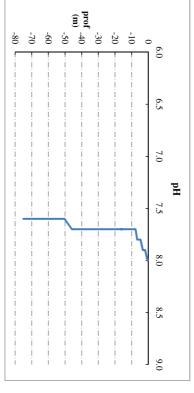
 Organisme / opérateur :
 STE : Lionel Bochu & Aurélien Morin
 Aurélien Morin
 Campagne : 1

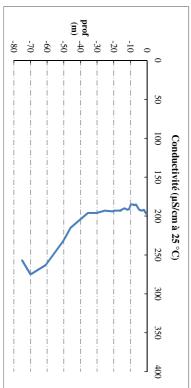
 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

TRANSPARENCE

Disque Secchi = 1.6 m Zone euphotique (x 2,5 secchi) = 4 m


PROFIL VERTICAL

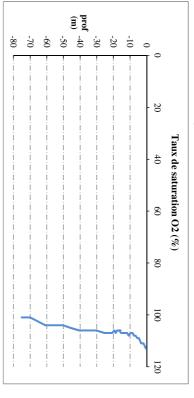

Moyen de mesure utilisé : ☑ in situ à chaque profondeur ☐ en surface dans un récipient

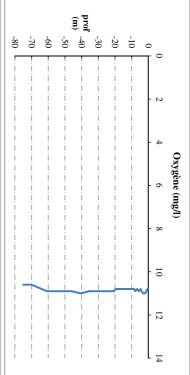

		Pvlt de fond																										onbnondae	emphotique	Prelevement	j		Type de pvlt
		75.0	70.0	60.9	50.3	-45.9	-40.5	35.5	30.3	25.3	20.8	19.4	18.6	17.8	15.7	16.5	15.4	14.5	13.5	-12.6	-11.7	-10.8	-9.7	-8.5	-7.7	-6.7	-5.6	-4.7	-3.3	-1.9	-0.5	(m)	Prof.
		5.6	5.6	5.7	5.9	6.1	6.1	6.3	6.5	6.6	6.8	6.9	6.9	6.8	6.9	6.9	6.9	7.1	7.1	7.1	7.2	7.2	7.3	7.3	7.4	7.4	7.4	7.6	7.6	8.0	9.4	(°C)	Temp
		7.6	7.6	7.6	7.6	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.8	7.8	7.8	7.9	7.9	8.0		pН
		257	275	263	232	215	205	196	196	193	194	193	193	193	193	193	192	191	190	191	192	191	185	185	186	185	189	192	193	192	197	(µS/cm 25°)	Cond.
		101	101	104	104	105	106	106	106	107	107	106	107	106	106	106	107	107	107	107	107	108	107	107	108	108	109	109	111	111	113	(%)	02
		10.6	10.6	10.9	10.9	10.9	11.0	10.9	10.9	10.9	10.9	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.9	10.8	10.9	10.8	11.0	11.0	10.8	(mg/l)	02
																																ppb	Matières organiques dissoutes
		 	/							/																			/	/	12:50		Heure

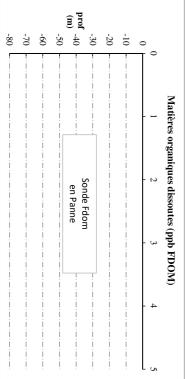
DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE Relevé phytoplanctonique et physico-chimique en plan d'eau

Organisme / opérateur : Organisme demandeur: Types (naturel, artificiel ...): Agence de l'Eau RMC STE : Lionel Bochu & Artificiel Aurélien Morin Marché n°: 160000037 Code lac: W0435023 Date: 18/06/19

S.T.E Sciences Techniques de l'Environnement Page 5/6


Relevé phytoplanctonique et physico-chimique en plan d'eau


DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE Date:


Organisme / opérateur : Types (naturel, artificiel ...): Organisme demandeur: STE : Lionel Bochu & Agence de l'Eau RMC Artificiel Aurélien Morin Marché n°: 160000037

Code lac: W0435023

18/06/19

DONNEES GENERALES PLAN D'EAU

Types (naturel, artificiel ...): Organisme demandeur: Organisme / opérateur : STE: Lionel Bochu & Agence de l'Eau RMC Artificiel Adrien Bonnefoy Date: Marché n°: 160000037 Code lac: W0435023 16/07/2019

LOCALISATION PLAN D'EAU

Commune:	Beaufort	Type: A1
Lac marnant:	oui	retenues de hautes montagnes, profondes
Temps de séjour :	1024 jours	
Superficie du plan d'eau:	315 ha	
Profondeur maximale:	150 m	
	Carte (extrait SCAN 25 IGN 1/25 000)	it SCAN 25 IGN 1/25 000)

Photo du site

STATION

prise de vue

Angle de

人

S.T.E Sciences Techniques de l'Environnement Page 7/6

Relevé phytoplanctonique et physico-chimique en plan d'eau

Vent: Marnage: Hauteur de vagues: Conditions d'observation : Surface de l'eau : ☑ 1- lisse ☐ 2- faiblement agitée Météo: Profondeur: WGS 84 (syst.internationnal GPS $^{\circ}$ " $^{\prime}$): Organisme demandeur: Organisme / opérateur : DONNEES GENERALES PLAN D'EAU Bloom algal: Patm.: Types (naturel, artificiel ...): Plan d'eau: Lambert 93: Coordonnée de la station : ✓ 1- temps sec ensoleillé ☐ 4- pluie fine ☐ 7- gel NON 0 m OUI 935 hPa 104 m campagne printanière de croissance du phytoplancton : mise en place de la thermocline STE: Lionel Bochu & Agence de l'Eau RMC Artificiel Roselend Hauteur de bande : 4.2 m ✓ Système de Géolocalisation Portable STATION ☐ 2- faiblement nuageux☐ 5- orage-pluie forte☐ 8- fortement nuageux☐ 2- faiblement nuageux☐ 3- fortement nuageux☐ 3- fortement nuageux☐ 3- faiblement nuageux☐ ☐ 3- agitée ☐ 4- très agitée Adrien Bonnefoy Côte échelle : 3- temps humide6- neige Marché n°: 160000037 Code lac: W0435023 Date: alt. : 1559 m ☐ Carte IGN 774.8 m 16/07/19

REMARQUES ET OBSERVATIONS

Contact préalable : EDF-DPIH-UP Alpes - plan de prévention

Observation: Mise à l'eau nécessitant un 4*4.

Remarques:

Page 8/6

DONNEES GENERALES PLAN D'EAU

Organisme demandeur: Organisme / opérateur : Types (naturel, artificiel ...): Plan d'eau : Agence de l'Eau RMC STE: Lionel Bochu & Artificiel Roselend Adrien Bonnefoy Marché n°: 160000037 Code lac: W0435023 Date: 16/07/19

PRELEVEMENTS ZONE EUPHOTIQUE

Prélèvement pour analyses physico-chimiques et phytoplancton

Dépôt: TNT ✓ Chrono ☐ CARSO ☐ Ville :La Motte Servolex

Date : 16/07/19 Heure : 18:30:

Réception au laboratoire le : 17/07/19 Matériel employé: Matériel employé: Code prélèvement de fond : Code prélèvement de l'intermédiaire : Code prélèvement zone euphotique: Matériel employé : Prélèvement pour analyses micropolluants Prélèvement pour analyses physico-chimiques Matériel employé : Volume prélevé : Heure de relevé : Profondeur: Heure de relevé : Prélèvement pour analyses physico-chimiques Heure de relevé: Prélèvement pour analyses micropolluants Volume prélevé : Heure de relevé : Prélèvement pour analyses micropolluants Phytoplancton: Chlorophylle: Profondeur: Volume prélevé : Volume prélevé : Prélèvement : Bouteille téflon 5,3 L
PRELEVEMENTS INTERMEDIAIRE à 2/3 Zmax Bouteille téflon 5,3 L Bouteille téflon 1,2L 13:10 OUI Volume filtré sur place : 1 plvt tous les 1 m 14 m tuyau integrateur 0 à 12.5 m 0 à 12.5 m 102 m 15:10 66 m 15 L 624344 Bon de transport :
624388 Bon de transport :
624408 Bon de transport : Heure : 17/07/19 REMISE DES ECHANTILLONS PRELEVEMENTS DE FOND Ajout de lugol: Nbre de prélèvements : Nbre de prélèvements : Nbre de prélèvements : Nbre de prélèvements : 1000 ml 6913424250113119 6913424250113160 6913424250113140 OUI OUI OUI OUI OUI

Relevé phytoplanctonique et physico-chimique en plan d'eau

S.T.E Sciences Techniques de l'Environnement

Plan d'eau :	DONNEES PHYSICO-CHIM
Roselend	SICO-CHIMIQUES
Date:	

Organisme demandeur: Organisme / opérateur : Types (naturel, artificiel ...): Artificiel Agence de l'Eau RMC STE: Lionel Bochu & Adrien Bonnefoy Marché n°: 160000037 Code lac: W0435023 Campagne: 2

16/07/19

TRANSPARENCE

5 m Zone euphotique (x 2,5 secchi) =

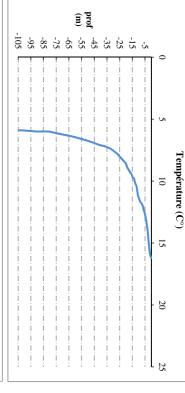
Disque Secchi =

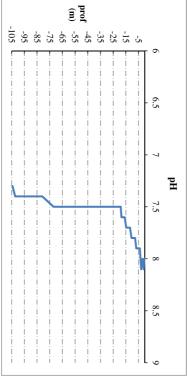
PROFIL VERTICAL

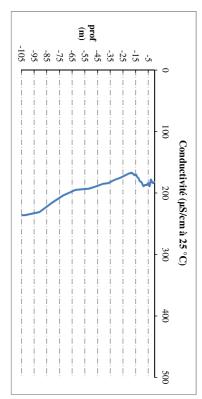
Moyen de mesure utilisé: ✓ in situ à chaque profondeur en surface dans un récipient

•••	Pvlt de fond -1(-8-		Pvlt interm6	-5	-4	-4	-3	-3	-2			-1	-1	-1	-1	-1	<u>.</u>		<u>-</u>	⊹	اران			Prélèvement -5		42		_	-(0	Type de pvlt Prof	
 104.4)2.2	-90.8	0.9	72	2.3	1.8	5.8	0.7	-36.5	1.9	-26.8	20	-19	8.4	16.7	15.9	4.7	13.7	2.7	1.7	-10.5	-8.8	7.7	-6.8	5.1	5.2	4	-2.9	-1.8	-0.9).2	B)	of.	
5.9	5.9	6	6	6.2	6.4	6.7	6.9	7.1	7.2	7.4	7.8	8.6	8.9	9	9.3	9.4	9.7	9.8	10.2	10.4	11.2	11.7	11.8	12	12.3	12.6	13.2	14	15.3	16	16.2	(°C)	Temp	
7.3	7.4	7.4	7.4	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.6	7.6	7.6	7.7	7.7	7.7	7.7	7.8	7.8	7.8	7.9	7.9	7.9	7.9	8.1	∞	8.1	∞		pН	
236	236	231	216	204	195	193	189	185	184	179	175	168	168	167	169	171	170	174	176	181	182	189	187	187	187	184	189	178	183	184	182	(μS/cm 25°)	Cond.	
95	96	97	100	100	100	100	101	100	101	101	101	102	102	103	103	103	104	105	104	105	106	106	107	107	108	109	109	116	113	104	104	(%)	02	
9.9	10	10	10.3	10.3	10.3	10.2	10.2	10.1	10.1	10.1	10	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.7	9.8	9.7	9.6	9.6	9.6	9.6	9.7	9.5	9.9	9.4	8.5	8.5	(mg/l)	02	
0.6	0.4	0.2	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0	0	0.1	0.1	0.1	ppb	Matières organiques dissoutes	
	14:40				15:10																										13:10		Heure	

Page 9/6


DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE


 Plan d'eau :
 Rosclend
 Date :
 16/07/19

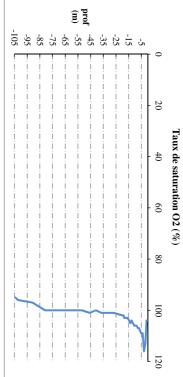

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 W0435023

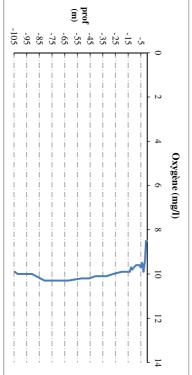
 Organisme / opérateur :
 STE : Lionel Bochu & Adrich Bonnefoy
 Campagne : 2

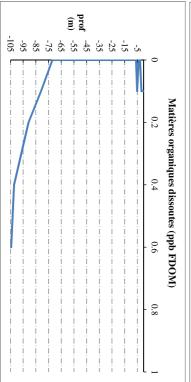
 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

S.T.E Sciences Techniques de l'Environnement Page 11/6

Relevé phytoplanctonique et physico-chimique en plan d'eau


DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE


Plan d'eau : Roselend Date : 16/07/19


Types (naturel, artificiel ...) : Artificiel Code lac : W0435023

Organisme / opérateur : STE : Lionel Bochu & Adrien Bonnefoy Campagne : 2

Organisme demandeur : Agence de l'Eau RMC Marché n° : 160000037

e 11/6 S.T.E Sciences Techniques de l'Environnement

Page 12/6

DONNEES GENERALES PLAN D'EAU

Organisme demandeur: Organisme / opérateur : Types (naturel, artificiel ...): Agence de l'Eau RMC STE : Lionel Bochu & Artificiel Aurélien Morin Marché n°: 160000037 Code lac: W0435023 Date: 21/08/2019

LOCALISATION PLAN D'EAU

C		Superficie du plan d'eau : 31	Temps de séjour :	Lac marnant: ou	Commune: Bo
Carte (extrait SCAN 25 IGN 1/25 000)	150 m	815 ha	1024 jours	ii retenues de hautes montagnes, profondes	Beaufort Type: A1

٨

Angle de prise de vue

STATION

Photo du site:

S.T.E Sciences Techniques de l'Environnement Page 13/6

Relevé phytoplanctonique et physico-chimique en plan d'eau

Vent: WGS 84 (syst.internationnal GPS ° "'): Types (naturel, artificiel ...): DONNEES GENERALES PLAN D'EAU Contact préalable : Marnage: Bloom algal: Hauteur de vagues : P atm. : Météo: Profondeur: Coordonnée de la station : Organisme demandeur: Organisme / opérateur : Lambert 93: ✓ 1- temps sec ensoleillé ☐ 4- pluie fine ☐ 7- gel 0 m OUI NON 852 hPa 108 m campagne estivale : thermocline bien installée, deuxième phase de croissance des REMARQUES ET OBSERVATIONS STE: Lionel Bochu & Agence de l'Eau RMC Artificiel Roselend Hauteur de bande : 16.5 m X: 981967 6°37′25,8″¹ \checkmark Système de Géolocalisation Portable STATION 2- faiblement nuageux 5- orage-pluie forte 8- fortement nuageux □ 3- agitée □ 4- très agitée phytoplancton Aurélien Morin Côte échelle : 1542.5 m 3- temps humide 6- neige Date: Marché n°: 160000037 Code lac: W0435023 alt. : 1559 m ☐ Carte IGN 21/08/19

EDF-DPIH-UP Alpes - plan de prévention clefs pour accès au portail en queue de retenue

Observation:

Remarques: Eaux bien oxygénées et peu de matières organiques dissoutes

DONNEES GENERALES PLAN D'EAU

Organisme demandeur : Organisme / opérateur : Types (naturel, artificiel ...): STE: Lionel Bochu & Agence de l'Eau RMC Artificiel Aurélien Morin Date: Marché n°: 160000037 Code lac: W0435023 21/08/19

PRELEVEMENTS ZONE EUPHOTIQUE

Prélèvement pour analyses physico-chimiques et phytoplancton

Matériel employé : Matériel employé: Matériel employé: Prélèvement pour analyses micropolluants Volume prélevé : Prélèvement pour analyses physico-chimiques Matériel employé : Prélèvement pour analyses micropolluants Phytoplancton: Volume prélevé : Heure de relevé : Volume prélevé : Heure de relevé : Prélèvement pour analyses physico-chimiques Prélèvement pour analyses micropolluants Volume prélevé : Prélèvement : Heure de relevé Chlorophylle: Profondeur: OUI Bouteille téflon 5,3 L PRELEVEMENTS INTERMEDIAIRE à 2/3 Zmax 12:30 **0 à 16.5 m** Bouteille téflon 5,3 L 14:30 Bouteille téflon 1,2L OUI 20 m tuyau integrateur 1 pvlt tous les 2 m 0 à 16.5 m 100 m 14:00 75 m 16 L 10 L Volume filtré sur place : REMISE DES ECHANTILLONS PRELEVEMENTS DE FOND Ajout de lugol: Nbre de prélèvements : Nbre de prélèvements : Nbre de prélèvements : Nbre de prélèvements: 1000 ml OUI OUI OUI OUI OUI

Date : 21/08/19 Réception au laboratoire le : Code prélèvement de l'intermédiaire : Code prélèvement de fond: Code prélèvement zone euphotique: TNT Chrono | CARSO [Heure: 18:00 22/08/19 624345 Bon de transport : 624409 Bon de transport : 624345 Bon de transport : 6913424250113056
624409 Bon de transport : 6913424250113040
624389 Bon de transport : 6913424250113170
820 Ville : Chambéry
830 Ville : Chambéry

S.T.E Sciences Techniques de l'Environnement

Page 15/6

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES PHYSICO-CHIMIQUES

Organisme demandeur: Organisme / opérateur : Types (naturel, artificiel ...): STE: Lionel Bochu & Artificiel Agence de l'Eau RMC Roselend Aurélien Morin Marché n°: 160000037 Code lac: W0435023 Date: 21/08/19

TRANSPARENCE

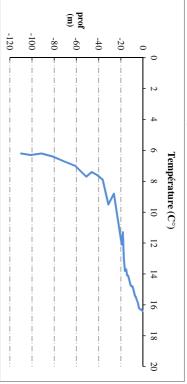
Disque Secchi = 6.6 m Zone euphotique (x 2,5 secchi) = 16.5 m

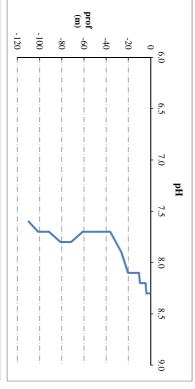
PROFIL VERTICAL

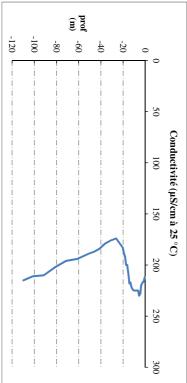
Moyen de mesure utilisé: ✓ in situ à chaque profondeur en surface dans un récipient

	***************************************	~~~~~~~~~~						
1	75	9.0	93	617	7.0	0.2	-109.0	
÷	1.1	9.0	02	215	7./	6.5	-101.3	Pvit de Iond
÷	: :	9.9	96	211	7./	6.2	-91.4 161.2	
†	0.9	9.9	97	202	7.8	6.4	-81.2	
	0.8	9.8	96	196	7.8	6.7	-71.5	
ļ	0.7	9.8	97	194	7.7	7.0	-61.1	
	0.5	9.7	97	189	7.7	7.7	-51.1	
····	0.4	9.7	97	187	7.7	7.4	-46.2	
	0.3	9.6	97	184	7.7	7.6	-41.2	
	0.2	9.6	98	179	7.7	7.9	-36.3	
	0.1	9.7	100	176	7.8	9.5	-31.2	
ļ	0.1	10.3	110	174	7.9	8.8	-26.2	
	0.2	10.1	109	183	8.1	11.6	-20.3	
	0.2	10.1	109	189	8.1	12.1	-19.2	
	0.2	10.0	109	192	8.1	11.3	-18.2	
	0.2	9.9	110	200	8.1	13.0	-17.3	
}	0.2	9.5	106	200	8.1	13.8	-16.3	
	0.3	9.5	108	209	8.1	13.7	-15.2	
	0.3	9.3	106	218	8.1	14.1	-14.3	
	0.3	9.2	106	217	8.1	14.1	-13.5	
	0.4	9.0	105	222	8.1	14.4	-12.3	,
	0.4	9.0	105	224	8.1	14.7	-11.3	,
	0.4	8.9	105	225	8.1	14.8	-10.4	
	0.4	8.9	105	225	8.2	14.8	-9.5	euphotique
	0.4	8.9	105	225	8.2	15.1	-8.3	de la zone
• • • •	0.5	8.8	104	225	8.2	15.4	-7.3	Prélèvement
	0.6	8.9	106	225	8.2	15.5	-6.4	, ,
	0.6	8.8	105	230	8.2	15.7	-5.5	,,
	0.6	8.8	106	228	8.2	15.9	-4.4	
	0.8	8.8	106	220	8.3	16.2	-3.7	,
	0.8	8.8	107	217	8.3	16.3	-2.4	
	0.7	8.5	104	216	8.3	16.3	-1.4	
	0.8	8.4	102	212	8.3	16.4	-0.5	
	ppb	(mg/l)	(%)	(μS/cm 25°)		(°C)	(m)	
š	dissoutes				,	,		Type de pvlt
	organiques	02	92	Cond.	pΗ	Temp	Prof.	•

Page 16/6

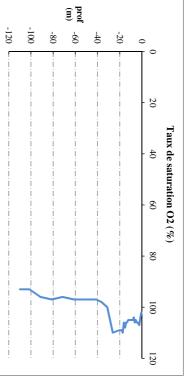

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE

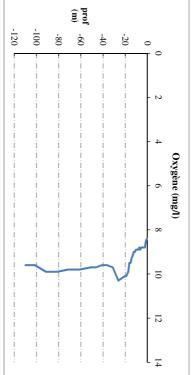

 Plan d'eau :
 Roselend
 Date :
 21/08/19

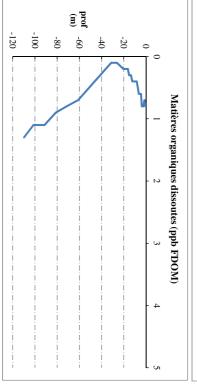

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 W0435023

 Organisme / opérateur :
 STE : Lionel Bochu & Aurélien Morin
 Campagne : 3

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037


S.T.E Sciences Techniques de l'Environnement Page 17/6


Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE


 Plan d'eau :
 Roselend
 Date :
 21/08/19

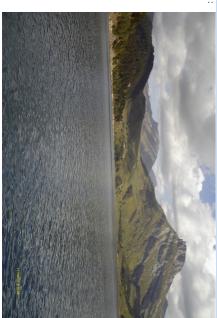
 Types (naturel, artificiel ...) :
 Artificiel Artificiel ...) :
 Code lac :
 W0435023

 Organisme / opérateur :
 STE : Lionel Bochu & Aurélien Morin Campagne : 3
 Campagne : 3
 Marché n° : 160000037

Roselend - campagne 4

Roselend - campagne 4

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES GENERALES PLAN D'EAU


Plan d'eau : Types (naturel, artificiel) : Organisme / onérateur :	Roselend Artificiel STE: Adrien de Ronnefov	Guillaume Cunillera	Date: 17/09/2019 Code lac: W0435023	17/09/2019 W0435023
Types (naturel, artificiel):	Artificiel		Code lac:	W043
Organisme / opérateur :	STE : Adrien de Bonnefoy	Guillaume Cunillera	Campagne	e:4
Organisme demandeur:	Agence de l'Eau RMC		Marché n°: 160000037	: 16000

LOCALISATION PLAN D'EAU

Commune: Lac marnant:	Beaufort oui	Type: A1 retenues de hautes montagnes, profondes
Temps de séjour :	1024 jours	
Superficie du plan d'eau :	315 ha	
Profondeur maximale :	150 m	
	Carte (extrait SCAN 25 IGN 1/25 000	GN 1/25 000)

Photo du site:

Relevé phytoplanctonique et physico-chimique en plan d'eau nonners generat es pran n'eatr

Surface de l'eau :	Plan d'eau: Roselend Types (naturel, artificiel): Organisme / opérateur: Organisme demandeur: STE: Adrien de l'Eau Coordonnée de la station: Lambert 93: WGS 84 (syst.internationnal GPS ° " '): Profondeur: 106 m Météo: 1- temps sec ensoleillé 4- pluie fine 7- gel P atm.: 850 hPa Vent: O- nul 1- faible 2-	ation: ationmal GPS ° " 7 ationmal GPS ° " 7	oselend tificiel E: Adrien cl gence de IF x: x: faible	Guillaume Co N e Géolocalisati y Sie F 2- faiblemen 3- fortemen	Danillera Canullera Canullera Canullera Canullera Manun Portable Si 6515975 Si 6515975 Si 671706,3" N
:	Profondeur:	106 n			45 410
: 850 ions d'observation : 0- nul ions d'observation : 1- lisse r de vagues : 0. algal : NO ge : 0U gréalable : EDF-DI vation : Profils l	Météo :		ensoleillé	2- faiblemen 5- orage-plu 8- fortement	it nuageu: ie forte nuageux
tions d'observation : e de l'eau : 1- lisse r de vagues : 0. 1 algal : NO age : 0U age : 0U refisible : EDF-Di	Patm.:	850 hP			
pbservation: u:	Vent:				
pues: 0.00 NO Able: EDF-DI Profils 1	Conditions d'observa Surface de l'eau :	- lisse	2- faiblement agitée	3- agitée] 4- trè
able: EDF-DI	Hauteur de vagues :	0.05 n			
able: EDF-DI	Bloom algal:	NON			
4	Marnage:	IUO		process.	ie.i
REMARQUES ET able: EDF-DPIH-UP Alpes - plan de pr Profils homogènes	Campagne 4	cam	agne de fin d'été : fin	de stratification	ı ava
able :			ET	RSERVATIO	S
	Contact préalable :	EDF-DPIH-	JP Alpes - plan de prév	DOLLAR V	
				ention	

Remarques:

Transparence très importante: 14.7m

Roselend - campagne 4

Roselend - campagne 4

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES GENERALES PLAN D'EAU

Organisme / opérateur : Types (naturel, artificiel ...): Organisme demandeur: Plan d'eau : Agence de l'Eau RMC STE : Adrien de Bonnefoy Artificiel Roselend Guillaume Cunillera Marché n°: 160000037 Date: Code lac: W0435023 17/09/19

PRELEVEMENTS ZONE EUPHOTIQUE

Prélèvement pour analyses physico-chimiques et phytoplancton

Heure de relevé :	14:10 0 > 36.7 m	
Volume prélevé : Matériel employé :	10 L Nbre de prélèvements : 3 40 m de tuyau intégrateur	
Chlorophylle:	OUI Volume filtré sur place : 1000 ml	
Phytoplancton:	OUI Ajout de lugol : 5 ml	
Prélèvement pour analyses micropolluants	yses micropolluants	OUI
Heure de relevé :	14:20	
Profondeur:	0 à 36.7 m	
Prélèvement :	nt tous les: 2.3 m	
Volume preieve : Matériel employé :	Bouteille téflon 1,2L Nbre de prelevements: 16	
	PRELEVEMENTS DE FOND	OUI
Prélèvement pour anal	Prélèvement pour analyses physico-chimiques	OUI
Prélèvement pour analyses micropolluants	yses micropolluants	OUI
Heure de relevé : Profondeur :	12:40 104 m	
Volume prélevé : Matériel emplové :	16 L Nbre de prélèvements : 3 Bouteille téffon 5.3 L	
menter cinproje :	PRELEVEMENTS INTERMEDIAIRE à 2/3 Zmax	max OUI
Prélèvement pour anal	Prélèvement pour analyses physico-chimiques	OUI
Prélèvement pour analyses micropolluants	yses micropolluants	OUI
Heure de relevé : Profondeur :	13:10 75 m	
Volume prélevé : Matériel employé :	16 L Nbre de prélèvements: 3 Bouteille téflon 5,3 L REMISE DES ECHANTILLONS	
Code prélèvement zone euphotique: Code prélèvement de fond : Code prélèvement de l'intermédiaire	624346 Bon de transport : 624410 Bon de transport : 624390 Bon de transport :	6913424250263733 6913424250261090 6913424250261100
Dépôt : TNT 🗸 C Date : 17/09/19 Réception au laboratoire le :	Chrono CARSO Ville :Chambéry Heure: 18:00;	

S.T.E Sciences Techniques de l'Environnement

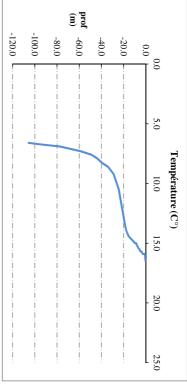
Relevé phytoplanctonique et physico-chimique en plan d'eau

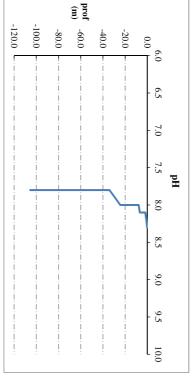
DONNEES PHYSICO-CHIMIQUES

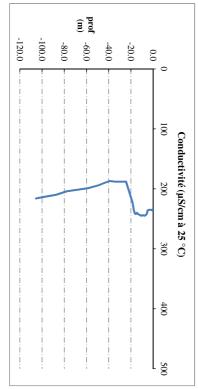
Organisme demandeur: Organisme / opérateur : Types (naturel, artificiel ...): Agence de l'Eau RMC STE : Adrien de Bonnefoy Guillaume Cunillera Artificiel Roselend Marché n°: 160000037 Date: Code lac: W0435023 17/09/19

TRANSPARENCE

Disque Secchi = Zone euphotique (x 2.5 secchi) = 36.75 m

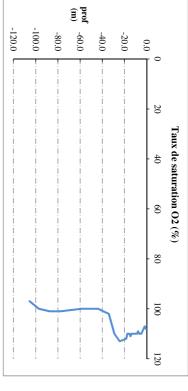

PROFIL VERTICAL

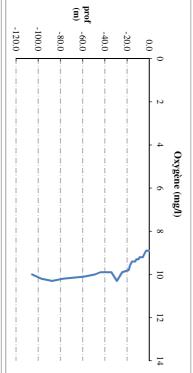

Moyen de mesure utilisé: in situ à chaque profondeur en surface dans un récipient

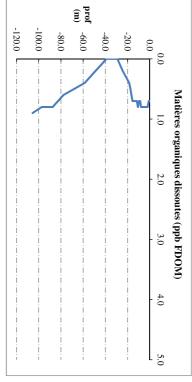

[ype de pvlt	Prof.	Temp	рH	Cond.	02	02	Matières organiques dissoutes	Heure
	(m)	(°C)		(μS/cm 25°)	(%)	(mg/l)	ppb	
	-0.2	16.5	8.3	237	108	8.9	0.7	14:36
	-0.9	15.9	8.2	235	108	8.9	0.7	
	-1.9	15.9	8.1	235	107	8.9	0.8	
	-2.8	15.9	8.1	235	108	8.9	0.8	
	-3.8	15.7	8.1	235	109	9	0.8	
	-4.8	15.7	8.1	236	110	9.1	0.8	
,	-5.7	15.5	8.1	242	110	9.2	0.8	
	-6.7	15.4	8.1	244	110	9.2	0.8	
	-7.8	15.2	8.0	245	109	9.2	0.8	
	-8.6	15.0	8.0	244	110	9.2	0.7	
Prélèvement	-9.6	15.0	8.0	244	110	9.3	0.7	
de la zone	-10.6	14.9	8.0	245	110	9.3	0.8	
euphotique	-11.6	14.8	8.0	244	110	9.3	0.7	
,	-12.6	14.7	8.0	243	110	9.4	0.7	
	-13.6	14.6	8.0	242	110	9.4	0.7	
	-14.6	14.5	8.0	240	111	9.4	0.7	
	-15.5	14.4	8.0	242	110	9.4	0.7	
	-16.5	14.2	8.0	241	110	9.5	0.6	
	-17.4	14.0	8.0	235	110	9.6	0.5	
,	-18.5	13.6	8.0	223	112	9.8	0.4	
	-24.3	10.5	8.0	188	113	9.9	0.2	
	-29.1	9.2	7.9	188	110	10.3	0.0	
	-34.1	8.6	7.8	188	102	9.9	0.0	
	-39.1	8.3	7.8	187	101	9.9	0.0	
	-43.8	7.9	7.8	190	100	9.9	0.1	
	-48.8	7.6	7.8	194	100	10	0.2	
	-58.6	7.3	7.8	199	100	10.1	0.4	
	-77.7	6.9	7.8	204	101	10.2	0.6	
	-87.4	6.8	7.8	210	101	10.3	0.8	
	-97.2	6.7	7.8	213	100	10.2	0.8	
vlt de fond	-105.5	6.6	7.8	216	97	10	0.9	14:45
			7		_	-	-	

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE Relevé phytoplanctonique et physico-chimique en plan d'eau

Organisme / opérateur : Organisme demandeur: Types (naturel, artificiel ...): STE : Adrien de Bonnefoy Guillaume Cunillera Agence de l'Eau RMC Artificiel Marché n°: 160000037 Code lac: W0435023 Date: 17/09/19


S.T.E Sciences Techniques de l'Environnement


DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE Relevé phytoplanctonique et physico-chimique en plan d'eau


Types (naturel, artificiel ...): Code lac: W0435023 Date: 17/09/19

Organisme / opérateur : Organisme demandeur: STE : Adrien de Bonnefoy Guillaume Cunillera

Agence de l'Eau RMC Artificiel Marché n°: 160000037

Artificiel STE: Adrien de Bonnefoy Guillaum		18:00	18	Heure : 18/09/19	Dépôt : Date : 17/09/19 Réception au laboratoire le :
Condured, artificied		y	Chambér	Ville:	☐ Chrono ✓
Condured, artificied Artificied Eval E	XV506248151EE	<i></i>			
Condured, artificiel		SN	NTILLO	EMISE DES ECHA	RI
Condured, artificied			non	non	Présence d'autres débris
Condurel, artificiel			non		Présence d'hydrocarbures
Condurel, artificiel					Présence de débris végétaux non décompo
Condurel, artificiel					couleur
Prean: Roselend Date: (Inaturel, artificiel): Artificiel STE: Adrien de Bonnefoy Guillaume Cunillera Campagne: sisme operateur: STE: Adren de Bonnefoy Guillaume Cunillera Campagne: Marché n°: Agence de l'Eau RMC 4- pluie fine 7- gel 2- faiblement naugeux 6- neige 4- brise 8- fortement 3- temps humide 1- faible 2- moyen 3- temps humide 3- fort 4- brise mode 6- neige 4- très agitée 4- très			. ×	×	hétérogène
Indurel, artificiel): Isisme Opérateur: Isisme demandeur: Agence de l'Eau RMC CONDITIONS DU MILLEU Conge de pluie forte conge conge-pluie forte conge c					Aspect du sédiments
Coaturet, artificiel): Artificiel Artificiel STE: Adrien de Bonnefoy Guillaume Cunillera Canpagne : sisme demandeur : Agence de l'Eau RMC Apluie fine 7- gel 5- orage-pluie forte 8- fortement nuageux 6- neige 6- n				×	vases argile
Peau: Roselend Date: Instance, artificiel): STE: Adricinel & Bonnefoy Guillaume Cunillera Canpagne: STE: Adricinel & Bonnefoy Guillaume Cunillera Canpagne: STE: Adricinel & Bonnefoy Guillaume Cunillera Canpagne: Canpagne: Agence de l'Eau RMC Agence de l'Eau RMC Aphie fine 7- gel 5- orage-pluie forte 8- fortement 2- faiblement nuageux 6- neige 6- neige 3- temps humide 1- faible 3- fort 6- neige 3- fort 6- neige 6- nei				××	limons
Peau: Roselend Conducter, artificiel): Artificiel Control & Artificiel Control & Code lac: isisme demandeur: Agence de l'Eau RMC CONDITIONS DU MILIEU CONDITIONS DU MILIEU 7- gel 7-					sables
Peau: Roselend Interel, artificiel): Artificiel isime / opérateur: STE : Adrien de Bonmefoy Isime demandeur: Agence de l'Eau RMC CONDITIONS DU MILIEU CONDITIONS DU MILIEU CONDITIONS DU MILIEU CONDITIONS DU MILIEU					Granulométrie dominante
Coaturel, artificiel): Artificiel Code lac : Code lac : STE : Adrien de Bonnefoy Guillaume Cunillera Campagne : STE : Adrien de Bonnefoy Guillaume Cunillera Campagne : Marché n°: Marché n			×		anciens (< 2cm)
Coaturel, artificiel): Artificiel Code lac :					Epaisseur échantillonnée
Peau : Roselend Canturel, artificiel) : Artificiel STE : Adrien de Bonnefoy Guillaume Cunillera Campagne :		106	106	106	Profondeur (en m)
Peau : Roselend Canturel, artificiel) : Artificiel STE : Adrien de Bonnefoy Guillaume Cunillera Campagne :	4	3	2	1	Pélèvements
Peau: Roselend Roselend Roselend Roselend Roselend Canturel, artificiel): Artificiel STE: Adrien de Bonnefoy Guillaume Cunillera Campagne: Marché n°: CONDITIONS DU MILIEU	Y:	X : 98	3)	nent (X, Y Lambert 9: leur de C4)	Localisation générale de la zone de prélèver (correspond au point de plus grande profond
Peau: Roselend R			ENTS	PRELEVEM	
I'eau: (naturel, artificiel): Artificiel STE: Adrien de Bonnefoy Agence de l'Eau RMC CONDITIONS DU MILIEU CONDITIONS DU MILIEU 1- temps sec ensoleillé 2- faiblement nuageux 3- temps humide 0-nul 1- faible 1- faible 2- faiblement agitée 4- brise 3- fort 3- brise modér 1- lisse 2- faiblement agitée 3- agitée 4- très agitée 4- très agitée 4- prélèvement: 14-50 MATERIEL MATERIEL			Autre:		benne Ekmann
Peau: Roselend Campagne: STE: Adrificiel): Artificiel STE: Adrien de Bonnefoy Giullaume Cunillera Campagne: Marché n°: CONDITIONS DU MILIEU Marché n°: CONDITIONS DU MILIEU Marché n°: CONDITIONS DU MILIEU Agence de l'Eau RMC 4- pluie fine 7- gel 5- orage-pluie forte 8- fortement nu ageux 6- neige 4- brise 6- neige 4- brise 3- fort 3- fort 5- brise modér 4- brise 3- fort 3- agitée 4- très agitée 4-			EL	MATERII	
Peau : Roselend Date : Code lac : Code lac : STE : Adrificiel) : Afrificiel STE : Adrien de Bonnefey Guillaume Cunillera Campagne : Marché n° : CONDITIONS DU MILIEU Marché n° : CONDITIONS DU MILIEU					
I'eau: (nature], artificiel): Artificiel STE: Adrien de Bonnefoy Agence de l'Eau RMC CONDITIONS DU MILIEU CONDITIONS DU MILIEU 1- temps sec ensoleillé 2- faiblement nuageux 3- temps humide 0- nul 1- faible 1- lisse 2- faiblement agitée 3- agitée 4- très agitée 4- très agitée 4- très agitée 4- très agitée	0				
I'eau : Roselend Date : Code lac : strificiel) : Artificiel STE : Adrien de Bonnefoy Guillaume Cunillera Campagne : hisme demandeur : Agence de l'Eau RMC Marché n°: CONDITIONS DU MILIEU CONDITIONS DU MILIEU Agence de l'Eau RMC A- pluie fine 7- gel 5- orage-pluie forte 8- fortement nu ageux 3- temps humide 3- temps humide 3- fort 3- agitée 4- brise modén 3- fort 3- agitée 4- très ag	D.		4		Période estimé favorable à : ✓ mort et sédimentation du plancton ✓ sédimentation de MES de toute nature
l'eau : Roselend Date : (naturel, artificiel) : Artificiel Code lac : issme / opérateur : STE : Adrien de Bonnefoy Guillaume Cunillera Campagne : issme demandeur : Agence de l'Eau RMC Marché n°: CONDITIONS DU MILIEU 1 - temps sec ensoleillé 4-pluie fine 2- faiblement nuageux 5- orage-pluie forte 8- fortement nuageux 6- neige 3 - temps humide 2- moyen 4- brise modér		🗌 3- agité	nt agitée	<	
Peau : Roselend Date : (naturel, artificiel) : Artificiel sisme / opérateur : STE : Adrien de Bonnefoy Guillaume Cunillera Campagne : hisme demandeur : Agence de l'Eau RMC Marché n° : CONDITIONS DU MILIEU 1- temps sec ensoleillé	☐ 4- brise ☐ 5- brise modéré	_	2- moyen 3- fort	nul [↓
Roselend Artificiel Artificiel STE : Adrien de Bonnefoy Guillaume Cunillera Campagne: Agence de l'Eau RMC CONDITIONS DU MILLEU	7- gel 8- fortement nuageux	ie	4- pluie f 5- orage- 6- neige	oleillé [ageux [
Roselend Date:): Artificiel Code lac: STE: Adrien de Bonnefoy Guillaume Cunillera Campagne: Agence de l'Eau RMC Marché n°:			MILIEU	CONDITIONS D	
Roselend Date:		Cunillera	Guillaume	E : Adrien de Bonnefoy ence de l'Eau RMC	
				selend	