

Agence de l'Eau Rhône Méditerranée Corse

ÉTUDE DES PLANS D'EAU DU PROGRAMME DE SURVEILLANCE DES BASSINS RHONE-MEDITERRANEE ET CORSE – LOT N°3 SUD RAPPORT DE DONNEES BRUTES ET **INTERPRETATION** RETENUE DE SAINTE CROIX

SUIVI ANNUEL 2019

Barrage de Sainte Croix- (Crédit photo STE mai 2019)

Rapport n° 16-707C – Sainte Croix – août 2020

Sciences et Techniques de l'Environnement – B.P. 90374 17, Allée du Lac d'Aiguebelette - Savoie Technolac 73372 Le Bourget du Lac cedex tél.: 04 79 25 08 06; tcp: 04 79 62 13 22

SOMMAIRE

1	CAI	ORE DU PROGRAMME DE SUIVI	<u> 7</u>
2	DER	OULEMENT DES INVESTIGATIONS	9
=	2.1	PRESENTATION DU PLAN D'EAU ET LOCALISATION	
	2.2	CONTENU DU SUIVI 2019.	
	2.3	PLANNING DE REALISATION	
	2.4	ETAPES DE LA VIE LACUSTRE	
	2.5	BILAN CLIMATIQUE DE L'ANNEE 2019	12
<u>3</u>	RAF	PPEL METHODOLOGIQUE	13
_	3.1	INVESTIGATIONS PHYSICOCHIMIQUES	
	3.1.1		
	3.1.2		15
	3.2	INVESTIGATIONS HYDROBIOLOGIQUES	
	3.2.1		
	3.2.2		
	3.2.3	Traitement des données	1/
4	RES	ULTATS DES INVESTIGATIONS	18
_	4.1	INVESTIGATIONS PHYSICOCHIMIQUES	10
	4.1.1		
	4.1.2		
	4.1.3		
	4.2	PHYTOPLANCTON	
	4.2.1		
	4.2.2	8	
	4.2.3	<u>*</u>	
	4.2.4		
	4.2.5	J 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
<u>5</u>	APP	RECIATION GLOBALE DE LA QUALITE DU PLAN D'EAU	34
	<u>ANNEX</u>	<u>ES</u>	<u> 37</u>
A	NNEXE	1. LISTE DES MICROPOLLUANTS ANALYSES SUR EAU	20
A	INILAL	LISTE DES MICROI OLLUANTS ANALTSES SUR EAU	37
A	NNEXE	2. LISTE DES MICROPOLLUANTS ANALYSES SUR SEDIMENT	47
	NNEXE		ET
<u>r</u>	HYTOP	LANCTONIQUES	<u> 51</u>
Δ	NNEXE	4. SYNTHESE PISCICOLE OFB -2019	53
4 1	1 11 1 1 1 1 A A A A A	THE VALUE AND AUTOUR VID AUTO MINIMUM	23

Liste des illustrations

Figure 1 : moyennes mensuelles de température à la station de Château Arnoux (Info-climat)	12
Figure 2 : cumuls mensuels de précipitations à la station de Château Arnoux (site Info-climat)	
Figure 3 : Représentation schématique des différentes stratégies de comptage	16
Figure 4 : Seuils des classes d'état définis pour chaque métrique et pour l'IPLAC	
Figure 5 : Profils verticaux de température au point de plus grande profondeur	18
Figure 6 : Profils verticaux de conductivité au point de plus grande profondeur	19
Figure 7: Profils verticaux de pH au point de plus grande profondeur	
Figure 8 : Profils verticaux d'oxygène (mg/l) au point de plus grande profondeur	20
Figure 9 : Profils verticaux d'oxygène (% sat.) au point de plus grande profondeur	20
Figure 10 : profils verticaux des matières organiques dissoutes	21
Figure 11 : Evolution de la transparence et de la zone euphotique lors de 4 campagnes	28
Figure 12 : Répartition du phytoplancton sur la retenue de Sainte Croix à partir des abondances (cellules	
Figure 13 : Evolution saisonnière des biovolumes des principaux groupes algaux de phytoplancton mm³/l)	en (en
Tableau 1 : Synoptique générique des investigations menées sur une année de suivi d'un plan d'eau	8 10
Tableau 4 : Résultats des paramètres de minéralisation	
Tableau 5 : Résultats des paramètres de physico-chimie classique sur eau	
Tableau 6 : Résultats d'analyses de métaux sur eau	
Tableau 7 : Résultats d'analyses de micropolluants organiques présents sur eau	
Tableau 8 : Synthèse granulométrique sur le sédiment du point de plus grande profondeur	
Tableau 9 : Analyse de sédiments	
Tableau 10 : Résultats d'analyses de micropolluants minéraux sur sédiment	
Tableau 11 : Résultats d'analyses de micropolluants organiques présents sur sédiment	
Tableau 12 : analyses des pigments chlorophylliens	
Tableau 14 : Liste taxonomique du phytoplancton (en mm³/l)	29
Tableau 15 : évolution des Indices IPLAC depuis 2007	
Tableau 15. evolution des muices il LAC depuis 2007	55
Carte 1 : Carte de localisation de la retenue de Sainte Croix	9
Carte 2 : Présentation du point de prélèvement	10

FICHE QUALITE DU DOCUMENT

	Agence de l'Eau Rhône Méditerranée Corse (AERMC)				
	Direction des Données et Redevances				
	2-4, Allée de Lodz				
Maître d'ouvrage	69363 Lyon Cedex 07				
	Interlocuteur : Mr IMBERT Loïc				
	Coordonnées: loic.imbert@eaurmc.fr				
Titre du projet	Etude des plans d'eau du programme de surveillance des bassins Rhône-				
Title du projet	Méditerranée et Corse – Rapport de données brutes et interprétation – Retenue de Sainte Croix				
Référence du document	Rapport n°16-707C /2019-Rapport Sainte Croix 2019				
Date	Avril 2020				

Contrôle qualité

Auteur(s)

Version	Rédigé par	Date	Visé par	Date	
V0	Audrey Péricat, Lionel Bochu	10/04/2020	Audrey Péricat	7/05/2020	
VF	Audrey Péricat	Suite aux remai Imbert du 2/07/2	rques de l'AERMO	C, courriel L.	

Thématique

Mots-clés	Géographiques : Bassin Rhône-Méditerranée – Alpes de Haute Provence – Verdon – Retenue de Sainte Croix
	Thématiques : Réseaux de surveillance – Etat trophique – Plan d'eau
Résumé	Le rapport rend compte de l'ensemble des données collectées sur la retenue de Sainte Croix lors des campagnes de suivi 2019. Une présentation du plan d'eau et du cadre d'intervention est menée puis les résultats des investigations sont développés dans la suite du document.

S.T.E. Sciences et Techniques de l'Environnement

Diffusion

Envoyé à :					
Nom	Organisme	Date	Format(s)		Nombre d'exemplaire(s)
Loïc IMBERT	AERMC	21/07/2020	Papier informatique	et	1
pour version définitiv	e à diffuser			·	

1 CADRE DU PROGRAMME DE SUIVI

Dans le cadre de la mise en œuvre de la Directive Cadre européenne sur l'Eau (DCE), adoptée le 23 Octobre 2000 et transposée en droit français le 21 avril 2004, un programme de surveillance a été mis en place au niveau national afin de suivre l'état écologique et l'état chimique des eaux douces de surface (cours d'eau et plans d'eau).

L'Agence de l'Eau Rhône Méditerranée Corse a en charge le suivi des plans d'eau faisant partie du programme de surveillance sur les bassins Rhône-Méditerranée et Corse.

Le suivi comprend la réalisation de prélèvements d'eau et de sédiments répartis sur quatre campagnes dans l'année pour analyse des paramètres physico-chimiques et des micropolluants. Différents compartiments biologiques sont étudiés (phytoplancton, macrophytes, diatomées, faune benthique). Le tableau 1 synthétise les différentes mesures qui sont réalisées dans le cadre du suivi type (selon la nature des plans d'eau et les éléments déjà suivis antérieurement, le contenu du suivi n'englobera pas nécessairement l'ensemble des éléments listés dans le Tableau 1). Un suivi du peuplement piscicole doit également être réalisé dans le cadre du programme de surveillance sur certains types de plans d'eau.

Tableau 1 : Synoptique générique des investigations menées sur une année de suivi d'un plan d'eau

			Paramètres Type de prélèvements/ Mesures		HIVER	PRINTEMPS	ЕТЕ	AUTOMNE
Mesures in situ		Mesures in situ	O2 dis. (mg/l, %sat.), pH, COND (25°C), T°, transparence secchi	Profils verticaux	Х	Х	Х	Х
	,		DBO5, PO4, Ptot, NH4, NKJ, NO3, NO2, Corg, MEST, Turbidité, Si	Intégré	Х	Х	Χ	Х
	J		dissoute	Ponctuel de fond	Х	Χ	Χ	Х
	Sur EAU	Physico-chimie classique et	Micropolluants sur eau*	Intégré	Х	Х	Х	Х
	Sur	micropolluants	Micropolidants sur ead	Ponctuel de fond	Х	Х	Х	Χ
			Chlorophylle a + phéopigments	Intégré	Х	Х	Х	Х
			Chilorophylie a + pheopiginents	Ponctuel de fond				
		Paramètres de	Ca ²⁺ , Na ⁺ , Mg ²⁺ , K ⁺ , dureté, TAC,	Intégré	Х			
		Minéralisation	SO ₄ ²⁻ , Cl ⁻ , HCO ₃	Ponctuel de fond				
ပ	E	au interst.: Physico-chimie	PO4, Ptot, NH4					
Phase solide Micropollycoto		Physico-chimie classique	Corg., Ptot, Norg, Granulomètrie, perte au feu	Prélèvement au point de plus grande profondeur				Х
Ø	Micropolluants		Micropolluants sur sédiments*					
			Phytoplancton	Intégré - Protocole IRSTEA/Utermöhl	Х	Х	Χ	X
		I DITODIOLOGIL CT	Invertébrés	Protocole en cours de développement		Х		
			Diatomées	Protocole IRSTEA			Χ	
			Macrophytes	Norme XP T 90-328			Χ	

se référer à l'arrêté du 7 août 2015 établissant le programme de surveillance de l'état des eaux : *

Poissons et hydromorphologie en charge de l'ONEMA (un passage tous les 6 ans)

RCS : un passage par plan de gestion pour le suivi complet (soit une fois tous les six ans / tous les trois ans pour le phytoplacton)

CO: un passage tous les trois ans

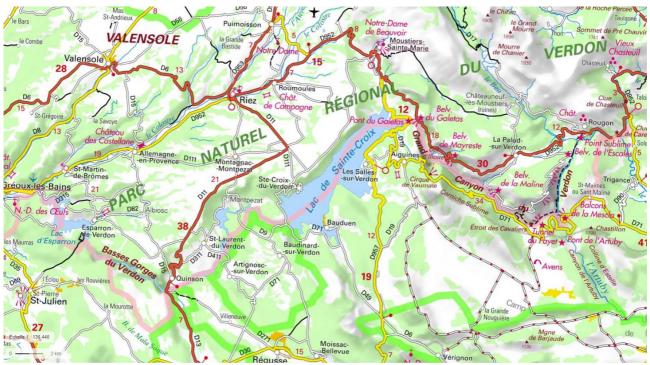
Différents réseaux constituent le programme de surveillance. Parmi ceux-ci, deux réseaux sont actuellement mis en œuvre sur les plans d'eau :

- ✓ Le réseau de contrôle de surveillance (RCS) vise à donner une image globale de la qualité des eaux. Tous les plans d'eau naturels de superficie supérieure à 50ha ont été pris en compte sur les bassins Rhône-Méditerranée et Corse. Pour les plans d'eau d'origine anthropique, une sélection a été opérée parmi les plans d'eau de superficie supérieure à 50 ha, afin de couvrir au mieux les différents types présents sur les bassins Rhône-Méditerranée et Corse (grandes retenues, plans d'eau de digue, plans d'eau de creusement).
- ✓ Le contrôle opérationnel (CO) vise à suivre spécifiquement les plans d'eau (naturels ou anthropiques) de superficie supérieure à 50 ha qui risquent de ne pas atteindre leurs objectifs environnementaux (le bon état ou le bon potentiel).

Au total, 79 plans d'eau sont suivis sur les bassins Rhône-Méditerranée et Corse dans le cadre de ces deux réseaux.

La liste des plans d'eau suivis en 2019 sur le sud du bassin Rhône-Méditerranée et le bassin Corse, précisant pour chaque plan d'eau le réseau qui le concerne, est fournie dans le Tableau 2.

Tableau 2 : liste des plans d'eau suivis sur le sud du bassin Rhône-Méditerranée et bassin Corse


Code_lac	Libellé	Origine	Dept	Code MDO	Type cemagref	Réseaux	Altitude (m)	Type de suivi
X2005023	Allos	Naturel	4	FRDL93	N2	RCS/REF	2232	Classique
Y4305143	Entressen	Naturel	13	FRDL116	N11	RCS/CO	36	Classique
X2625003	Esparron	MEFM	4	FRDL89	A3	RCS	359	Classique
Y0045103	Estany de Lanos	MEFM	66	FRDL124	A1	RCS	2213	Classique
Y5525003	Saint Cassien	MEFM	83	FRDL107	A12	RCS	147	Classique
X23003	Sainte Croix	MEFM	4	FRDL106	А3	RCS	477	Classique
Y2235003	Salagou	MEFM	34	FRDL119	A12	RCS	139	Phytoplancton + séd.
X03003	Serre ponçon	MEFM	5	FRDL95	А3	RCS	779	Classique
Y9205023	Alesani	MEFM	2B	FREL134	A12	RCS	160	Classique
Y8415003	Tolla	MEFM	2A	FREL131	A10	RCS	560	Classique
Y1005163	Puyvalador	MEFM	66	FRDL125	A1	CO	1421	Classique
X0125003	Eychauda	Naturel	5	FRDL96	N2	REF	2513	Classique
X0405063	Neuf couleurs	Naturel	4	FRDL94	N2	REF	2841	Classique

2 DÉROULEMENT DES INVESTIGATIONS

2.1 Presentation du plan d'eau et localisation

La retenue de Sainte Croix est située entre le département des Alpes-de-Haute-Provence (04) et celui du Var (83). Elle appartient à la chaine hydroélectrique du Verdon, composée d'amont en aval des retenues de Castillon, Chaudanne, Sainte Croix et Quinson et Esparron. La retenue formée atteint 2203 ha pour une profondeur maximale voisine de 80 m.

Le plan d'eau est utilisé pour l'hydroélectricité (EDF) et l'alimentation en eau potable (Société du Canal de Provence). En période estivale, des activités nautiques (canoë, pédalo, voile, navigation non motorisée) y sont pratiquées. La cote d'eau est maintenue à 477 m NGF durant cette période estivale. Le reste de l'année, la gestion de l'eau engendre un marnage assez important (> 5m). Le temps de séjour est long, estimé à 280 jours environ.

Carte 1 : Carte de localisation de la retenue de Sainte Croix

La zone de plus grande profondeur se situe à proximité du barrage dans le chenal central au niveau du pont de la D111. Le point de plus grande profondeur atteint 72 m pour cette année 2019 (Carte 2) comme lors des suivis précédents. Le marnage maximal enregistré en 2019 était de 6,4 m lors de la dernière campagne.

Carte 2 : Présentation du point de prélèvement

Le lac présente un fonctionnement monomictique, avec une seule phase de stratification annuelle en été.

2.2 CONTENU DU SUIVI 2019

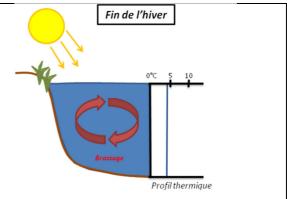
La retenue de Sainte Croix est suivie au titre du Réseau de Contrôle de Surveillance (RCS). Selon l'arrêté «Surveillance » du 7/08/2015, les plans d'eau du RCS doivent être suivis pour tous les éléments de qualité à une fréquence de 6 ans (seul le compartiment phytoplancton est à suivre tous les 3 ans). Ainsi, en 2019, la retenue de Sainte Croix a fait l'objet d'un suivi physicochimique complet (zone euphotique et fond) ainsi que l'étude du peuplement phytoplanctonique pour les paramètres biologiques. En 2016, la retenue a fait l'objet d'un suivi allégé de type « phytoplancton ».

2.3 PLANNING DE REALISATION

Le tableau ci-dessous indique la répartition des missions aussi bien en phase terrain qu'en phase laboratoire/détermination. S.T.E. a, en outre, eu en charge de coordonner la mission et de collecter l'ensemble des données pour établir les rapports et mener l'exploitation des données.

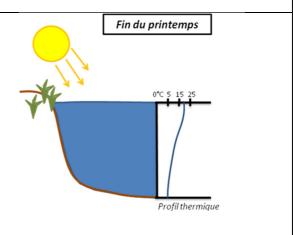
Retenue de Sainte Croix		Phase to	Laboratoire - détermination		
Campagne	C1	C2 C3 C		C4	
Date	26/03/2019	04/06/2019	23/07/2019	01/10/2019	automne/hiver 2019-2020
Physicochimie des eaux	S.T.E.	S.T.E.	S.T.E.	S.T.E.	CARSO
Physicochimie des sédiments				S.T.E.	LDA26
Phytoplancton	S.T.E.	S.T.E.	S.T.E.	S.T.E.	LEMNA

Tableau 3 : Synoptique des interventions de terrain et de laboratoire sur le plan d'eau

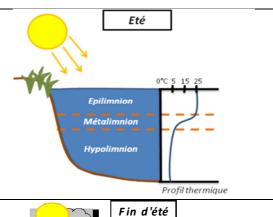

2.4 ETAPES DE LA VIE LACUSTRE

Les investigations physicochimiques ont été réalisées lors de quatre campagnes qui correspondent aux différentes étapes de développement de la vie lacustre.

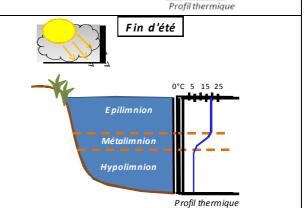
Campagne 1


La première campagne correspond à la phase d'homothermie du plan d'eau. La masse d'eau est homogène (en température et en oxygène). Sur les lacs monomictiques, cette phase intervient en hiver. La campagne est donc réalisée en fin d'hiver avant que l'activité biologique ne débute (février-mars)

¹ Plan d'eau qui présente une seule alternance stratification / déstratification annuelle.


Campagne 2

La seconde campagne correspond à la période de démarrage et de développement de l'activité biologique des lacs. Il s'agit de la période de mise en place de la stratification thermique conditionnée par le réchauffement. Cette phase intervient au printemps et c'est à cette période que l'activité biologique atteint son maximum. La campagne est donc généralement réalisée durant les mois de mai à (exceptionnellement juillet pour les plans d'eau d'altitude).


Campagne 3

La troisième campagne correspond à la période de stratification maximum du plan d'eau avec une thermocline bien installée avec une 2ème phase de croissance du phytoplancton. Cette phase intervient en période estivale. La campagne est donc réalisée durant les mois de juillet et août, lorsque l'activité biologique est maximale.

Campagne 4

La quatrième campagne correspond à la fin de la stratification estivale du plan d'eau. Elle intervient avant la baisse de la température et la disparition de la thermocline. L'épilimnion présente alors son épaisseur maximale. Cette phase intervient en fin d'été : la campagne est donc réalisée durant le mois de septembre.

2.5 BILAN CLIMATIQUE DE L'ANNEE 2019

Les conditions climatiques de l'année 2019 pour la retenue de Sainte Croix sont analysées à partir de la station météorologique de Château Arnoux (461 m NGF), située à 38 kms au NO du plan d'eau dans la vallée de Durance.

L'année 2019 a été globalement chaude : +1,2°C par rapport aux moyennes de saison (Figure 1) avec une température moyenne de 14,1°C en 2019 contre 12,9°C sur la période 1981-2010. Cette hausse de température est particulièrement significative pendant la période estivale de juin à octobre avec +2°C sur les températures moyennes. Des conditions caniculaires sont mesurées en juin avec un record à plus de 42°C pour la température maximale.

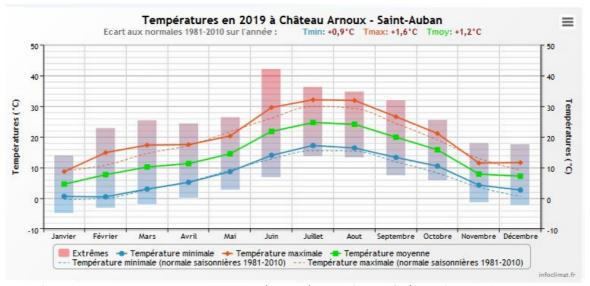


Figure 1 : moyennes mensuelles de température à la station de Château Arnoux (Info-climat)

Le cumul de précipitations en 2019 est bien supérieur à la normale (885 mm en 2019 contre 695 mm mesuré en moyenne sur la période 1981-2010), **soit +27% de pluviométrie**. Ces données sont présentées sur la Figure 2.

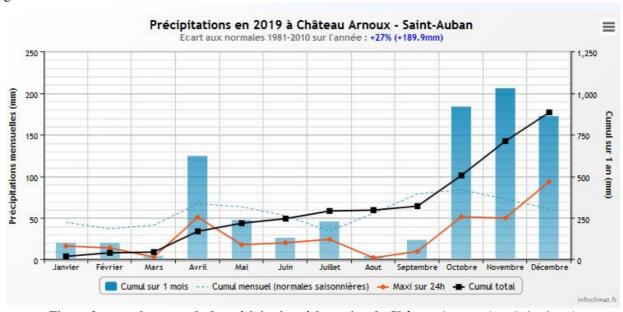


Figure 2 : cumuls mensuels de précipitations à la station de Château Arnoux (site Info-climat)

Il ressort les éléments suivants :

- ✓ Déficits importants pendant l'hiver puis en juin, août et septembre (< 25 mm mensuel);
- ✓ Précipitations très excédentaires en avril (125 mm), puis pendant l'automne octobre, novembre et décembre (cumul > 170 mm);

Le début de l'année 2019 est caractérisé par un hiver doux, et sec. Le mois d'avril est bien arrosé permettant un bon remplissage des retenues du secteur. Le mois de mai est assez frais et conforme en termes de pluviométrie. A partir du mois de juin, les températures sont élevées et les précipitations déficitaires en particulier en août (cumul : 5 mm), ce phénomène entraine un réchauffement de la masse d'eau. L'automne a été très pluvieux avec des cumuls importants : 184 mm en octobre, 206 mm en novembre et 172 en décembre.

Au global, l'année 2019 a été chaude, elle a été très pluvieuse sur le mois d'avril, et sur l'automne. Les conditions climatiques ont permis un bon remplissage de la retenue et un maintien de la cote du plan d'eau (marnage < 7 m).

3 RAPPEL MÉTHODOLOGIQUE

3.1 INVESTIGATIONS PHYSICOCHIMIQUES

3.1.1 METHODOLOGIE

Le contenu des investigations physicochimiques est similaire sur les quatre campagnes, excepté un point : un échantillon de sédiment est prélevé lors de la dernière campagne.

Le profil vertical et les prélèvements sont réalisés dans le secteur de plus grande profondeur que l'on recherche à partir des données collectées au préalable (bathymétrie, étude, communication avec les gestionnaires). Dans le cas des retenues, cette zone se situe en général à proximité du barrage dans le chenal central. Sur le terrain, la recherche du point de plus grande profondeur est menée à l'aide d'un échosondeur.

Au point de plus grande profondeur, on effectue, dans l'ordre :

- a) une mesure de transparence au disque de Secchi, avec lecture côté "ombre" du bateau pour une parfaite acuité visuelle. Chacun des deux opérateurs fait la lecture en aveugle (1ère lecture non indiquée au 2e lecteur).
- b) un profil vertical de température (°C), conductivité (μS/cm à 25°C), pH (u. pH) et oxygène dissous (% sat. et mg/l). Il est réalisé à l'aide de 2 sondes multiparamètres OTT MS5 qui peuvent effectuer des mesures jusqu'à 200 m de profondeur :
 - les sondes MS1 et MS2 disposant d'une mémoire interne pouvant être programmée pour enregistrer les données à une fréquence de temps définie préalablement (5 secondes).

Les sondes sont équipées d'un capteur de pression permettant d'enregistrer la profondeur de la mesure. Les deux sondes sont descendues en parallèle sur la colonne d'eau pour le recueil du profil vertical.

Un profil vertical du paramètre matières organiques dissoutes *fdom* est également mené lors de toutes les campagnes à l'aide d'une sonde EXO. Cet appareil a également été équipé d'une sonde pH et conductivité en cours d'année 2019.

c) deux prélèvements pour analyses physicochimiques :

- l'échantillon intégré est en général constitué de prélèvements ponctuels tous les mètres¹ sur la zone euphotique (soit 2,5 fois la transparence) ; ces prélèvements unitaires, de même volume, sont réalisés à l'aide d'une bouteille Kemmerer 1,2 L (téflon) et disposés dans une bonbonne en verre pyrex de 20 litres graduée et équipée d'un robinet verre/téflon pour conditionner les échantillons. Pour les analyses physicochimiques (uniquement micropolluants minéraux et organiques), 10 litres sont nécessaires. Une fois l'échantillon finalisé, le conditionnement est réalisé sur le bateau, en respectant l'ensemble des prescriptions du laboratoire.
- l'échantillon ponctuel de fond est prélevé à environ 1 m du fond, pour éviter la mise en suspension des sédiments. Les prélèvements sont réalisés à l'aide d'une bouteille Niskin X *General Oceanics* téflonnée (5,4 L) et disposés dans une bonbonne en verre pyrex de 20 litres graduée et équipée d'un robinet verre/téflon pour conditionner les échantillons. Pour les analyses physicochimiques (physicochimie classique, micropolluants minéraux et organiques), 15 litres sont nécessaires. Une fois l'échantillon finalisé, le conditionnement est réalisé sur le bateau, en respectant l'ensemble des prescriptions du laboratoire.

Pour chaque échantillon, le laboratoire CARSO fournit une glacière avec les flaconnages préalablement étiquetés adaptés aux analyses demandées par l'Agence de l'Eau RM&C.

Les échantillons sont conservés dans une enceinte isolée au contact de blocs réfrigérants et de glace fondante, puis envoyés par transporteur TNT pour un acheminement au laboratoire CARSO dans un délai de 24h, sauf cas particuliers.

d) un prélèvement intégré destiné à l'analyse du phytoplancton et de la chlorophylle et aux analyses de physico-chimie classique :

Les prélèvements doivent être obligatoirement intégrateurs de la colonne d'eau correspondant à la zone euphotique. Pour l'échantillonnage, 7 litres sont nécessaires. Ainsi, selon la profondeur de la zone euphotique, plusieurs matériels peuvent être utilisés, l'objectif étant de limiter les aliquotes, et donc les manipulations afin que l'échantillon soit le plus homogène possible :

- ✓ le tuyau intégrateur (système décrit dans le protocole de l'IRSTEA) est adaptable pour toute profondeur, le volume échantillonné dépend du diamètre du tuyau. S.T.E. a mis au point 2 tuyaux :
 - o l'un de 5 ou 9 m de diamètre élevé (Ø18 mm) pour les zones euphotiques réduites,
 - o l'autre de 30 m (Ø14 mm) pour les transparences élevées.

Le choix du matériel respecte l'objectif de ne pas multiplier les prélèvements élémentaires.

La filtration de la chlorophylle est effectuée sur le terrain par le préleveur S.T.E. à l'aide d'un kit de filtration de terrain Nalgène.

Pour l'analyse du phytoplancton, 2 échantillons sont réalisés dans des flacons blancs opaques en PP de 500 et 250 ml dûment étiquetés (nom du lac, date, préleveur, campagne). On y ajoute un volume connu de lugol (3 à 5 ml) pour fixation. Les échantillons sont conservés au réfrigérateur. Un des deux échantillons est ensuite transmis au bureau d'études LEMNA en charge de la détermination et du comptage du phytoplancton. L'autre échantillon est conservé dans les locaux de S.T.E dans le cadre du contrôle qualité.

Pour les analyses de physico-chimie classique, le laboratoire CARSO fournit une glacière avec les flaconnages préalablement étiquetés adaptés aux analyses demandées par l'Agence de l'Eau RM&C.

¹ Compte tenu de la transparence Tr. de certains plans d'eau, exprimable en plusieurs mètres, la règle du Tr. x 2,5 a parfois conduit à une valeur calculée supérieure à la profondeur du plan d'eau. Dans ces cas, le prélèvement a été arrêté à 1 m du fond, pour éviter le prélèvement d'eau de contact avec le sédiment, qui peut, selon les cas, présenter des caractéristiques spécifiques. Inversement, lorsque la transparence est très faible, amenant à une épaisseur de zone euphotique d'à peine quelques mètres, les prélèvements peuvent être resserrés à un pas moindre que 1 m (par exemple : tous les 50 cm).

Les échantillons sont conservés dans une enceinte isolée au contact de blocs réfrigérants et de glace fondante, puis envoyés par transporteur TNT pour un acheminement au laboratoire CARSO dans un délai de 24h, sauf cas particuliers.

e) un prélèvement de sédiment :

Ce type de prélèvement n'est réalisé que lors d'une seule campagne, celle de fin d'été (septembre), susceptible de représenter la phase la plus critique pour ce compartiment. Le prélèvement de sédiments est réalisé impérativement **après** les prélèvements d'eau afin d'éviter tout risque de mise en suspension de particules du sédiment lors de son échantillonnage, et donc de contamination du prélèvement d'eau (surtout celui du fond).

Il est réalisé par une série de prélèvements à la benne Ekman. Au vu de sa taille et de la fraction ramenée par ce type de benne (en forme de secteur angulaire), on réalise de 2 à 5 prélèvements pour ramener une surface de l'ordre de 1/10 m². On observe sur chacun de ces échantillons la structure du sédiment dans le double but de :

- description (couleur, odeur, aspect, granulométrie,..);
- sélection de la seule tranche superficielle (environ 2-3 premiers cm) destinée à l'analyse.

Pour chaque échantillon, le laboratoire LDA26 fournit une glacière avec le flaconnage adapté aux analyses demandées par l'Agence de l'Eau RM&C.

Les échantillons sont conservés dans une enceinte isolée au contact de blocs réfrigérants et de glace fondante, puis envoyés par transporteur Chronopost pour un acheminement au Laboratoire de la Drôme (LDA26) dans un délai de 24h, sauf cas particuliers.

3.1.2 PROGRAMME ANALYTIQUE

Concernant les analyses, les paramètres suivants sont mesurés :

- ✓ sur le prélèvement intégré destiné aux analyses de physico-chimie classique et de la chlorophylle :
 - o turbidité, MES, COD, DBO₅, DCO, PO₄³, Ptot, NH₄⁺, NKJ, NO₃, NO₂, silicates;
 - o chlorophylle a et indice phéopigments ;
 - o dureté, TAC, HCO₃, Ca⁺⁺, Mg⁺⁺, Na⁺, K⁺, Cl⁻, SO₄, F⁻;
- ✓ sur le prélèvement intégré destiné aux analyses de micropolluants minéraux et organiques :
 - o micropolluants minéraux et organiques : liste des substances fournie en annexe 1.
- ✓ sur le prélèvement de fond :
 - o turbidité, MES, COD, DBO₅, DCO, PO₄³⁻, Ptot, NH₄⁺, NKJ, NO₃⁻, NO₂⁻, silicates;
 - o micropolluants minéraux et organiques : liste des substances fournie en annexe 1.

Les paramètres analysés sur les **sédiments** prélevés lors de la $4^{\grave{e}me}$ campagne sont les suivants :

- ✓ sur la phase solide (fraction < 2 mm):
 - o granulométrie;
 - o matières sèches minérales, perte au feu, matières sèches totales ;
 - o carbone organique;
 - o phosphore total;
 - o azote Kjeldahl;
 - o ammonium;
 - o micropolluants minéraux et organiques : liste des substances fournie en annexe 2.
- ✓ Sur l'eau interstitielle :
 - o orthophosphates;
 - o phosphore total;
 - o ammonium.

3.2 Investigations hydrobiologiques

Les investigations hydrobiologiques menées en 2019 sur la retenue de Sainte- Croix comprennent uniquement :

✓ l'étude des peuplements phytoplanctoniques à partir de la norme XP T 90-719, « Échantillonnage du phytoplancton dans les eaux intérieures » pour la phase d'échantillonnage et pour la partie détermination à la Norme guide pour le dénombrement du phytoplancton par microscopie inversée (norme NF EN 15204, décembre 2006), correspondant à la méthode d'Utermöhl et suivant les spécifications particulières décrites au chapitre 5 du «Protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan pour la mise en œuvre de la DCE, Version 3.3.1, septembre 2009.

Les prélèvements ont été effectués par S.T.E. lors des campagnes de prélèvements pour analyses physicochimiques. La détermination a été réalisée par Sonia Baillot du bureau d'études LEMNA, spécialiste en systématique et écologie des algues d'eau douce.

3.2.1 Prelevement des echantillons

Les prélèvements ont été réalisés selon la méthodologie présentée au point d) du §3.1.1 « Méthodologie » du chapitre « Rappel méthodologique ».

3.2.2 DETERMINATION DES TAXONS

La détermination est faite au microscope inversé, à l'espèce dans la mesure du possible.

A noter : la systématique du phytoplancton est en perpétuelle évolution, les références bibliographiques se confortent ou se complètent, mais s'opposent quelques fois. Il est donc important de rappeler qu'il vaut mieux une bonne détermination à un niveau taxonomique moindre qu'une mauvaise à un niveau supérieure (Laplace-Treyture et al., 2009).

L'analyse quantitative implique l'identification et le dénombrement des taxons observés dans une surface connue de la chambre de comptage. Selon la concentration en algues décroissante, le comptage peut être réalisé de trois manières différentes (Figure 3).

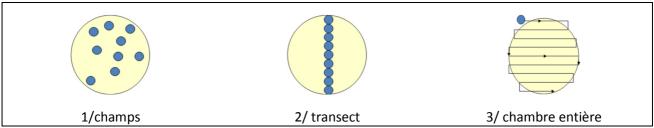


Figure 3 : Représentation schématique des différentes stratégies de comptage

Le comptage est réalisé en balayant des champs strictement aléatoires, ou des transects, ou la chambre entière jusqu'à atteindre 400 individus algaux. La stratégie de comptage utilisée est fonction de la concentration des algues.

Différentes règles de comptage sont appliquées, en respect des échanges inter-opérateur issus des réunions d'harmonisation phytoplancton INRA 2015-2016. Il est entendu que :

- ✓ Tout filament, colonie, ou cœnobe, compte pour un individu algal à X cellules. Le nombre de cellules présentes dans le champ et par individu est dénombré (cellules/individus algaux).
- ✓ Seules les cellules contenant un plaste (exceptés pour les cyanobactéries et chrysophycées à logettes) sont comptées. Les cellules vides des colonies, des cœnobes, des filaments ou des diatomées ne sont pas dénombrées.

- ✓ Les logettes des chrysophycées (ex : *Dinobryon, Kephyrion,...*) sont dénombrées même si elles sont vides, les cellules de flagellés isolés ne sont pas dénombrés.
- ✓ Pour les diatomées, en cas de difficulté d'identification et de fortes abondances (supérieur à 20% de l'abondance totale), une préparation entre lame et lamelle selon le mode préparatoire décrit par la norme NF T 90-354 (AFNOR, 2007) est effectuée.

3.2.3 Traitement des données

Les résultats sont exprimés en nombre de cellules par millilitre. Ils sont également exprimés en biovolume (mm³/l), ce qui reflète l'occupation des différentes espèces. En effet, les espèces de petite taille n'occupent pas un même volume que les espèces de grandes tailles. Les biovolumes sont obtenus de trois manières :

- 1. Grâce aux données proposées par le logiciel Phytobs (version 3.1.3), d'aide au dénombrement,
- 2. si les données sont absentes, les mesures sur 30 individus lors de l'observation au microscope sont employées pour calculer un biovolume robuste,
- 3. si l'ensemble des dimensions utiles au calcul n'est pas observé, les données complémentaires issues de la bibliographie sont employées.

Le comptage terminé, la liste bancarisée dans l'outil de comptage PHYTOBS est exporté au format .xls ou .csv. Cet outil permet de présenter des résultats complets.

Le calcul de l'indice Phytoplancton lacustre ou IPLAC est réalisé à l'aide à l'aide du Système d'Evaluation de l'Etat des Eaux (SEEE). Il s'appuie sur 2 métriques :

- ✓ La Métrique de biomasse algale ou MBA est basée sur la concentration moyenne de la chlorophylle a sur la période de végétation.
- ✓ La Métrique de Composition Spécifique ou MCS exprime une note en fonction de la présence (exprimée en biovolume) de taxons indicateurs, figurant dans une liste de référence de 165 taxons (SEEE 1.1.0). A chaque taxon correspond une cote spécifique et une note de sténoécie, représentant l'amplitude écologique du taxon. La note finale est obtenue en mesurant l'écart avec la valeur prédite en condition de référence.

La note IPLAC résulte de l'agréation par somme pondérée de ces deux métriques:

Valeurs de limite	Classe
[1 - 0.8]	Très bon
]0.8 - 0.6]	Bon
]0.6 - 0.4]	Moyen
]0.4 - 0.2]	Médiocre
]0.2 - 0]	Mauvais

Figure 4 : Seuils des classes d'état définis pour chaque métrique et pour l'IPLAC

L'interprétation des caractéristiques écologiques du peuplement permet d'établir si une dégradation de la note indicielle peut être expliquée par la présence de taxons polluotolérants ou favorisés par une abondance de nutriments liée à l'eutrophisation du milieu ou être lié au fonctionnement du milieu (stratification, anoxie,...).

L'utilisation de la bibliographie et des groupes morpho-fonctionnels permet d'affiner notre analyse et d'évaluer la robustesse de la note IPLAC obtenue.

4 RÉSULTATS DES INVESTIGATIONS

4.1 INVESTIGATIONS PHYSICOCHIMIQUES

Les comptes rendus des campagnes de prélèvements physicochimiques et phytoplanctoniques sont présentés en annexe 3.

4.1.1 Profils verticaux et evolutions saisonnières

Le suivi prévoit la réalisation de profils verticaux sur la colonne d'eau à chaque campagne. Quatre paramètres sont mesurés : la température, la conductivité, l'oxygène (en concentration et en % saturation) et le pH. Les graphiques regroupant ces résultats pour chaque paramètre lors des 4 campagnes sont affichés dans ce chapitre.

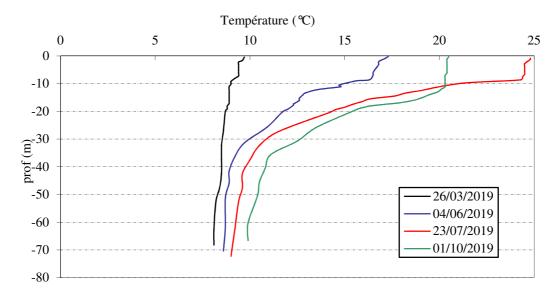


Figure 5 : Profils verticaux de température au point de plus grande profondeur

La température est quasi homogène sur la colonne d'eau à la sortie de l'hiver avec 8,1°C (au fond) et 9,7°C en surface.

Les eaux se réchauffent nettement au printemps et la stratification thermique se met en place. L'épilimnion d'une épaisseur de l'ordre de 8m atteint 17°C tandis que les eaux du fond restent à 8,6°C.

La campagne du 23 juillet correspond à la période de réchauffement maximal des eaux. L'épilimnion atteint presque 25°C et se maintient sur les huit premiers mètres. Une belle thermocline se dessine entre 8 et 25 m. Les eaux du fond se maintiennent entre 9 et 10°C lors des campagnes 3 et 4.

En fin d'été, les eaux de surface se refroidissent (20°C) et la thermocline s'enfonce. L'amplitude thermique est de 10°C entre la surface et le fond

La retenue de Sainte Croix présente une belle stratification thermique durant toute la saison estivale.

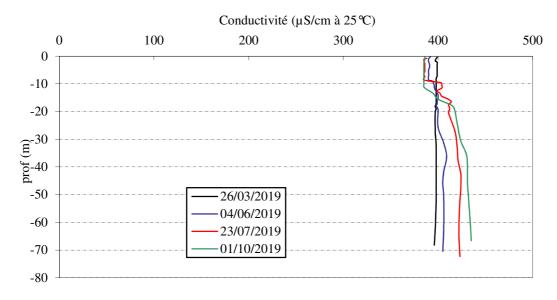


Figure 6 : Profils verticaux de conductivité au point de plus grande profondeur

La conductivité est homogène à 400 μ S/cm à 25°C lors des deux premières campagnes. On note une légère variation lors des campagnes de juillet et octobre avec une baisse de la minéralisation en surface (385 à 390 μ S/cm à 25°C) alors que la conductivité augmente dans la couche profonde avec la minéralisation de la matière organique qui sédimente dans la colonne d'eau (420 à 435 μ S/cm à 25°C).

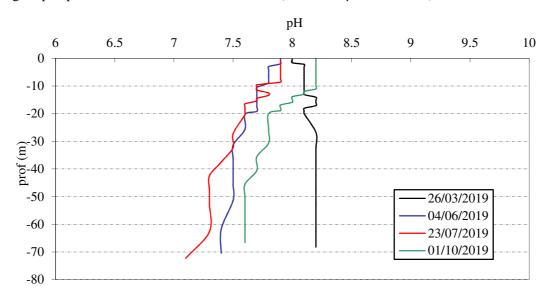


Figure 7 : Profils verticaux de pH au point de plus grande profondeur

Le pH est alcalin dans la retenue de Sainte Croix, conformément à la nature calcaire des terrains traversés. Il est compris entre 7,9 et 8,2 en surface. Il est globalement plus faible dans le fond du plan d'eau (7,1 à 8,2) et il diminue entre la première et troisième campagne mais remonte un peu lors de la quatrième campagne.

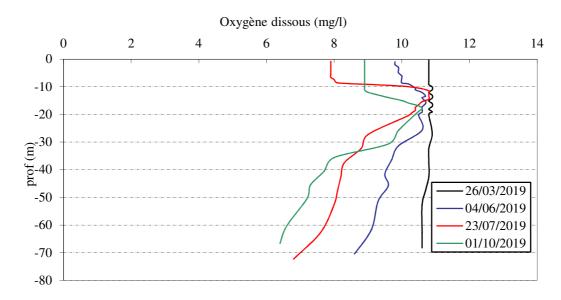


Figure 8 : Profils verticaux d'oxygène (mg/l) au point de plus grande profondeur

La saturation en oxygène dissous est optimale et homogène sur la colonne d'eau lors de la 1^{ère} campagne d'investigations (95% au fond et 100% en surface).

En début de la saison estivale (deuxième campagne), la colonne d'eau reste bien oxygénée jusqu'à 25 m de profondeur avec 102- 107% sat puis on observe une consommation en oxygène vers le fond (80% sat).

L'activité photosynthétique dans l'épilimnion entraine une augmentation de la teneur en oxygène entre 8 et 15 m de profondeur. On enregistre un pic d'oxygène le 23 juillet à 10 m de profondeur (133% sat) et un autre pic (117% sat) le 1^{er} octobre à 17 m de profondeur. Lors des trois dernières campagnes, la demande en oxygène augmente au fond du plan d'eau (78% sat le 4 juin, 66% sat le 23 juillet puis 60% le 1^{er} octobre).

Les mesures en oxygène révèlent une production en oxygène non négligeable en zone trophogène sur la période estivale. La zone profonde est, en revanche, sujette à une désoxygénation partielle en fin d'été. Le déficit en oxygène est évalué à 33% en moyenne sur la période estivale. Cependant, le brassage hivernal permet une ré-oxygénation complète du plan d'eau.

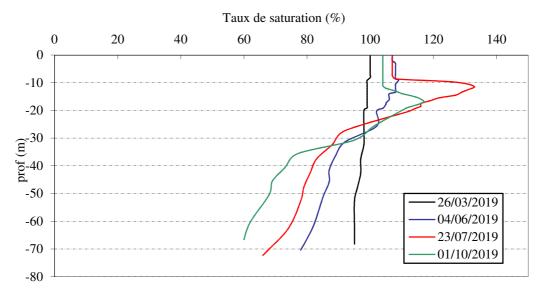


Figure 9 : Profils verticaux d'oxygène (% sat.) au point de plus grande profondeur

Les matières organiques dissoutes sont étudiées à l'aide d'une sonde EXO équipée d'un capteur fdom qui mesure les matières organiques dissoutes (MOD) en ppb QSU sulfate de quinine. Les profils pour les 3 campagnes sont présentés sur la Figure 10. Le profil n'est pas disponible pour la 1ère campagne suite à une panne de sonde.

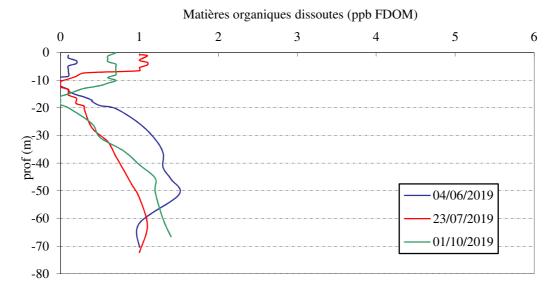


Figure 10 : profils verticaux des matières organiques dissoutes

Les teneurs en matières organiques dissoutes sont faibles dans la retenue de Sainte Croix (< 1,5 ppb QSU). Lors des campagnes 2 et 4, elles sont quasi-nulles en surface, et augmentent progressivement vers le fond : 1 à 1,5 ppb QSU mesurés.

4.1.2 Analyses Physico-Chimiques sur eau

4.1.2.1 Paramètres de constitution et typologie du lac

N.B. pour tous les tableaux suivants : LQ = limite de quantification.

Les résultats des paramètres de minéralisation des quatre campagnes sont présentés dans le Tableau 4.

La	c de Sainte Croix		Code		26/03/2		04/06/2	2019	23/07/2019		01/10/2019	
C	Code plan d'eau: X23003	Unité	sandre	LQ	intégré	fond	intégré	fond	intégré	fond	intégré	fond
	Bicarbonates	mg(HCO ₃)/L	1327	6.1	181	183	160	178	151	179	146	194
	Calcium	mg(Ca)/L	1374	0.1	61.4	60.6	55.2	55.8	50.2	59.3	48.0	60.5
u	Chlorures	mg(Cl)/L	1337	0.1	25.5	24.6	26.4	25.0	27.0	25.1	27.5	25.2
Minéralisation	Dureté	°F	1345	0.5	17.4	17.1	15.8	15.8	14.6	16.8	14.1	17.3
alis	Magnésium	mg(Mg)/L	1372	0.05	5.0	4.7	4.9	4.5	4.9	4.9	5.0	5.2
inéı	Potassium	mg(K)/L	1367	0.1	1.3	1.3	1.4	1.2	1.3	1.3	1.4	1.3
Z	Sodium	mg(Na)/L	1375	0.2	17.5	17.0	17.7	15.8	17.6	16.5	18.5	17.0
	Sulfates	mg(SO ₄)/L	1338	0.2	26.7	27.3	27.9	26.9	28.0	26.4	29.7	25.9
	TAC	°F	1347	0	14.9	15.0	13.1	14.6	12.4	14.7	12.0	15.9

Tableau 4 : Résultats des paramètres de minéralisation

Les résultats indiquent une eau bien carbonatée, de dureté moyenne (14 à 17°F). La retenue de Sainte Croix et son bassin versant se trouvent sur des terrains calcaires, ce qui explique la bonne minéralisation des eaux : ≈ 60 mg/l de calcium ; 26 mg/l de chlorures, 5 mg/l de Mg, 17 mg/l de sodium, et 27 mg/l de sulfates.

4.1.2.2 Analyses physicochimiques des eaux (hors micropolluants)

Tableau 5 : Résultats des paramètres de physico-chimie classique sur eau

Lac	de Sainte Croix	Unité	Code	LQ	26/03	/2019	04/06	/2019	23/07	/2019	01/10/	/2019
Code pl	an d'eau: X23003	Office	sandre	LQ	intégré	fond	intégré	fond	intégré	fond	intégré	fond
	Ammonium	mg(NH4)/L	1335	0.01	<lq< td=""><td>0.01</td><td>0.01</td><td>0.03</td><td>0.02</td><td><lq< td=""><td>0.01</td><td>0.02</td></lq<></td></lq<>	0.01	0.01	0.03	0.02	<lq< td=""><td>0.01</td><td>0.02</td></lq<>	0.01	0.02
	Azote Kjeldahl	mg(N)/L	1319	0.5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Carbone organique	mg(C)/L	1841	0.2	1.3	1	1.2	1.1	1.5	1.1	1.6	0.9
	DBO5	mg(O2)/L	1313	0.5	1.5	<lq< td=""><td>0.8</td><td><lq< td=""><td>1.1</td><td><lq< td=""><td>1</td><td>0.8</td></lq<></td></lq<></td></lq<>	0.8	<lq< td=""><td>1.1</td><td><lq< td=""><td>1</td><td>0.8</td></lq<></td></lq<>	1.1	<lq< td=""><td>1</td><td>0.8</td></lq<>	1	0.8
	DCO	mg(O2)/L	1314	20	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
PC eau	MeS	mg/L	1305	1	<lq< td=""><td>1.7</td><td>1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1.7	1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
r C eau	Nitrates	mg(NO3)/L	1340	0.5	0.7	0.7	0.7	1.2	<lq< td=""><td>1.1</td><td><lq< td=""><td>0.9</td></lq<></td></lq<>	1.1	<lq< td=""><td>0.9</td></lq<>	0.9
	Nitrites	mg(NO2)/L	1339	0.01	0.01	0.02	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Phosphates	mg(PO4)/L	1433	0.01	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.03
	Phosphore total	mg(P)/L	1350	0.005	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Silicates	mg(SiO2)/L	1342	0.05	4.5	4.8	4.4	5.4	4.2	5.4	3.9	5.7
	Turbidité	NFU	1295	0.1	0.46	2.5	1.2	1.1	1.5	0.86	0.56	0.62

Les analyses des fractions dissoutes ont été réalisées sur eau filtrée (COD, NH4, NO3, NO2, PO4, Si).

La charge organique est faible dans les eaux de Sainte Croix : les concentrations en carbone organique dissous sont très homogènes et comprises entre 0.9 et 1,6 mg/l. La DBO₅ reste faible (0,5 à 1,5 mg/l). La DCO et l'azote Kjeldahl sont sous les seuils de quantification pour tous les échantillons.

Globalement, les matières en suspension sont peu abondantes et la turbidité est faible (maximum de 1.7 mg/l de MES et une turbidité de 2.5 NTU au fond lors de la première campagne).

En fin d'hiver, les eaux de la retenue de Sainte Croix présentent des teneurs faibles en matières azotées : les nitrates sont mesurés à 0,7 mg/l. Les matières phosphorées sont faiblement présentes (0,02 mg/l). Ainsi, le rapport N/P² est de 25 : le phosphore reste le facteur limitant la croissance des végétaux.

Les nitrates ne sont plus disponibles en zone euphotique à partir de la campagne 3. Dans le fond, la teneur en nitrates se maintient entre 0,7 à 1,2 mg/l. Les phosphates restent présents en très faible quantité le reste de l'année (10 à 20 µg/l en zone euphotique).

La teneur en ammonium reste très faible (≤ 0.01 à 0.03 mg/l NH₄). Les nitrites restent à des concentrations ≤ 0.02 mg/l.

La teneur en silicates est assez élevée en zone euphotique (~4 mg/l) et légèrement plus élevée dans le fond pour les quatre campagnes (4.8 à 5.4 mg/l). Le teneur en silice n'apparait pas comme facteur limitant le développement des diatomées.

 $^{^2}$ le rapport N/P est calculé à partir de [Nminéral]/ [P-PO₄³⁻] avec N minéral = [N-NO₃⁻]+[N-NO₂⁻]+[N-NH₄⁺] sur la campagne de fin d'hiver.

4.1.2.3 Micropolluants minéraux

Tableau 6 : Résultats d'analyses de métaux sur eau

Lac	de Sainte Croix	TL-142	Code	LQ	26/03	/2019	04/06	/2019	23/07	/2019	01/10	/2019
Code pla	an d'eau: X23003	Unité	sandre	LQ	intégré	fond	intégré	fond	intégré	fond	intégré	fond
	Aluminium	μg(Al)/L	1370	2	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Antimoine	μg(Sb)/L	1376	0.5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Argent	μg(Ag)/L	1368	0.01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Arsenic	μg(As)/L	1369	0.05	0.27	0.22	0.27	0.3	0.37	0.39	0.35	0.35
	Baryum	μg(Ba)/L	1396	0.5	38.6	44.9	38	39.2	36.4	40.7	40.2	39.4
	Beryllium	μg(Be)/L	1377	0.01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Bore	μg(B)/L	1362	10	11	12	11	12	13	11	16	13
	Cadmium	μg(Cd)/L	1388	0.01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Chrome	μg(Cr)/L	1389	0.5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Cobalt	μg(Co)/L	1379	0.05	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Cuivre	μg(Cu)/L	1392	0.1	0.8	0.19	0.61	0.19	0.97	0.3	0.6	0.19
u.	Etain	μg(Sn)/L	1380	0.5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Métaux	Fer	μg(Fe)/L	1393	1	23.6	2.4	2	2.7	1.5	1.1	1.9	1.9
Mé	Lithium	μg(Li)/L	1364	0.5	2.7	2.9	2.6	2.5	2.7	2.3	3.4	2.7
	Manganèse	μg(Mn)/L	1394	0.5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2.7</td><td><lq< td=""><td>4.9</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2.7</td><td><lq< td=""><td>4.9</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2.7</td><td><lq< td=""><td>4.9</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2.7</td><td><lq< td=""><td>4.9</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2.7</td><td><lq< td=""><td>4.9</td></lq<></td></lq<>	2.7	<lq< td=""><td>4.9</td></lq<>	4.9
	Mercure	μg(Hg)/L	1387	0.01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Molybdène	μg(Mo)/L	1395	1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Nickel	μg(Ni)/L	1386	0.5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Plomb	μg(Pb)/L	1382	0.05	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Sélénium	μg(Se)/L	1385	0.1	0.18	0.18	0.16	0.21	0.24	0.21	0.2	0.16
	Tellure	μg(Te)/L	2559	0.5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Thallium	μg(Tl)/L	2555	0.01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Titane	μg(Ti)/L	1373	0.5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.6</td><td>0.7</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.6</td><td>0.7</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.6</td><td>0.7</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0.6</td><td>0.7</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	0.6	0.7	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Uranium	μg(U)/L	1361	0.05	0.33	0.28	0.27	0.25	0.31	0.27	0.27	0.27
	Vanadium	μg(V)/L	1384	0.1	0.2	0.18	0.18	0.16	0.24	0.19	0.23	0.14
	Zinc	μg(Zn)/L	1383	1	1.89	2.91	<lq< td=""><td>1.08</td><td><lq< td=""><td>1.01</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	1.08	<lq< td=""><td>1.01</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	1.01	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>

Les analyses sur les métaux ont été effectuées sur eau filtrée.

Les micropolluants minéraux sont faiblement présents dans les eaux de Sainte Croix, 12 éléments parmi les 26 analysés ont été quantifiés. Parmi les minéraux identifiés, on recense de manière récurrente :

- ✓ l'arsenic à des concentrations comprises entre 0,22 et 0,39 µg/l;
- ✓ le cuivre est présent entre 0,19 et 0,97 µg/l;
- ✓ le zinc est quantifié en particulier dans les eaux du fond (1.01 à 2.91 μg/l) lors des trois premières campagnes. Il a également été quantifié sur la zone euphotique lors de la C1 à une concentration de 1.89 μg/l.

Concernant les métaux de constitution, on retrouve du baryum ($\approx 40 \,\mu\text{g/l}$), du Bore (entre 11 et 16 $\mu\text{g/l}$), du Sélénium ($\approx 0.2 \,\mu\text{g/l}$), de l'uranium ($\approx 0.3 \,\mu\text{g/l}$), du vanadium (0.14 à 0.24 $\mu\text{g/l}$).

4.1.2.4 Micropolluants organiques

Le Tableau 7 indique les micropolluants organiques qui ont été quantifiés lors des campagnes de prélèvements. La liste de l'ensemble des substances analysées est fournie en annexe 1.

Lac de	Sainte Croix	Unité	Code	LQ	26/03	/2019	04/06	/2019	23/07	/2019	01/10	/2019
Code plan	d'eau: X23003	sandre	sandre in	intégré	fond	intégré	fond	intégré	fond	intégré	fond	
Alkylphénol	4-tert-butylphénol	μg/l	2610	0.02	0.02	0.027	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
divers	Cyanures libres	μg/l	1084	0.2	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.31</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.31</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.31</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0.31</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	0.31	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
HAP	Benzo (b) Fluoranthène	μg/l	1116	5E-04	<lq< td=""><td><lq< td=""><td>0.0007</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0.0007</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0.0007	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
HAP	Benzo (ghi) Pérylène	μg/l	1118	5E-04	<lq< td=""><td><lq< td=""><td>0.0006</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0.0006</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0.0006	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Médicament	Metformine	μg/l	6755	0.005	0.0097	0.0105	0.0111	0.107	0.0184	0.0128	0.0199	0.0135
Médicament	Paracetamol	μg/l	5354	0.025	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.458</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.458</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.458</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.458</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.458</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>0.458</td><td><lq< td=""></lq<></td></lq<>	0.458	<lq< td=""></lq<>
plastifiants	n-Butyl Phtalate	μg/l	1462	0.05	<lq< td=""><td><lq< td=""><td>0.11</td><td>0.1</td><td>0.08</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0.11</td><td>0.1</td><td>0.08</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	0.11	0.1	0.08	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Sels	Perchlorate	μg/l	6219	0.1	0.11	0.1	0.38	0.12	0.11	0.17	0.12	0.11
Solvant	Tributylphosphate	μg/l	1847	0.005	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.006</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.006</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0.006</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0.006	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
stimulants	Cafeine	μg/l	6519	0.01	0.012	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.035</td><td>0.031</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.035</td><td>0.031</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0.035</td><td>0.031</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	0.035	0.031	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>

Tableau 7 : Résultats d'analyses de micropolluants organiques présents sur eau

10 micropolluants organiques ont été détectés dans les eaux de la retenue de Sainte Croix. Parmi eux, on récence de manière récurrente :

- ✓ le Metformine est mesuré dans tous les échantillons entre 0.01 et 0,107 µg/l. Il s'agit d'une substance médicamenteuse, analysée dans les eaux depuis 2018. C'est un antidiabétique oral appartenant à la famille des biguanides qui a été retrouvé dans de nombreux plans d'eau des bassins RMC ;
- ✓ des sels de perchlorate, substances utilisés comme oxydants dans les produits de propulsion pour moteurs de fusées, missiles, pour la fabrication de dispositifs pyrotechniques,dans le système de déclenchement des airbags, on les retrouve dans tous les échantillons entre 0,10 et 0,38 μg/l;

Les autres substances retrouvées ponctuellement sont les suivantes :

- ✓ le 4-tert-butylphénol retrouvé à faible concentration dans l'échantillon du 26 mars (intégré et fond) ;
- ✓ Des cyanures libres sont présents dans l'échantillon intégré de la 3 ème campagne ;
- ✓ Un médicament antalgique : du paracétamol dans l'échantillon intégré de la 4ème campagne ;
- ✓ 2 composés HAP : Le Benzo (b) Fluoranthène et Benzo (ghi) Pérylène dans l'échantillon intégré du 04 juin (0.0007 µg/l et 0.0006 µg/l) ;
- ✓ le n-butyl Phtalate dans les échantillons du 04 juin et l'échantillon intégré du 23 juillet (entre 0.08 et 0.11 μg/l);
- ✓ un stimulant d'origine naturelle végétale : la caféine mesuré entre 0,031 et 0,035 μg/l en C3.

Les eaux du lac de Sainte Croix présentent des sels de perchlorate et un résidu médicamenteux le metformine à des concentrations assez faibles.

4.1.3 Analyses des sediments

4.1.3.1 Analyses physicochimiques des sédiments (hors micropolluants)

Le Tableau 8 fournit la synthèse de l'analyse granulométrique menée sur les sédiments prélevés.

Tableau 8 : Synthèse granulométrique sur le sédiment du point de plus grande profondeur

Composition granulon	Composition granulométrique du sédiment									
Retenue de Sainte Croix	Unité	Code sandre	01/10/2019							
Code plan d'eau: X23003	Office	Code sanare	01/10/2019							
fraction inférieure à 20 µm	% MS	6228	89.7							
fraction de 20 à 63 µm	% MS	3054	10.3							
fraction de 63 à 150 µm	% MS	7042	0							
fraction de 150 à 200 µm	% MS	7043	0							
fraction supérieure à 200 µm	% MS	7044	0.0							

Il s'agit de sédiments extrêmement fins, de nature limono-argileuse avec 100% de particules comprises entre de 0 à $63~\mu m$.

Les analyses de physico-chimie classique menées sur la fraction solide et sur l'eau interstitielle du sédiment sont rapportées au Tableau 9.

Tableau 9 : Analyse de sédiments

ı	Physico-chimie du	sédiment		
Retenue de Sainte Croix	Unité	Code	LQ	01/10/2019
Code plan d'eau: X23003	Office	sandre	LQ	01/10/2019
Matière sèche à 105°C	%	1307		55.5
Matière Sèche Minérale	% MS	5539		95.4
Perte au feu à 550°C	% MS	6578		4.6
Carbone organique	mg(C)/kg MS	1841	1000	8404
Azote Kjeldahl	mg(N)/kg MS	1319	1000	1280
Phosphore total	mg(P)/kg MS	1350	2	380
Physico-cl	himie du sédiment	: Eau inters	titielle	
Ammonium	mg(NH4)/L	1335	0.5	< LQ
Phosphates	mg(PO4)/L	1433	0.015	< LQ
Phosphore total	mg(P)/L	1350	0.01	0.08

Dans les sédiments, la teneur en matière organique est faible avec 4.6 % de perte au feu. La concentration en azote organique est très faible puisque le sédiment se trouve légèrement au-dessus du seuil de quantification. Ce qui induit un rapport C/N de 7 : il s'agit de matière algale récemment déposée dont une fraction sera recyclée en tant qu'azote minéral. La concentration en phosphore est considérée comme très faible avec 0,38 g/kg MS. Le stockage de nutriments dans les sédiments est globalement restreint.

L'eau interstitielle contient les minéraux facilement mobilisables dans les sédiments. Les concentrations en ammonium et en phosphore total sont très faibles. Elles suggèrent l'absence de relargage de ces éléments à l'interface eau/sédiment.

Le sédiment de la retenue de Sainte Croix présente une bonne qualité physicochimique, comme en 2013.

4.1.3.2 Micropolluants minéraux

Ils ont été dosés sur la fraction solide du sédiment.

Tableau 10 : Résultats d'analyses de micropolluants minéraux sur sédiment

Sédi	ment : micropolluai	nts minéraux		
Retenue de Sainte Croix Code plan d'eau: X23003	Unité	Code sandre	LQ	01/10/2019
Aluminium	mg(Al)/kg MS	1370	5	31000
Antimoine	mg(Sb)/kg MS	1376	0.2	0.4
Argent	mg(Ag)/kg MS	1368	0.1	0.1
Arsenic	mg(As)/kg MS	1369	0.2	6.3
Baryum	mg(Ba)/kg MS	1396	0.4	146
Beryllium	mg(Be)/kg MS	1377	0.2	1
Bore	mg(B)/kg MS	1362	1	50
Cadmium	mg(Cd)/kg MS	1388	0.2	0.1
Chrome	mg(Cr)/kg MS	1389	0.2	42.1
Cobalt	mg(Co)/kg MS	1379	0.2	5.6
Cuivre	mg(Cu)/kg MS	1392	0.2	10.4
Etain	mg(Sn)/kg MS	1380	0.2	1.7
Fer	mg(Fe)/kg MS	1393	5	18500
Lithium	mg(Li)/kg MS	1364	1	25.7
Manganèse	mg(Mn)/kg MS	1394	0.4	308
Mercure	mg(Hg)/kg MS	1387	0.01	0.02
Molybdène	mg(Mo)/kg MS	1395	0.2	0.3
Nickel	mg(Ni)/kg MS	1386	0.2	19.2
Plomb	mg(Pb)/kg MS	1382	0.2	8.4
Sélénium	mg(Se)/kg MS	1385	0.2	0.9
Tellure	mg(Te)/kg MS	2559	0.2	< LQ
Thallium	mg(Th)/kg MS	2555	0.2	0.3
Titane	mg(Ti)/kg MS	1373	1	1660
Uranium	mg(U)/kg MS	1361	0.2	1
Vanadium	mg(V)/kg MS	1384	0.2	50.3
Zinc	mg(Zn)/kg MS	1383	0.4	41.4

Les sédiments de la retenue de Sainte Croix sont peu riches en métaux. Les éléments aluminium (31 g/kg MS) et fer (18.5 g/kg) sont à des teneurs standards.

Les concentrations en métaux lourds restent faibles, ils sont très largement en dessous des seuils S1³ de contamination des sédiments de curage.

_

³ Seuil S1 : seuil édicté par l'Arrêté du 9 août 2006.

4.1.3.3 Micropolluants organiques

Le Tableau 11 indique les micropolluants organiques qui ont été quantifiés dans les sédiments lors de la campagne de prélèvements. La liste de l'ensemble des substances analysées est fournie en annexe 2.

Tableau 11 : Résultats d'analyses de micropolluants organiques présents sur sédiment

Sédiment : micr	opolluants org	ganiques mis e	n évidence						
Retenue de Sainte Croix Unité Code sandre LO 01/10/20									
Code plan d'eau: X23003	Office	Code sanare	LQ	01/10/2019					
Benzo (b) Fluoranthène	μg/ kg MS	1116	10	13					
Benzo (ghi) Pérylène	μg/ kg MS	1118	10	14					
Fluoranthène	μg/ kg MS	1191	10	12					
Méthyl-2-Naphtalène	μg/ kg MS	1618	10	15					
Phénanthrène	μg/ kg MS	1524	10	17					
Pyrène	μg/ kg MS	1537	10	11					

6 micropolluants organiques appartenant aux Hydrocarbures Aromatiques Polycycliques ont été détectés dans les sédiments pour une concentration totale en HAP de 82 µg/kg MS, valeur très faible et inférieure au seuil d'effets.

Les sédiments ne présentent pas de pollution significative en micropolluants organiques.

4.2 PHYTOPLANCTON

4.2.1 Prelevements integres

Les prélèvements intégrés destinés à l'analyse du phytoplancton ont été réalisés en même temps que les prélèvements pour analyses physicochimiques classiques.

Sur la retenue de Sainte Croix, la zone euphotique et la transparence mesurées sont représentées par le graphique de la Figure 11. La transparence est très élevée (12 m) en mars lors du brassage hivernal. Elle est ensuite élevée (de 7,2 à 8 m) et très stable lors des trois campagnes dites « estivales » témoignant de la clarté des eaux du lac. La moyenne estivale des transparences est de 7,7 indiquant un très bon état pour ce paramètre.

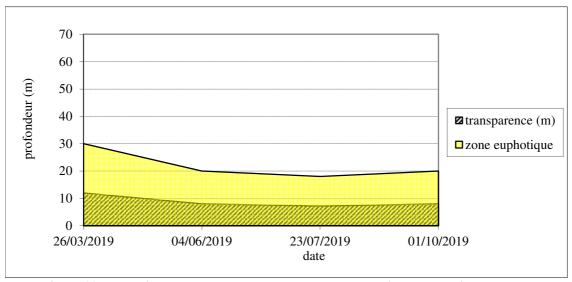


Figure 11 : Evolution de la transparence et de la zone euphotique lors de 4 campagnes

Les échantillons destinés à la détermination du phytoplancton et de la chlorophylle *a* sont constitués d'un prélèvement intégré sur la zone euphotique (équivalant à 2,5 fois la transparence lors de la campagne). Les échantillons 2019 concernent une colonne d'eau très importante : 18 à 30 m.

Les concentrations en chlorophylle a et en phéopigments sont présentées dans le tableau suivant.

Lac de S	ainte Croix	Unité	Code sandre	LQ	26/03/2019	04/06/2019	23/07/2019	01/10/2019
Code plan d'	eau: X23003	Office Code sandre		LQ	intégré	intégré	intégré	intégré
indices	Chlorophylle a	μg/L	1439	1	1	1	0,5	0,5
chlorophylliens	indice phéopigment	μg/L	1436	1	0,5	0,5	0,5	0,5

Tableau 12: analyses des pigments chlorophylliens

Si la concentration en chlorophylle ou phéopigments est <LQ, alors la valeur considérée est LQ/2 soit 0,5 μ g/l.

Les concentrations en chlorophylle a sont faibles dans le lac de Sainte Croix lors de toutes les campagnes, comprises entre 0,5 et $1\mu g/l$. La teneur en chlorophylle a est légèrement plus élevée en début de saison ($1\mu g/l$) en mars et juin) qu'en période estivale ($< 1\mu g/l$). Cela traduit une très faible production primaire dans le plan d'eau (moyenne estivale en chlorophylle a de $0.7\mu g/l$). La concentration en phéopigments reste faible toute l'année, elle est $< 1\mu g/l$.

4.2.2 <u>Listes floristiques</u>

Tableau 13 : Liste taxonomique du phytoplancton (en nombre de cellules/ml)

Embranchement	Nom taxon	Code Sandre	26/03/2019	04/06/2019	23/07/2019	01/10/2019
	Achnanthidium	9356			0,6	
	Asterionella formosa	4860	0,6			
	Cocconeis	9361	0,3			
	Cyclotella costei	8615	47,8	22,8	251,7	212,7
	Cyclotella distinguenda	9507	0,6			
BACILLARIOPHYTA	Fragilaria	9533		0,3		
	Fragilaria tenera	6713	0,3			1,2
	Gomphonema	8781	0,3	0,3		
	Navicula tripunctata	8190				0,6
	Puncticulata	9509	1,2	5,3		
	Ulnaria grunowii	44401	12,2	0,6		6,9
CHAROPHYTA	Elakatothrix gelatinosa	5664	1,5	0,9	2,5	2,5
	Chlorella	5929	13,1	0,6		43,0
	Chlorella vulgaris	5933			1,2	
	Chlorophycées coloniales indét 5-10 µm	24936			0,6	3,1
CITI ODODINALI	Choricystis chodatii	20075	10,4	0,9	0,6	3,1
CHLOROPHYTA	Oocystis marssonii	9240	0,6			
	Phacotus lenticularis	6048	0,3			0,6
	Volvocales ind?ermin?s	6012			0,6	
	Westella botryoides	5922	9,4			
	Cryptomonas	6269	0,3	1,2		3,1
	Cryptomonas marssonii	6273	0,6	2,9		1,9
CRYPTOPHYTA	Cryptomonas ovata	6274	1	0,6		0,6
	Plagioselmis nannoplanetica	9634	6,1	2,0	1,2	19,3
	Dolichospermum	31962		7-	,	6,9
CYANOBACTERIA	Oscillatoria	1108	53,6			- 7-
	Oscillatoriales indét	6391				8,1
	Ceratium hirundinella	6553	0,2	0,4	0,9	1,2
	Gymnodiniales indét < 20 μm	5011	0,3	0,6	1.2	0,6
	Gymnodiniales indét 20 - 50 µm	5011	- 7-	0,6	,	
	Gymnodinium	4925		-,-		0,1
MIOZOA	Gymnodinium helveticum	6558	0,1	0,3		
	Peridiniales indét < 20 µm	4921	0,1	0.3		
	Peridinium	6577			1,2	0,5
	Peridinium inconspicuum	6583		0,9	-,-	3,2
	Dinobryon bavaricum	6127	7,6	3,2		0,6
	Dinobryon crenulatum	9577	1,2	0,3		5,6
	Dinobryon divergens	6130	10,7	75,3	92,7	88,0
	Dinobryon sociale	6136	8,5	, .		3,7
OCHROPHYTA	Kephyrion littorale	6151	1,2	0,9	0,6	2,5
Comoi min	Kephyrion ovale	9584	3,3	<u> </u>	0,0	1,2
	Mallomonas	6209	3,3		0,6	1,2
	Pseudokephyrion	6161	27,4		0,0	
	Pseudopedinella elastica	20753	21,7			0,6
	Nombre de taxons	20133	28	21	14	26
	Nombre de cellules/ml		220	118	356	419

Tableau 14: Liste taxonomique du phytoplancton (en mm³/l)

Embranchement	Nom taxon	Code	26/03/2019	04/06/2010	23/07/2019	01/10/2019
Embranchement		Sandre	20/03/2019	04/00/2019		01/10/2019
	Achnanthidium	9356	0.00016		0,00006	
	Asterionella formosa	4860	0,00016			
	Cocconeis	9361	0,00023	0.00501	0.06410	0.05404
	Cyclotella costei	8615	0,01219	0,00581	0,06418	0,05424
DAGWA ABYODYNAMA	Cyclotella distinguenda	9507	0,00039	0.00071		
BACILLARIOPHYTA	Fragilaria	9533	0.00000	0,00071		0.00021
-	Fragilaria tenera	6713	0,00008	0.00057		0,00031
_	Gomphonema	8781	0,00059	0,00057		0.0000
_	Navicula tripunctata	8190	0.00247	0.01.400		0,00080
_	Puncticulata	9509	0,00347	0,01498		
	Ulnaria grunowii	44401	0,02680	0,00128		0,01510
CHAROPHYTA	Elakatothrix gelatinosa	5664	0,00029	0,00017	0,00047	0,00048
	Chlorella	5929	0,00092	0,00004		0,00301
_	Chlorella vulgaris	5933			0,00012	
<u> </u>	Chlorophycées coloniales indét 5-10 µm	24936			0,00014	0,00069
CHLOROPHYTA	Choricystis chodatii	20075	0,00055	0,00005	0,00003	0,00017
	Oocystis marssonii	9240	0,00016			
	Phacotus lenticularis	6048	0,00012			0,00026
	Volvocales ind?ermin?s	6012			0,00011	
	Westella botryoides	5922	0,00253			
	Cryptomonas	6269	0,00054	0,00207		0,00553
СКУРТОРНУТА	Cryptomonas marssonii	6273	0,00073	0,00350		0,00225
	Cryptomonas ovata	6274		0,00122		0,00131
	Plagioselmis nannoplanctica	9634	0,00043	0,00014	0,00009	0,00135
<u> </u>	Dolichospermum	31962				0,00199
CYANOBACTERIA _	Oscillatoria	1108	0,02197			
	Oscillatoriales indét	6391				0,00076
	Ceratium hirundinella	6553	0,00709	0,01751	0,03683	0,04677
<u> </u>	Gymnodiniales indét < 20 μm	5011	0,00013	0,00025	0,00053	0,00027
	Gymnodiniales indét 20 - 50 μm	5011		0,00992		
MIOZOA	Gymnodinium	4925				0,00016
MOZOA	Gymnodinium helveticum	6558	0,00101	0,00498		
	Peridiniales indét < 20 μm	4921		0,00013		
	Peridinium	6577			0,01130	0,00482
	Peridinium inconspicuum	6583		0,00280		
	Dinobryon bavaricum	6127	0,00161			0,00013
<u> </u>	Dinobryon crenulatum	9577	0,00025	0,00006		0,00115
	Dinobryon divergens	6130	0,00223	0,01574	0,01937	0,01838
<u> </u>	Dinobryon sociale	6136	0,00080			0,00035
OCHROPHYTA	Kephyrion littorale	6151	0,00012	0,00008	0,00006	0,00024
	Kephyrion ovale	9584	0,00040			0,00015
	Mallomonas	6209			0,00164	
	Pseudokephyrion	6161	0,00090			
	Pseudopedinella elastica	20753				0,00085
	Nombre de taxons		28	21	14	26
	Biovolume (mm ³ /l)		0,087	0,082	0,135	0,162

4.2.3 EVOLUTIONS SAISONNIERES DES GROUPEMENTS PHYTOPLANCTONIQUES

Les graphiques suivants présentent la répartition du phytoplancton (relative) par groupe algal à partir des résultats exprimés en cellules/ml d'une part et à partir des biovolumes (mm³/l) d'autre part. Sur chacun des graphiques, la courbe représente l'abondance totale par échantillon (Figure 12), et le biovolume de l'échantillon (Figure 13).

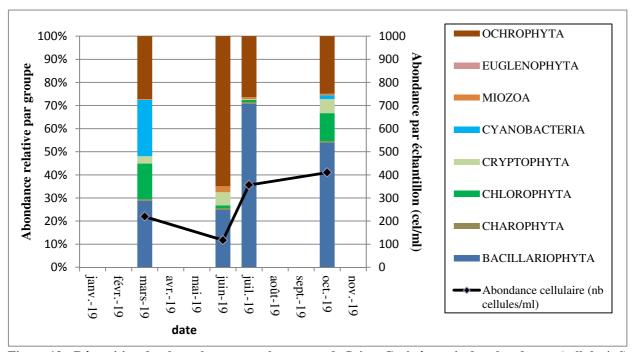


Figure 12 : Répartition du phytoplancton sur la retenue de Sainte Croix à partir des abondances (cellules/ml)

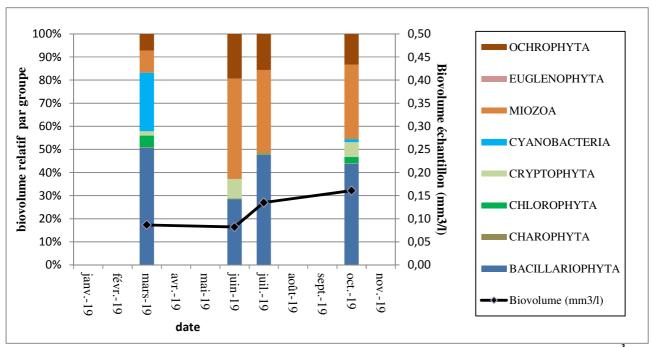


Figure 13: Evolution saisonnière des biovolumes des principaux groupes algaux de phytoplancton (en mm³/l)

Le peuplement phytoplanctonique présente une très faible productivité : les concentrations de chlorophylle a sont de 1µg/l lors des deux premières campagnes, puis inférieures à la limite de quantification de ce paramètre. L'abondance cellulaire mesurée est également très faible, en moyenne 280 cel./ml.

Globalement, le peuplement phytoplanctonique est marqué par une quasi-absence d'évolution des groupes pigmentaires. En effet, les bacillariophytes (ou diatomées), les ochrophytes (anciennement chrysophytes), ainsi que les miozoa (anciennement dynophycées) sont présentes lors des quatre campagnes sans transition marquée. Les successions saisonnières habituellement constatées en milieu naturel ne sont pas présentes au sein de cette retenue artificielle.

Seule la présence de cyanobactérie du genre *Oscillatoria* marque une distinction de la première campagne. Le nombre de cellule/ml de ce dernier taxon n'excède cependant pas 56 cel./ml.

Au cours des quatre campagnes, les bacillaryophytes présentent la plus forte diversité. Onze taxons sont représentés. La petite centrique *Cyclotella costei* qui tolère difficilement la présence de matière organiques (Bey et al., 2013) domine le groupe. Le peuplement est marqué par la présence de grandes *Ulnaria grunowii*. C'est en juillet que l'on observe le plus fort développement de diatomées puisqu'elles occupent 47% du biovolume algal total.

Les ochrophytes sont également fortement représentées, avec 9 taxons inventoriés. Des espèces plutôt indicatrices de bonne qualité telles que *Dinobryon bavaricum*, *D. divergens et Kephyrion cf. littoral* sont inventoriées. En juin, elles présentent leur maximum de développement et occupent 19% du biovolume. Les miozoa sont faiblement représentés en termes d'abondance mais leur grande taille occupe une part importante du biovolume. Un maximum de 43% de l'occupation est atteint lors de la seconde campagne, avec une ultra-dominance de l'espèce *Ceratium hirundinella*. La grande taille de cette espèce lui permet probablement de résister au broutage en cette période habituelle de développement du zooplancton.

4.2.4 INDICE PHYTOPLANCTONIQUE IPLAC

L'indice phytoplancton lacustre ou IPLAC est calculé à partir du SEEE (v1.1.0 en date du 07/04/2020). Il s'appuie sur la moyenne pondérée de 2 métriques : l'une basée sur les teneurs en chlorophylle a (µg/l) (MBA ou métrique de biomasse algale totale), et l'autre sur la présence d'espèces indicatrices quantifiée en biovolume (mm³/l) (MCS ou métrique de composition spécifique). Plus la valeur d'une métrique tend vers 1, plus la qualité est proche de la valeur prédite en conditions de référence. Les 5 classes d'état sont fournies sur la Figure 4.

Les classes d'état pour les deux métriques et l'IPLAC sont données pour Sainte Croix dans le tableau suivant.

Code Lac	Nom Lac	année	MBA	MCS	IPLAC	Classe IPLAC
X23003	Sainte-Croix	2019	1,136	0,850	0,936	ТВ

L'indice IPLAC est de 0,936, soit de très bonne qualité. Il reflète un milieu présentant une productivité très faible (MBA=1,136) avec des espèces assez exigeantes en termes de trophie, dites oligo-mésotrophes (MCS=0,850).

L'indice IPLAC de la retenue de Sainte Croix obtient la valeur de 0,936, ce qui correspond à une très bonne classe d'état pour l'élément de qualité phytoplancton.

4.2.5 Comparaison avec les inventaires anterieurs

En 2019, l'évolution saisonnière des peuplements phytoplanctoniques est similaire aux suivis 2016 et 2013, avec une domination des diatomées centriques (Cyclotella sp.) et des algues brunes du genre *Dinobryon*. La production algale était très faible et similaire lors des suivis successifs .Les teneurs en chlorophylle étaient $\leq 1 \,\mu g/l$ lors des différents suivis.

La principale évolution mise en évidence correspond à la quasi-disparition des cyanobactéries en 2019, alors qu'elles étaient présentes en fin d'été lors des suivis 2013 et 2016 en faible quantité (*Aphanocapsa*).

L'historique des valeurs IPLAC acquises sur le plan d'eau de Sainte Croix est présenté dans le Tableau 15 (valeurs issues du SEEE V1.0.2 base du 07/01/2019).

code_Lac Nom lac année **MBA** MCS **IPLAC** Classe IPLAC X2--3003 Sainte-Croix 2007 NC NC NC NC X2--3003 Sainte-Croix 2008 0,857 0,812 0,825 TB X2--3003 2013 0,928 Sainte-Croix 1,000 0,897 TB 0,889 X2--3003 Sainte-Croix 2016 1,000 0,842 TB X2--3003 2019 1,136 0,850 0,936 ТВ Sainte-Croix

Tableau 15 : évolution des Indices IPLAC depuis 2007

Les indices IPLAC indiquent un très bon état, les notes sont comprises entre 0,889 et 0,936 depuis 2013, ce qui révèle une très bonne qualité des peuplements phytoplanctoniques. L'indice MBA est stable et maximal depuis 2013 (≥ 1), indiquant une très faible productivité, proche de la référence. L'indice MCS est également stable (0,84 et 0,9) depuis 2013, indicateur d'une composition du peuplement phytoplanctonique de type oligo-mésotrophe.

🖔 Ces éléments tendent à indiquer que la retenue de Sainte Croix présente un état du compartiment phytoplancton très bon depuis plusieurs années.

5 APPRECIATION GLOBALE DE LA QUALITE DU PLAN D'EAU

Le suivi physicochimique et biologique 2019 sur la retenue de Sainte Croix s'est déroulé conformément aux prescriptions de suivi de l'état écologique et l'état chimique des eaux douces de surface. On rappelle que ce plan d'eau est suivi dans le cadre du réseau de contrôle de surveillance (RCS).

L'année 2019 a été globalement chaude et sèche pendant l'été, mais bien arrosée au printemps et à l'automne permettant un bon remplissage de la retenue.

Les résultats obtenus sont proches de ceux de 2016 pour tous les compartiments, ils sont synthétisés dans le tableau suivant.

Compartiment	Synthèse de la qualité du plan d'eau ⁴			
Profils verticaux	Stratification thermique marquée Eaux bien minéralisées désoxygénation partielle de l'hypolimnion			
Qualité physico-chimique des eaux	Absence de pollution organique Teneurs faibles en nitrates et phosphore Peu de pollution métallique Quelques micropolluants organiques			
Qualité physico-chimique des sédiments	Sédiments de bonne qualité : faible charge en matière organique et en nutriments Pas de pollution métallique Très faible présence de HAP			
Biologie – chlorophylle a	Production chlorophyllienne très faible – transparence élevée Moyenne estivale : 0,7 μg/l			
Biologie - phytoplancton	Peuplement de très bonne qualité – production algale faible IPLAC : très bon état			

L'ensemble des suivis physico-chimiques et biologiques 2019 indiquent un milieu aquatique de très bonne qualité avec absence de pollutions organiques. La retenue de Sainte Croix située sur la partie intermédiaire du Verdon est utilisée pour l'hydroélectricité. Ce plan d'eau de grande taille présente un temps de séjour

⁴ il s'agit d'une interprétation des valeurs brutes observées (analyses physico-chimiques, peuplements biologiques) mais pas d'une stricte évaluation de l'Etat écologique et chimique selon les arrêtés en vigueur

suffisamment long pour permettre une stratification thermique durable. La consommation en oxygène dans la zone profonde est moyenne (déficit estimé à 30% environ).

Les analyses physico-chimiques montrent l'absence de pollutions organiques et de faibles apports en nutriments. La production primaire résultante dans le plan d'eau est réduite. Le peuplement algal affiche une très bonne qualité biologique.

L'analyse des micropolluants dans les eaux comme dans les sédiments ne montre pas de pollutions métalliques dans la retenue de Sainte Croix. Quelques micropolluants organiques (perchlorate, metformine) sont tout de même détectés dans les eaux.

Les résultats du suivi 2019 confirment la très bonne qualité de la retenue de Sainte Croix qui peut être qualifiée d'oligo-mésotrophe.

Étude des plans d'	A au du programme	gence de l'Eau Rhôi e de surveillance des	ne Méditerranée Cors bassins Rhône-Médi	se terranée et Corse -	– Sainte Croix (04)
	1 0				, ,
		A 272	JEVEC		
		- AN	VEXES -		

Annexe 1. LISTE DES MICROPOLLUANTS ANALYSES SUR EAU

6751 1,7 7041 5399 7011 1- 1264 1141 2872 2	Argent Aluminium Arsenic Bore Baryum Beryllium Cadmium Cyanures libres Cobalt Chrome Cuivre Fer Mercure Lithium Manganèse Molybdène Nickel Plomb Antimoine Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-(3-chloro-4- methylphenyl)uree	0.01 2 0.05 10 0.5 0.01 0.2 0.05 0.5 0.1 1 0.01 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.05 0.5 1 0.05 0.5 0.01 0.01 0.05	µg(Ag)/L µg(Al)/L µg(As)/L µg(Ba)/L µg(Be)/L µg(Cd)/L µg(CO)/L µg(CO)/L µg(Cr)/L µg(To)/L µg(Fe)/L µg(Hg)/L µg(Mo)/L µg(Mo)/L µg(Ni)/L µg(Sb)/L µg(Se)/L µg(Se)/L µg(Te)/L µg(Te)/L µg(Te)/L	6456 1453 1622 1100 1454 5579 6856 6862 1903 5581 6735 5408 5369 6538 1465 1521 6549 6550	Acebutolol Acénaphtène Acénaphtylène Acéphate Acéphate Acéphate Acétaldéhyde Acetamiprid Acetochlor ESA Acetochlor OXA Acétochlore Acibenzolar-S-Methyl Acide acetylsalicylique Acide fenofibrique Acide fenofibrique Acide mefenamique Acide Acide perfluorotridecan Acide perfluorodecane sulfonique (PFDS) Acide perfluoro- decanoique (PFDA) Acide perfluoro-	0.005 0.01 0.01 0.005 5 0.02 0.03 0.005 0.005 0.005 0.005 0.005 0.2 5 0.2 0.005	Hg/L Hg/L	6594 1458 2013 1965 5361 1107 1832 1109 1108 1830 2014 2015 2937 1110 1111 7817 1951 6231 5986 5997 2915	Anilofos Anthracène Anthraquinone Asulame Atenolol Atrazine 2 hydroxy Atrazine désichyl Atrazine déséthyl Azaconazole Azaméthiphos Azimsulfuron Azinphos éthyl Azinphos méthyl Azinthromycine BDE 181 BDE 203 BDE 205 BDE100 BDE138	0.005 0.01 0.005 0.02 0.005 0.005 0.001 0.01 0.01 0.03 0.005 0.02 0.02 0.02 0.005 0.5 0.002 0.0015 0.0015 0.00015 0.00015 0.00015	HE H
1370 1369 1369 1362 1396 1377 1388 1084 1379 1389 1392 1393 1387 1364 1394 1395 1386 1382 1376 1385 1380 2559 1373 2555 1361 1384 1383 2934 6751 7041 5399 7011 1-1264 1141 2872 2	Aluminium Arsenic Bore Baryum Beryllium Cadmium Cyanures libres Cobalt Chrome Cuivre Fer Mercure Lithium Manganèse Molybdène Nickel Plomb Antimoine Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-{3-chloro-4-	2 0.05 10 0.5 0.01 0.2 0.05 0.5 0.1 1 0.01 0.5 0.5 1 0.05 0.5 0.5 0.5 0.5 0.5 0.1 0.5	µg(AI)/L µg(As)/L µg(B)/L µg(Ba)/L µg(Be)/L µg(Cd)/L µg(CO)/L µg(CO)/L µg(Cr)/L µg(Fe)/L µg(Hg)/L µg(Hj)/L µg(Mo)/L µg(Mo)/L µg(Ni)/L µg(Sb)/L µg(So)/L µg(So)/L µg(Sn)/L µg(Te)/L	1622 1100 1454 5579 6856 6862 1903 5581 6735 5408 5369 6538 1465 1521 6549	Acénaphtylène Acéphate Acétaldéhyde Acetamiprid Acetochlor ESA Acetochlor OXA Acétochlore Acibenzolar-S-Methyl Acide acetylsalicylique Acide fenofibrique Acide fenofibrique Acide mefenamique Acide Acide nitrilotriacétique Acide pentacosafluorotridecane sulfonique (PFDS) Acide perfluoro- decanoïque (PFDA)	0.01 0.005 5 0.02 0.03 0.005 0.005 0.005 0.005 0.005 0.005 0.2 5 0.2	Hg/L Hg/L	2013 1965 5361 1107 1832 1109 1108 1830 2014 2015 2937 1110 1111 7817 1951 6231 5986 5997 2915	Anthraquinone Asulame Atenolol Atrazine Atrazine 2 hydroxy Atrazine déisopropyl Atrazine déséthyl Azaconazole Azaméthiphos Azimsulfuron Azinphos éthyl Azinphos méthyl Azithromycine Azoxystrobine BDE 181 BDE 203 BDE 205 BDE100	0.005 0.02 0.005 0.005 0.001 0.01 0.03 0.002 0.02 0.02 0.02 0.02 0.02 0.005 0.001 0.001 0.001 0.001 0.001 0.001	### ### ### ### ### ### ### ### ### ##
1369 1362 1396 1377 1388 1084 1379 1389 1392 1393 1387 1364 1394 1395 1386 1382 1376 1385 1380 2559 1373 2555 1361 1384 1383 2934 6751 7041 5399 7011 1-1264 1141 2872 2	Arsenic Bore Baryum Beryllium Cadmium Cyanures libres Cobalt Chrome Cuivre Fer Mercure Lithium Manganèse Molybdène Nickel Plomb Antimoine Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-{3-chloro-4-	0.05 10 0.5 0.01 0.01 0.2 0.05 0.5 0.1 1 0.01 0.5 0.5 1 0.5 0.5 0.5 0.5 0.1 0.5 0.5 0.1 0.5 0.5 0.1 0.5 0.5 0.1	µg(As)/L µg(B)/L µg(Ba)/L µg(Be)/L µg(Cd)/L µg(CN)/L µg(CO)/L µg(Cr)/L µg(Cu)/L µg(Hg)/L µg(Mo)/L µg(Mo)/L µg(Mi)/L µg(Sb)/L µg(Sb)/L µg(So)/L µg(Sn)/L µg(Te)/L µg(Te)/L	1100 1454 5579 6856 6862 1903 5581 6735 5408 5369 6538 1465 1521 6549	Acéphate Acétaldéhyde Acetamiprid Acetochlor ESA Acetochlor OXA Acétochlore Acibenzolar-S-Methyl Acide acetylsalicylique Acide fenofibrique Acide fenofibrique Acide mefenamique Acide Acide perfluorodecane sulfonique (PFDS) Acide perfluoro- decanoïque (PFDA)	0.005 5 0.02 0.03 0.005 0.005 0.005 0.005 0.005 0.2 5 0.2	µg/L µg/L	1965 5361 1107 1832 1109 1108 1830 2014 2015 2937 1110 1111 7817 1951 6231 5986 5997	Asulame Atenolol Atrazine Atrazine 2 hydroxy Atrazine déisopropyl Atrazine déséthyl Azaconazole Azaméthiphos Azimsulfuron Azinphos éthyl Azinphos méthyl Azithromycine Azoxystrobine BDE 181 BDE 203 BDE 205 BDE100	0.02 0.005 0.005 0.002 0.01 0.01 0.03 0.005 0.02 0.002 0.005 0.5 0.02 0.005 0.001 0.005 0.001 0.005	18 H8
1362 1396 1377 1388 1084 1379 1389 1392 1393 1387 1364 1394 1395 1386 1382 1376 1385 1380 2559 1373 2555 1361 1384 1383 2934 6751 7041 5399 7011 1-1264 1141 2872 2	Bore Baryum Beryllium Cadmium Cyanures libres Cobalt Chrome Cuivre Fer Mercure Lithium Manganèse Molybdène Nickel Plomb Antimoine Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-{3-chloro-4-	10 0.5 0.01 0.2 0.05 0.5 0.1 1 0.01 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.1 0.5 0.5 0.5	µg(B)/L µg(Ba)/L µg(Ba)/L µg(Cd)/L µg(CN)/L µg(CO)/L µg(Cr)/L µg(Cr)/L µg(Fe)/L µg(Hg)/L µg(Ho)/L µg(Mo)/L µg(Mo)/L µg(Sb)/L µg(Sb)/L µg(So)/L µg(Sn)/L µg(Te)/L µg(Te)/L	1454 5579 6856 6862 1903 5581 6735 5408 5369 6538 1465 1521 6549 6550	Acétaldéhyde Acetamiprid Acetochlor ESA Acetochlor OXA Acétochlore Acibenzolar-S-Methyl Acide acetylsalicylique Acide fenofibrique Acide fenofibrique Acide mefenamique Acide Acide nitrilotriacétique Acide perfluorordecane sulfonique (PFDS) Acide perfluoro- decanoïque (PFDA)	5 0.02 0.03 0.005 0.005 0.005 0.005 0.005 0.2 5 0.2	µg/L µg/L	5361 1107 1832 1109 1108 1830 2014 2015 2937 1110 1111 7817 1951 6231 5986 5997 2915	Atenolol Atrazine Atrazine 2 hydroxy Atrazine déisopropyl Atrazine déséthyl Atrazine déséthyl Azaconazole Azaméthiphos Azimsulfuron Azinphos éthyl Azinphos méthyl Azithromycine Azoxystrobine BDE 181 BDE 203 BDE 205 BDE100	0.005 0.005 0.002 0.01 0.03 0.005 0.02 0.02 0.02 0.005 0.5 0.02 0.005 0.001 0.0005 0.001 0.0005	188 H88 H88 H88 H88 H88 H88 H88 H88 H88
1396 1377 1388 1084 1379 1389 1392 1393 1387 1364 1394 1395 1386 1382 1376 1385 1380 2559 1373 2555 1361 1384 1383 2934 6751 7041 5399 7011 1-1264 1141 2872 2	Baryum Beryllium Cadmium Cyanures libres Cobalt Chrome Cuivre Fer Mercure Lithium Manganèse Molybdène Nickel Plomb Antimoine Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-{3-chloro-4-	0.5 0.01 0.2 0.05 0.5 0.1 1 0.01 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.5 0.5	µg(Ba)/L µg(Be)/L µg(Cd)/L µg(CN)/L µg(Co)/L µg(Cr)/L µg(Fe)/L µg(Hg)/L µg(Hj)/L µg(Mo)/L µg(Mo)/L µg(Ni)/L µg(Sb)/L µg(Se)/L µg(Sn)/L µg(Te)/L µg(Te)/L	1454 5579 6856 6862 1903 5581 6735 5408 5369 6538 1465 1521 6549 6550	Acétaldéhyde Acetamiprid Acetochlor ESA Acetochlor OXA Acétochlore Acibenzolar-S-Methyl Acide acetylsalicylique Acide fenofibrique Acide fenofibrique Acide mefenamique Acide Acide nitrilotriacétique Acide perfluorordecane sulfonique (PFDS) Acide perfluoro- decanoïque (PFDA)	5 0.02 0.03 0.005 0.005 0.005 0.005 0.005 0.2 5 0.2	Hg/L Hg/L	1107 1832 1109 1108 1830 2014 2015 2937 1110 1111 7817 1951 6231 5986 5997 2915	Atrazine Atrazine 2 hydroxy Atrazine deisopropyl Atrazine deisopropyl Atrazine deisethyl Azaconazole Azaméthiphos Azimsulfuron Azinphos éthyl Azinphos méthyl Azithromycine Azoxystrobine BDE 181 BDE 203 BDE 205 BDE100	0.005 0.02 0.01 0.01 0.03 0.005 0.02 0.02 0.005 0.5 0.02 0.005 0.005 0.005 0.005 0.0005	#8 #8 #8 #8 #8 #8 #8 #8 #8 #8 #8 #8 #8 #
1377 1388 1084 1379 1389 1392 1393 1387 1364 1394 1395 1386 1382 1376 1385 1380 2559 1373 2555 1361 1384 1383 2934 6751 7041 5399 7011 1-1264 1141 2872 2	Beryllium Cadmium Cyanures libres Cobalt Chrome Cuivre Fer Mercure Lithium Manganèse Molybdène Nickel Plomb Antimoine Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-{3-chloro-4-	0.01 0.02 0.05 0.5 0.1 1 0.01 0.5 0.5 1 0.5 0.05 0.5 0.5 0.5 0.05 0.5 0.	µg(Ba)/L µg(Be)/L µg(Cd)/L µg(CN)/L µg(Co)/L µg(Cr)/L µg(Fe)/L µg(Hg)/L µg(Hj)/L µg(Mo)/L µg(Mo)/L µg(Ni)/L µg(Sb)/L µg(Se)/L µg(Sn)/L µg(Te)/L µg(Te)/L	5579 6856 6862 1903 5581 6735 5408 5369 6538 1465 1521 6549 6550	Acetamiprid Acetochlor ESA Acetochlor OXA Acétochlore Acibenzolar-S-Methyl Acide acetylsalicylique Acide fenofibrique Acide fenofibrique Acide mefenamique Acide Acide nitrilotriacétique Acide pentacosafluorotridecan Acide perfluorodecane sulfonique (PFDS) Acide perfluoro- decanoïque (PFDA)	0.02 0.03 0.03 0.005 0.02 0.005 0.005 0.005 0.2 5 0.2	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1832 1109 1108 1830 2014 2015 2937 1110 1111 7817 1951 6231 5986 5997 2915	Atrazine 2 hydroxy Atrazine déisopropyl Atrazine déséthyl Atrazine déséthyl Azaconazole Azaméthiphos Azimsulfuron Azinphos éthyl Azinphos méthyl Azithromycine Azoxystrobine BDE 181 BDE 203 BDE 205 BDE100	0.02 0.01 0.03 0.005 0.02 0.02 0.02 0.005 0.5 0.002 0.0005 0.0015 0.0015 0.0002	HE H
1377 1388 1084 1379 1389 1392 1393 1387 1364 1394 1395 1386 1382 1376 1385 1380 2559 1373 2555 1361 1384 1383 2934 6751 7041 5399 7011 1-1264 1141 2872 2	Beryllium Cadmium Cyanures libres Cobalt Chrome Cuivre Fer Mercure Lithium Manganèse Molybdène Nickel Plomb Antimoine Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-{3-chloro-4-	0.01 0.02 0.05 0.5 0.1 1 0.01 0.5 0.5 1 0.5 0.05 0.5 0.5 0.5 0.05 0.5 0.	µg(Be)/L µg(Cd)/L µg(CN)/L µg(CO)/L µg(Cr)/L µg(Fe)/L µg(Hg)/L µg(Hj)/L µg(Mn)/L µg(Mo)/L µg(Ni)/L µg(Sb)/L µg(Se)/L µg(Sn)/L µg(Te)/L µg(Te)/L	6856 6862 1903 5581 6735 5408 5369 6538 1465 1521 6549	Acetochlor ESA Acetochlor OXA Acétochlore Acibenzolar-S-Methyl Acide acetylsalicylique Acide clofibrique Acide fenofibrique Acide mefenamique Acide Acide nitrilotriacétique Acide pentacosafluorotridecan Acide perfluorodecane sulfonique (PFDS) Acide perfluoro- decanoïque (PFDA)	0.03 0.03 0.005 0.02 0.05 0.005 0.005 0.005 0.2 5 0.2	Hg/L Hg/L	1109 1108 1830 2014 2015 2937 1110 1111 7817 1951 6231 5986 5997 2915	Atrazine déisopropyl Atrazine déséthyl Atrazine déséthyl Azaconazole Azaméthiphos Azimsulfuron Azinphos éthyl Azinphos méthyl Azintromycine Azoxystrobine BDE 181 BDE 203 BDE 205 BDE100	0.01 0.01 0.03 0.005 0.02 0.02 0.005 0.5 0.02 0.002 0.0015 0.0015 0.00015	#8 #8 #8 #8 #8 #8 #8 #8 #8 #8 #8 #8 #8 #
1388 1084 1379 1389 1392 1393 1387 1364 1394 1395 1386 1382 1376 1385 1380 2559 1373 2555 1361 1384 1383 2934 6751 7041 5399 7011 1-1264 1141 2872 2	Cadmium Cyanures libres Cobalt Chrome Cuivre Fer Mercure Lithium Manganèse Molybdène Nickel Plomb Antimoine Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-{3-chloro-4-	0.01 0.2 0.05 0.5 0.1 1 0.01 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	µg(Cd)/L µg(CN)/L µg(CO)/L µg(Cr)/L µg(Fe)/L µg(Fe)/L µg(Hg)/L µg(Mn)/L µg(Mo)/L µg(Ni)/L µg(Sb)/L µg(Sb)/L µg(Sn)/L µg(Sn)/L µg(Te)/L µg(Te)/L	6862 1903 5581 6735 5408 5369 6538 1465 1521 6549 6550	Acetochlor OXA Acétochlore Acibenzolar-S-Methyl Acide acetylsalicylique Acide clofibrique Acide fenofibrique Acide Acide mefenamique Acide Acide nitrilotriacétique Acide pentacosafluorotridecan Acide perfluorodecane sulfonique (PFDS) Acide perfluoro- decanoïque (PFDA)	0.03 0.005 0.02 0.05 0.005 0.005 0.2 5 0.2 0.005	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1108 1830 2014 2015 2937 1110 1111 7817 1951 6231 5986 5997 2915	Atrazine déséthyl Atrazine déséthyl Azaconazole Azaméthiphos Azimsulfuron Azinphos éthyl Azinphos méthyl Azithromycine Azoxystrobine BDE 181 BDE 203 BDE 205 BDE100	0.01 0.03 0.005 0.02 0.02 0.02 0.005 0.5 0.002 0.0005 0.0015 0.0015	на на на на на на на на на на на на на н
1084 1379 1389 1392 1393 1387 1364 1394 1395 1386 1382 1376 1385 1380 2559 1373 2555 1361 1384 1383 2934 m 6751 7041 5399 7011 1264 1141 2872 2	Cyanures libres Cobalt Chrome Cuivre Fer Mercure Lithium Manganèse Molybdène Nickel Plomb Antimoine Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-{3-chloro-4-	0.2 0.05 0.5 0.1 1 0.01 0.5 0.5 1 0.5 0.05 0.5 0.1 0.5 0.5 0.1 0.5 0.5 0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.5 0.5	µg(CN)/L µg(Co)/L µg(Cr)/L µg(Cr)/L µg(Cu)/L µg(Fe)/L µg(Hg)/L µg(Mn)/L µg(Mo)/L µg(Ni)/L µg(Pb)/L µg(Se)/L µg(Sn)/L µg(Te)/L µg(Te)/L	1903 5581 6735 5408 5369 6538 1465 1521 6549 6550	Acétochlore Acibenzolar-S-Methyl Acide acetylsalicylique Acide clofibrique Acide fenofibrique Acide mefenamique Acide Acide nitrilotriacétique Acide pentacosafluorotridecan Acide perfluorodecane sulfonique (PFDS) Acide perfluoro- decanoïque (PFDA)	0.005 0.02 0.05 0.005 0.005 0.005 0.2 5 0.2	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1830 2014 2015 2937 1110 1111 7817 1951 6231 5986 5997 2915	Atrazine déséthyl Azaconazole Azaméthiphos Azimsulfuron Azinphos éthyl Azinphos méthyl Azithromycine Azoxystrobine BDE 181 BDE 203 BDE 205 BDE100	0.03 0.005 0.02 0.02 0.02 0.005 0.5 0.002 0.0005 0.0015 0.0015 0.0002	148 148 148 148 148 148 148 148 148 148
1379 1389 1392 1393 1387 1364 1394 1395 1386 1382 1376 1388 1380 2559 1373 2555 1361 1384 1383 2934 6751 7041 5399 7011 1-1264 1141 2872 2	Cobalt Chrome Cuivre Fer Mercure Lithium Manganèse Molybdène Nickel Plomb Antimoine Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-(3-chloro-4-	0.05 0.5 0.1 1 0.01 0.5 0.5 1 0.5 0.5 0.5 0.1 0.5 0.5 0.1 0.5 0.5	µg(Co)/L µg(Cr)/L µg(Cr)/L µg(Cu)/L µg(Fe)/L µg(Hg)/L µg(Mn)/L µg(Mo)/L µg(Ni)/L µg(Pb)/L µg(Se)/L µg(Se)/L µg(Sn)/L µg(Te)/L µg(Ti)/L	5581 6735 5408 5369 6538 1465 1521 6549 6550	Acibenzolar-S-Methyl Acide acetylsalicylique Acide fenofibrique Acide fenofibrique Acide mefenamique Acide Acide Acide Acide pentacosafluorotridecan Acide perfluorodecane sulfonique (PFDS) Acide perfluoro- decanoïque (PFDA)	0.02 0.05 0.005 0.005 0.005 0.2 5 0.2	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	2014 2015 2937 1110 1111 7817 1951 6231 5986 5997 2915	Azaconazole Azaméthiphos Azimsulfuron Azinphos éthyl Azinphos méthyl Azithromycine Azoxystrobine BDE 181 BDE 203 BDE 205 BDE100	0.005 0.02 0.02 0.02 0.005 0.5 0.002 0.0005 0.0015 0.0015 0.0002	148 148 148 148 148 148 148 148 148 148
1389 1392 1393 1387 1364 1394 1395 1386 1382 1376 1385 1380 2559 1373 2555 1361 1384 1383 2934 m 6751 7041 5399 7011 1-1264 1141 2872 2	Chrome Cuivre Fer Mercure Lithium Manganèse Molybdène Nickel Plomb Antimoine Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-(3-chloro-4-	0.5 0.1 1 0.01 0.5 0.5 1 0.5 0.5 0.5 0.1 0.5 0.5 0.1 0.5 0.5	μg(Cr)/L μg(Cu)/L μg(Fe)/L μg(Hg)/L μg(Li)/L μg(Mn)/L μg(Mo)/L μg(Ni)/L μg(Sb)/L μg(Sb)/L μg(Sn)/L μg(Te)/L μg(Te)/L	6735 5408 5369 6538 1465 1521 6549 6550	Acide acetylsalicylique Acide fenofibrique Acide fenofibrique Acide mefenamique Acide Acide nitrilotriacétique Acide pentacosafluorotridecan Acide perfluorodecane sulfonique (PFDS) Acide perfluoro- decanoïque (PFDA)	0.05 0.005 0.005 0.005 0.2 5 0.2	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	2015 2937 1110 1111 7817 1951 6231 5986 5997 2915	Azaméthiphos Azimsulfuron Azinphos éthyl Azinphos méthyl Azithromycine Azoxystrobine BDE 181 BDE 203 BDE 205 BDE100	0.02 0.02 0.02 0.005 0.5 0.002 0.0005 0.0015 0.0015 0.0002	11 12 12 12 12 12 12 12 12 12 12 12 12 1
1389 1392 1393 1387 1364 1394 1395 1386 1382 1376 1385 1380 2559 1373 2555 1361 1384 1383 2934 m 6751 7041 5399 7011 1-1264 1141 2872 2	Chrome Cuivre Fer Mercure Lithium Manganèse Molybdène Nickel Plomb Antimoine Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-(3-chloro-4-	0.5 0.1 1 0.01 0.5 0.5 1 0.5 0.5 0.5 0.1 0.5 0.5 0.1 0.5 0.5	μg(Cr)/L μg(Cu)/L μg(Fe)/L μg(Hg)/L μg(Li)/L μg(Mn)/L μg(Mo)/L μg(Ni)/L μg(Sb)/L μg(Sb)/L μg(Sn)/L μg(Te)/L μg(Te)/L	5408 5369 6538 1465 1521 6549 6550	Acide dofibrique Acide fenofibrique Acide mefenamique Acide Acide nitrilotriacétique Acide pentacosafluorotridecan Acide perfluorodecane sulfonique (PFDS) Acide perfluoro- decanoïque (PFDA)	0.005 0.005 0.005 0.2 5 0.2	µg/L µg/L	2015 2937 1110 1111 7817 1951 6231 5986 5997 2915	Azimsulfuron Azinphos éthyl Azinphos méthyl Azithromycine Azoxystrobine BDE 181 BDE 203 BDE 205 BDE100	0.02 0.02 0.02 0.005 0.5 0.002 0.0005 0.0015 0.0015 0.0002	11 12 12 12 12 12 12 12 12 12 12 12 12 1
1392	Cuivre Fer Mercure Lithium Manganèse Molybdène Nickel Plomb Antimoine Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-{3-chloro-4-	0.1 1 0.01 0.5 0.5 1 0.5 0.05 0.5 0.1 0.5 0.5 0.1 0.5 0.5 0.1 0.5 0.5	µg(Cu)/L µg(Fe)/L µg(Hg)/L µg(Li)/L µg(Mn)/L µg(Mo)/L µg(Ni)/L µg(Sb)/L µg(Sb)/L µg(Se)/L µg(Sn)/L µg(Te)/L µg(Ti)/L	5369 6538 1465 1521 6549 6550	Acide fenofibrique Acide mefenamique Acide Acide nitrilotriacétique Acide pentacosafluorotridecan Acide perfluorodecane sulfonique (PFDS) Acide perfluoro- decanoïque (PFDA)	0.005 0.005 0.2 5 0.2	µg/L µg/L µg/L µg/L µg/L µg/L	2937 1110 1111 7817 1951 6231 5986 5997 2915	Azimsulfuron Azinphos éthyl Azinphos méthyl Azithromycine Azoxystrobine BDE 181 BDE 203 BDE 205 BDE100	0.02 0.02 0.005 0.5 0.02 0.0005 0.0015 0.0015 0.0002	11 12 12 12 12 12 12 12 12 12 12 12 12 1
1393 1387 1387 1364 1394 1395 1386 1382 1376 1385 1380 2559 1373 2555 1361 1384 1383 2934 m 6751 1,7041 5399 7011 1-1264 1141 2872 2	Fer Mercure Lithium Manganèse Molybdène Nickel Plomb Antimoine Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-{3-chloro-4-	1 0.01 0.5 0.5 1 0.5 0.05 0.5 0.1 0.5 0.5 0.5 0.5 0.5 0.5	μg(Fe)/L μg(Hg)/L μg(Li)/L μg(Mn)/L μg(Mo)/L μg(Ni)/L μg(Sb)/L μg(Sb)/L μg(Se)/L μg(Sn)/L μg(Te)/L μg(Ti)/L	5369 6538 1465 1521 6549 6550	Acide fenofibrique Acide mefenamique Acide Acide nitrilotriacétique Acide pentacosafluorotridecan Acide perfluorodecane sulfonique (PFDS) Acide perfluoro- decanoïque (PFDA)	0.005 0.005 0.2 5 0.2	µg/L µg/L µg/L µg/L µg/L µg/L	1110 1111 7817 1951 6231 5986 5997 2915	Azinphos éthyl Azinphos méthyl Azithromycine Azoxystrobine BDE 181 BDE 203 BDE 205 BDE100	0.02 0.005 0.5 0.02 0.0005 0.0015 0.0015 0.0002 0.00015	146 146 146 146 146 146 146 146 146
1387 1364 1394 1395 1386 1382 1376 1385 1380 2559 1373 2555 1361 1384 1383 2934 m 6751 7041 5399 7011 1-1264 1141 2872 2	Mercure Lithium Manganèse Molybdène Nickel Plomb Antimoine Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-{3-chloro-4-	0.01 0.5 0.5 1 0.5 0.05 0.5 0.1 0.5 0.5 0.1 0.5 0.5 0.1 0.5 0.5 0.1	μg(Hg)/L μg(Li)/L μg(Mn)/L μg(Mo)/L μg(Ni)/L μg(Pb)/L μg(Sb)/L μg(Se)/L μg(Sn)/L μg(Te)/L μg(Ti)/L	6538 1465 1521 6549 6550	Acide mefenamique Acide Acide itrilotriacétique Acide pentacosafluorotridecane Acide perfluorodecane sulfonique (PFDS) Acide perfluoro- decanoïque (PFDA)	0.005 0.2 5 0.2 0.005	μg/L μg/L μg/L μg/L μg/L	1111 7817 1951 6231 5986 5997 2915	Azinphos méthyl Azithromycine Azoxystrobine BDE 181 BDE 203 BDE 205 BDE100	0.005 0.5 0.02 0.0005 0.0015 0.0015 0.0002 0.00015	146 146 146 146 146 146 146 146 146 146
1364 1394 1395 1386 1382 1376 1385 1380 2559 1373 2555 1361 1384 1383 2934 m 6751 7041 5399 7011 1-1264 1141 2872 2	Lithium Manganèse Molybdène Nickel Plomb Antimoine Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-{3-chloro-4-	0.5 0.5 1 0.5 0.05 0.5 0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5	μg(Hg)/L μg(Li)/L μg(Mn)/L μg(Mo)/L μg(Ni)/L μg(Pb)/L μg(Sb)/L μg(Se)/L μg(Sn)/L μg(Te)/L μg(Ti)/L	1465 1521 6549 6550 6509	Acide Acide nitrilotriacétique Acide pentacosafluorotridecan Acide perfluorodecane sulfonique (PFDS) Acide perfluoro- decanoïque (PFDA)	0.2 5 0.2 0.005	μg/L μg/L μg/L μg/L	7817 1951 6231 5986 5997 2915	Azithromycine Azoxystrobine BDE 181 BDE 203 BDE 205 BDE100	0.5 0.02 0.0005 0.0015 0.0015 0.0002 0.00015	14 14 14 14 14 14 14 14 14 14 14 14 14 1
1364 1394 1395 1386 1382 1376 1385 1380 2559 1373 2555 1361 1384 1383 2934 m 6751 7041 5399 7011 1-1264 1141 2872 2	Lithium Manganèse Molybdène Nickel Plomb Antimoine Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-{3-chloro-4-	0.5 0.5 1 0.5 0.05 0.5 0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5	μg(Li)/L μg(Mn)/L μg(Mo)/L μg(Ni)/L μg(Pb)/L μg(Sb)/L μg(Se)/L μg(Sn)/L μg(Te)/L μg(Ti)/L	1521 6549 6550 6509	Acide nitrilotriacétique Acide pentacosafluorotridecan Acide perfluorodecane sulfonique (PFDS) Acide perfluoro- decanoïque (PFDA)	5 0.2 0.005	μg/L μg/L μg/L	1951 6231 5986 5997 2915	Azoxystrobine BDE 181 BDE 203 BDE 205 BDE100	0.02 0.0005 0.0015 0.0015 0.0002 0.00015	146 146 146 146 146 146 146 146 146 146
1394 1395 1386 1382 1376 1385 1380 2559 1373 2555 1361 1384 1383 2934 m 6751 1,7 7041 5399 7011 1- 1264 1141 2872 2	Manganèse Molybdène Nickel Plomb Antimoine Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-{3-chloro-4-	0.5 1 0.5 0.05 0.5 0.1 0.5 0.5 0.5 0.01 0.05	μg(Mn)/L μg(Mo)/L μg(Ni)/L μg(Pb)/L μg(Sb)/L μg(Se)/L μg(Sn)/L μg(Te)/L μg(Ti)/L	6549 6550 6509	Acide pentacosafluorotridecan Acide perfluorodecane sulfonique (PFDS) Acide perfluoro- decanoïque (PFDA)	0.2	μg/L μg/L	6231 5986 5997 2915	BDE 181 BDE 203 BDE 205 BDE100	0.0005 0.0015 0.0015 0.0002 0.00015	Hi Hi Hi
1395 1386 1382 1376 1385 1380 2559 1373 2555 1361 1384 1383 2934 m 6751 1,7 7041 5399 7011 1- 1264 1141 2872 2	Molybdène Nickel Plomb Antimoine Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-{3-chloro-4-	1 0.5 0.05 0.5 0.1 0.5 0.5 0.5 0.01 0.05	μg(Mo)/L μg(Ni)/L μg(Pb)/L μg(Sb)/L μg(Se)/L μg(Sn)/L μg(Te)/L μg(Ti)/L	6550 6509	pentacosafluorotridecan Acide perfluorodecane sulfonique (PFDS) Acide perfluoro- decanoïque (PFDA)	0.005	μg/L	5986 5997 2915	BDE 203 BDE 205 BDE100	0.0015 0.0015 0.0002 0.00015	μ <u>ε</u> μ <u>ε</u> μ <u>ε</u> μ <u>ε</u>
1386 1382 1376 1385 1380 2559 1373 2555 1361 1384 1383 2934 m 6751 1,7 7041 5399 7011 1- 1264 1141 2872 2	Nickel Plomb Antimoine Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-{3-chloro-4-	0.5 0.05 0.5 0.1 0.5 0.5 0.5 0.01 0.05	μg(Ni)/L μg(Pb)/L μg(Sb)/L μg(Se)/L μg(Sn)/L μg(Te)/L μg(Ti)/L	6550 6509	Acide perfluorodecane sulfonique (PFDS) Acide perfluoro- decanoïque (PFDA)	0.005	μg/L	5997 2915	BDE 205 BDE100	0.0015 0.0002 0.00015	μ <u>ε</u> με με
1386 1382 1376 1385 1380 2559 1373 2555 1361 1384 1383 2934 m 6751 1,7 7041 5399 7011 1- 1264 1141 2872 2	Nickel Plomb Antimoine Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-{3-chloro-4-	0.5 0.05 0.5 0.1 0.5 0.5 0.5 0.01 0.05	μg(Ni)/L μg(Pb)/L μg(Sb)/L μg(Se)/L μg(Sn)/L μg(Te)/L μg(Ti)/L	6509	sulfonique (PFDS) Acide perfluoro- decanoïque (PFDA)			2915	BDE100	0.0002 0.00015	μ <u>ε</u> μ <u>ε</u> μ <u>ε</u>
1382 1376 1385 1380 2559 1373 2555 1361 1384 1383 2934 m 6751 1,7 7041 5399 7011 1- 1264 1141 2872 2	Plomb Antimoine Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-{3-chloro-4-	0.05 0.5 0.1 0.5 0.5 0.5 0.01 0.05 0.01	μg(Pb)/L μg(Sb)/L μg(Se)/L μg(Sn)/L μg(Te)/L μg(Ti)/L	6509	sulfonique (PFDS) Acide perfluoro- decanoïque (PFDA)					0.00015	μ <u>ε</u> μ <u>ε</u>
1376 1385 1380 2559 1373 2555 1361 1384 1383 2934 m 6751 1,7 7041 5399 7011 1- 1264 1141 2872 2	Antimoine Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-(3-chloro-4-	0.5 0.1 0.5 0.5 0.5 0.01 0.05 0.1	μg(Sb)/L μg(Se)/L μg(Sn)/L μg(Te)/L μg(Ti)/L		Acide perfluoro- decanoïque (PFDA)	0.002	ug/I	2913	BDE138		μ ₍
1385 1380 2559 1373 2555 1361 1384 1383 2934 m 6751 1,7 7041 5399 7011 1- 1264 1141 2872 2	Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-(3-chloro-4-	0.1 0.5 0.5 0.5 0.01 0.05 0.1	μg(Se)/L μg(Sn)/L μg(Te)/L μg(Ti)/L		decanoïque (PFDA)	0.002	ug/I				μ
1385 1380 2559 1373 2555 1361 1384 1383 2934 m 6751 1,7 7041 5399 7011 1- 1264 1141 2872 2	Sélénium Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-(3-chloro-4-	0.1 0.5 0.5 0.5 0.01 0.05 0.1	μg(Se)/L μg(Sn)/L μg(Te)/L μg(Ti)/L	6507			P0/ -	2912	BDE153		
1380 2559 1373 2555 1361 1384 1383 2934 m 6751 1,7 7041 5399 7011 1- 1264 1141 2872 2	Etain Tellure Titane Thallium Uranium Vanadium Zinc 1-(3-chloro-4-	0.5 0.5 0.5 0.01 0.05 0.1	μg(Sn)/L μg(Te)/L μg(Ti)/L	6507	Acide perfluoro-			2911	BDE154	0.0002	με
2559 1373 2555 1361 1384 1383 2934 6751 7041 5399 7011 1264 1141 2872 2	Tellure Titane Thallium Uranium Vanadium Zinc 1-(3-chloro-4-	0.5 0.5 0.01 0.05 0.1	μg(Te)/L μg(Ti)/L	- 5507		0.02	μg/L	2921	BDE17	0.00015	щ
1373 2555 1361 1384 1383 2934 m 6751 1,7041 5399 7011 1-1264 1141 2872 2	Titane Thallium Uranium Vanadium Zinc 1-(3-chloro-4-	0.5 0.01 0.05 0.1	μg(Ti)/L		dodecanoïque (PFDoA)	0.02	M9/ L	2910	BDE17	0.00015	
2555	Thallium Uranium Vanadium Zinc 1-(3-chloro-4-	0.01 0.05 0.1		CF 42	Acide perfluoroheptane	0.001		2910		0.0005	μ
2555	Thallium Uranium Vanadium Zinc 1-(3-chloro-4-	0.01 0.05 0.1		6542	sulfonique	0.001	μg/L		BDE190		μ
1361 1384 1383 2934 m 6751 1,7 7041 5399 7011 1- 1264 1141 2872 2	Uranium Vanadium Zinc 1-(3-chloro-4-	0.05 0.1	MD(III//L		Acide			1815	BDE209	0.005	μ
1384 1383 2934 6751 1,7 7041 5399 7011 1-1264 1141 2872 2	Vanadium Zinc 1-(3-chloro-4-	0.1	1	6930		0.002		2920	BDE28	0.0002	μ
1383 2934 m 6751 1,7 7041 5399 7011 1- 1264 1141 2872 2	Zinc 1-(3-chloro-4-		μg(U)/L	6830	perfluorohexanesulfoni	0.002	μg/L	2919	BDE47	0.0002	μ
2934 m 6751 1,7 7041 5399 7011 1- 1264 1141 2872 2	1-(3-chloro-4-	1	μg(V)/L		que (PFHS)			2918	BDE66	0.00015	μ
2934 m 6751 1,7 7041 5399 7011 1- 1264 1141 2872 2	1-(3-chloro-4-		μg(Zn)/L	5980	Acide perfluoro-n-	0.2	μg/L	2917	BDE71	0.00015	μ
7041 5399 7011 1-1264 1141 2872 2	,		P-8(// -	F077	Acide perfluoro-n-	0.003	/1	7437	BDE77	0.0002	μ
7041 5399 7011 1-1264 1141 2872 2	methylphenyl)uree	0.02	μg/L	5977	heptanoïque (PFHpA)	0.002	μg/L	2914	BDE85	0.0002	μ
6751 1,7 7041 5399 7011 1- 1264 1141 2872 2		0.02	μg/ L		Acide perfluoro-n-			2916	BDE99	0.0002	μ
7041 5399 7011 1-1264 1141 2872 2				5978	hexanoïque (PFHxA)	0.002	μg/L	7522	Beflubutamide	0.01	щ
5399 7011 1- 1264 1141 2872 2	1,7-Dimethylxanthine	0.1	μg/L					1687	Bénalaxyl	0.005	με
5399 7011 1- 1264 1141 2872 2	14	0.005		6508	Acide perfluoro-n-	0.02	μg/L	7423			
7011 1- 1264 1141 2872 2	14-	0.005	μg/L		nonanoïque (PFNA)				BENALAXYL-M	0.1	μ
1264 1141 2872 2	17alpha-Estradiol	0.005	μg/L	6510	Acide perfluoro-n-	0.02	μg/L	1329	Bendiocarbe	0.005	μ
1264 1141 2872 2	1-Hydroxy Ibuprofen	0.01	μg/L	0310	undecanoïque (PFUnA)	0.02	μg/ L	1112	Benfluraline	0.005	μ
1141 2872 2	245T	0.02	μg/L		Acide			2924	Benfuracarbe	0.05	μ
2872 2				6560	perfluorooctanesulfoniq	0.02	μg/L	2074	Benoxacor	0.005	μ
	24 D	0.02	μg/L		Acide perfluoro-			5512	Bensulfuron-methyl	0.02	μ
2873	24D isopropyl ester	0.005	μg/L	5347		0.002	μg/L	6595	Bensulide	0.005	μ
2070	24D méthyl ester	0.005	μg/L		octanoïque (PFOA)			1113	Bentazone	0.03	μ
1142	,			6547	Acide	0.02	μg/L	7460	Benthiavalicarbe-	0.02	με
1142	2 4 DB	0.1	μg/L	0347	Perfluorotetradecanoiqu	0.02	με/ -	1764	Benthiocarbe	0.005	щ
1212	2 4 MCPA	0.02	μg/L	5355	Acide salicylique	0.05	μg/L	1114	Benzène	0.5	μ
1213	2 4 MCPB	0.03	μg/L	1970	Acifluorfen	0.02	μg/L	1082	Benzo (a) Anthracène	0.001	
	6 Dichlorobenzamide	0.005	μg/L	1688	Aclonifen	0.001	μg/L				μ
2011 20		0.003	μg/ ∟					1115	Benzo (a) Pyrène	0.01	μ
	2-(3-			1310	Acrinathrine	0.005	μg/L	1116	Benzo (b) Fluoranthène	0.0005	μ
6870 trifl	ifluoromethylphenoxy	0.005	μg/L	6800	Alachlor ESA	0.03	μg/L	1118	Benzo (ghi) Pérylène	0.0005	μ
)nicotinamide		_	6855	Alachlor OXA	0.03	μg/L	1117	Benzo (k) Fluoranthène	0.0005	μ
701E 1		0.05	11071	1101	Alachlore	0.005	μg/L	1924	Benzyl butyl phtalate	0.05	μ
	2,6-di-tert-butyl-4-	0.05	μg/L	6740	Albendazole	0.005	μg/L	3209	Beta cyfluthrine	0.01	μ
6022 2.4	4+2.5-dichloroanilines	0.05	μg/L	1102	Aldicarbe	0.02	μg/L	6652	beta-	0.05	μ
7012 2-	2-Hydroxy Ibuprofen	0.1	μg/L	1807	Aldicarbe sulfone	0.02	μg/L μg/L	6457	Betaxolol	0.005	щ
	2-hydroxy-desethyl-	0.02	μg/L					5366	Bezafibrate	0.005	щ
		0.02	μο/ -	1806	Aldicarbe sulfoxyde	0.02	μg/L	1119	Bifénox	0.005	щ
5352	2-Naphthaleneacetic	0.1	μg/L	1103	Aldrine	0.001	μg/L	1120	Bifenthrine	0.005	щ
ac	acid, 6-hydroxy-alph	V.1	PD/ =	1697	Alléthrine	0.03	μg/L		Bioresméthrine	0.005	
2613	2-nitrotoluène	0.02	μg/L	7501	Allyxycarbe	0.005	μg/L	1502			με
	3,4,5-Trimethacarb	0.005	μg/L	6651	alpha-	0.05	μg/L	1584	Biphényle	0.005	μ
				1812	Alphaméthrine	0.005	μg/L	6453	Bisoprolol	0.005	μ
2820	3-Chloro-4	0.05	μg/L	5370	Alprazolam	0.003	μg/L	7594	Bisphenol S	0.02	μ
5367 4-	4-Chlorobenzoic acid	0.1	μg/L					2766	Bisphénol-A	0.02	μ
4-m	méthoxycinnamate de			7842	Ametoctradine	0.1	μg/L	1529	Bitertanol	0.005	μ
7816	'	0.65	μg/L	1104	Amétryne	0.02	μg/L	7104	Bithionol	0.1	μ
	2-éthylhexyle			5697	Amidithion	0.005	μg/L	7345	Bixafen	0.02	μ
6536 4-1	4-Methylbenzylidene	0.02	μg/L	2012	Amidosulfuron	0.02	μg/L	5526	Boscalid	0.02	μ
5474	4-n-nonylphénol	0.1	μg/L	5523	Aminocarbe	0.02	μg/L	1686	Bromacil	0.005	μ
	nonylphénols ramifiés	0.1	μg/L	2537	Aminochlorophénol-2,4	0.1	μg/L	1859	Bromadiolone	0.05	щ
	· · ·							5371	Bromazepam	0.01	μ
	4-tert-butylphénol	0.02	μg/L	7580	Aminopyralid	0.1	μg/L				
1959	4-tert-octylphénol	0.03	μg/L	1105	Aminotriazole	0.03	μg/L	1121	Bromochlorométhane	0.5	μ
			ì	7516	Amiprofos-methyl	0.005	μg/L	1122	Bromoforme	0.5	μ
				1308	Amitraze	0.005	μg/L	1123	Bromophos éthyl	0.005	μ
				6967	Amitriptyline	0.005	μg/L	1124	Bromophos méthyl	0.005	μ
				6781	Amlodipine	0.05	μg/L	1685	Bromopropylate	0.005	μ
				6719	Amoxicilline	0.02	μg/L	1125	Bromoxynil	0.02	μ
								1941	Bromoxynil octanoate	0.01	μ
				1907 5385	AMPA Androstenedione	0.02	μg/L μg/L	1860	Bromuconazole	0.02	μ

Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unit
7502	Bufencarbe	0.02	μg/L	1471	Chlorophénol-2	0.05	μg/L	7801	Cyprosulfamide	0.02	μg/
6742	Buflomedil	0.05	μg/L	1651	Chlorophénol-3	0.05	μg/L	2897	Cyromazine	0.02	μg/
1861	Bupirimate	0.01	μg/L	1650	Chlorophénol-4	0.05	μg/L	7503	Cythioate	0.02	μg/
				2611	Chloroprène	0.5	μg/L	5930	Daimuron	0.005	μg/
6518	Bupivacaine	0.005	μg/L	2065	Chloropropène-3	0.5	μg/L	2094	Dalapon	0.02	μg,
1862	Buprofézine	0.005	μg/L	1473	Chlorothalonil	0.01		5597	Daminozide	0.03	μg
5710	Butamifos	0.005	μg/L				μg/L	6677	Danofloxacine	0.1	μg
1126	Butraline	0.005	μg/L	1602	Chlorotoluène-2	0.5	μg/L	1869	Dazomet	0.05	μg
1531	Buturon	0.02	μg/L	1601	Chlorotoluène-3	0.5	μg/L	1929	DCPMU (métabolite du	0.02	μе
7038	Butylate	0.03	μg/L	1600	Chlorotoluène-4	0.5	μg/L		Diuron)		
1855	Butylbenzène n	0.5	μg/L	1683	Chloroxuron	0.005	μg/L	1930	DCPU (métabolite	0.05	με
1610	Butylbenzène sec	0.5	μg/L	1474	Chlorprophame	0.005	μg/L		Diuron)		
	Butylbenzène tert	0.5		1083	Chlorpyriphos éthyl	0.005	μg/L	1143	DDD-o,p'	0.001	με
1611			μg/L	1540	Chlorpyriphos méthyl	0.005	μg/L	1144	DDD-p,p'	0.001	με
1863	Cadusafos	0.02	μg/L	1353	Chlorsulfuron	0.02	μg/L	1145	DDE-o,p'	0.001	με
6519	Cafeine	0.01	μg/L	6743	Chlortetracycline	0.02	μg/L	1146	DDE-p,p'	0.001	με
1127	Captafol	0.01	μg/L					1147	DDT-o,p'	0.001	με
1128	Captane	0.01	μg/L	2966	Chlorthal dimethyl	0.005	μg/L	1148	DDT-p,p'	0.001	με
5296	Carbamazepine	0.005	μg/L	1813	Chlorthiamide	0.01	μg/L	6616	DEHP	0.4	με
6725	Carbamazepine epoxide	0.005		5723	Chlorthiophos	0.02	μg/L	1149	Deltaméthrine	0.001	με
			μg/L	1136	Chlortoluron	0.02	μg/L	1153	Déméton S méthyl	0.005	με
1463	Carbaryl	0.02	μg/L	2715	Chlorure de Benzylidène	0.1	μg/L	1154	Déméton S méthyl	0.01	με
1129	Carbendazime	0.005	μg/L	2977	CHLORURE DE CHOLINE	0.1	μg/L	1134	sulfone	0.01	
1333	Carbétamide	0.02	μg/L	1753	Chlorure de vinyle	0.05	μg/L	1150	Déméton-O	0.01	με
1130	Carbofuran	0.005	μg/L	1476	Chrysène	0.03	μg/L	1152	Déméton-S	0.01	με
1805	Carbofuran 3 hydroxy	0.02	μg/L					2051	Déséthyl-terbuméthon	0.02	με
1131	Carbophénothion	0.005	μg/L	5481	Cinosulfuron	0.005	μg/L	2980	Desmediphame	0.02	με
				6540	Ciprofloxacine	0.02	μg/L	2738	Desméthylisoproturon	0.02	με
1864	Carbosulfan	0.02	μg/L	6537	Clarithromycine	0.005	μg/L	1155	Desmétryne	0.02	με
2975	Carboxine	0.02	μg/L	6968	Clenbuterol	0.005	μg/L	6574	Dexamethasone	0.05	με
6842	Carboxyibuprofen	0.1	μg/L	2978	Clethodim	0.02	μg/L	1156	Diallate	0.02	με
2976	Carfentrazone-ethyl	0.005	μg/L	6792	Clindamycine	0.005	μg/L	5372	Diazepam	0.005	με
1865	Chinométhionate	0.005	μg/L	2095	Clodinafop-propargyl	0.02	μg/L	1157	Diazinon	0.005	με
7500	Chlorantraniliprole	0.02	μg/L	1868	Clofentézine	0.005	μg/L				
				2017	Clomazone	0.005		1621	Dibenzo (ah) Anthracène	0.01	με
1336	Chlorbufame	0.02	μg/L				μg/L		Dibromo-1,2 chloro-		
7010	Chlordane alpha	0.005	μg/L	1810	Clopyralide	0.02	μg/L	1479	3propane	0.5	με
1757	Chlordane beta	0.005	μg/L	2018	Cloquintocet mexyl	0.005	μg/L	1158	Dibromochlorométhane	0.05	με
1758	Chlordane gamma	0.005	μg/L	6748	Clorsulone	0.01	μg/L	1498	Dibromoéthane-1,2	0.05	με
5553	Chlorefenizon	0.005	μg/L	6389	Clothianidine	0.03	μg/L	1513	Dibromométhane	0.5	με
1464	Chlorfenvinphos	0.02	μg/L	5360	Clotrimazole	0.005	μg/L	7074	Dibutyletain cation	0.0025	με
2950	Chlorfluazuron	0.01	μg/L	6520	Cotinine	0.005	μg/L	1480	Dicamba	0.03	με
				2972	Coumafène	0.005	μg/L	1679	Dichlobénil	0.005	με
1133	Chloridazone	0.005	μg/L	1682	Coumaphos	0.02	μg/L	1159	Dichlofenthion	0.005	με
5522	Chlorimuron-ethyl	0.02	μg/L		·			1360	Dichlofluanide	0.005	με
5405	Chlormadinone	0.01	μg/L	2019	Coumatétralyl	0.005	μg/L	1160	Dichloréthane-1.1	0.005	με
1134	Chlorméphos	0.005	μg/L	1640	Crésol-ortho	0.05	μg/L	1160	Dichlorethane-1,1	0.5	με
5554	Chlormequat	0.03	μg/L	5724	Crotoxyphos	0.005	μg/L	1161	Dichlorethylène-1,1	0.5	
2097	Chlormeguat chlorure	0.038	μg/L	5725	Crufomate	0.005	μg/L				με
				6391	Cumyluron	0.03	μg/L	1456	Dichloréthylène-1,2 cis	0.05	με
1955	Chloroalcanes C10-C13	0.15	μg/L	1137	Cyanazine	0.02	μg/L	1727	Dichloréthylène-1,2	0.5	με
1593	Chloroaniline-2	0.05	μg/L	5726	Cyanofenphos	0.1	μg/L	2020	trans	0.01	
1592	Chloroaniline-3	0.05	μg/L	5567	Cyazofamid	0.05	μg/L	2929	Dichlormide	0.01	με
1591	Chloroaniline-4	0.05	μg/L					1586	Dichloroaniline-3,4	0.015	με
1467	Chlorobenzène	0.5	μg/L	5568	Cycloate	0.02	μg/L	1585	Dichloroaniline-3,5	0.02	με
2016	Chlorobromuron	0.005	μg/L	6733	Cyclophosphamide	0.001	μg/L	1165	Dichlorobenzène-1,2	0.05	με
				2729	CYCLOXYDIME	0.02	μg/L	1164	Dichlorobenzène-1,3	0.5	με
1853	Chloroéthane	0.5	μg/L	1696	Cycluron	0.02	μg/L	1166	Dichlorobenzène-1,4	0.05	με
1135	Chloroforme	0.5	μg/L	7748	cyflufénamide	0.05	μg/L	1167	Dichlorobromométhane	0.05	με
1736	Chlorométhane	0.5	μg/L	1681	Cyfluthrine	0.005	μg/L	1485	Dichlorodifluorométhan	0.5	με
2821	Chlorométhylaniline-4,2	0.02	μg/L	5569	Cyhalofop-butyl	0.05	μg/L		e		
1636	Chlorométhylphénol-4,3	0.05	μg/L	1138	Cyhalothrine	0.005	μg/L	1168	Dichlorométhane	5	με
1341	Chloronèbe	0.005	μg/L					1617	Dichloronitrobenzène-	0.05	με
				1139	Cymoxanil	0.02	μg/L	1017	2,3	3.03	μŧ
1594	Chloronitroaniline-4,2	0.1	μg/L	1140	Cyperméthrine	0.005	μg/L	1616	Dichloronitrobenzène-	0.05	με
1469	Chloronitrobenzène-1,2	0.02	μg/L	1680	Cyproconazole	0.02	μg/L	1010	2,4	0.05	μξ
1468	Chloronitrobenzène-1,3	0.02	μg/L	1359	Cyprodinil	0.005	μg/L	1615	Dichloronitrobenzène-	0.05	
1470	Chloronitrobenzène-1,4	0.05	μg/L					1012	2,5	0.05	με
1684	Chlorophacinone	0.02	μg/L					1614	Dichloronitrobenzène- 3,4	0.05	це
								1613	Dichloronitrobenzène- 3,5	0.05	με

Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unit
1645	Dichlorophénol-2,3	0.05	μg/L	6791	Doxycycline	0.005	μg/L	1825	Fluazifop-butyl	0.02	μg/
1647	Dichlorophénol-3,4	0.05	μg/L	7515	DPU (Diphenylurée)	0.01	μg/L	1404 2984	Fluazifop-P-butyl Fluazinam	0.1	μg/l
1655	Dichloropropane-1,2	0.2	μg/L	6714	Dydrogesterone	0.02	μg/L	2022	Fludioxonil	0.02	μg/l
1654	Dichloropropane-1,3	0.5	μg/L	5751	Edifenphos	0.005	μg/L	6863	Flufenacet oxalate	0.01	μg/
2081	Dichloropropane-2,2	0.05	μg/L	1493	EDTA	5	μg/L	6864	Flufenacet sulfonic acid	0.01	μg/
2082	Dichloropropène-1,1	0.5	μg/L	8102	Emamectine	0.1	μg/L	1676	Flufénoxuron	0.02	μg/
1834	Dichloropropylène-1,3	0.05	μg/L	1178	Endosulfan alpha	0.001	μg/L	5635	Flumequine	0.02	μg/
1835	Dichloropropylène-1,3	0.05	μg/L	1179	Endosulfan beta	0.001	μg/L	2023	Flumioxazine	0.005	μg/
				1742	Endosulfan sulfate	0.001	μg/L	1501	Fluométuron	0.02	μg/
1653	Dichloropropylène-2,3	0.5	μg/L	1181	Endrine	0.001	μg/L	7499	Fluopicolide	0.02	μg/
1169	Dichlorprop	0.03	μg/L	2941	Endrine aldehyde	0.005	μg/L	7649	Fluopyram	0.02	μg,
2544	Dichlorprop-P	0.03	μg/L	6768	Enoxacine	0.02	μg/L	1191	Fluoranthène	0.005	μg
1170	Dichlorvos	0.00025	μg/L	6784	Enrofloxacine	0.02	μg/L	1623	Fluorène	0.005	μg
5349	Diclofenac	0.01	μg/L	1494	Epichlorohydrine	0.1	μg/L	5373	Fluoxetine	0.005	μg
1171	Diclofop méthyl	0.05	μg/L	1873	EPN	0.005	μg/L	2565	Flupyrsulfuron methyle	0.02	μg
1172	Dicofol	0.005	μg/L	1744	Epoxiconazole	0.02	μg/L	2056	Fluquinconazole	0.02	μg
5525	Dicrotophos	0.005	μg/L	1182	EPTC	0.1	μg/L	1974	Fluridone	0.02	μg
6696	Dicyclanil	0.01	μg/L	7504	Equilin	0.005	μg/L	1675	Flurochloridone	0.005	μg
2847	Didéméthylisoproturon	0.02		6522	Erythromycine	0.005	μg/L	1765	Fluroxypyr	0.03	μg
	, ,		μg/L	1809	Esfenvalérate	0.005	μg/L	2547	Fluroxypyr-meptyl	0.02	μg
1173	Dieldrine	0.001	μg/L	5397	Estradiol	0.005	μg/L	2024	Flurprimidol	0.005	μg
7507	Dienestrol	0.005	μg/L	6446	Estriol	0.005	μg/L μg/L	2008	Flurtamone	0.02	μg
1402	Diéthofencarbe	0.02	μg/L	5396	Estrone	0.003		1194	Flusilazole	0.02	μд
1527	Diéthyl phtalate	0.05	μg/L	5529		0.005	μg/L	2985	Flutolanil	0.02	μд
2826	Diéthylamine	6	μg/L		Ethanetsulfuron-methyl		μg/L	1503	Flutriafol	0.02	μд
2628	Diethylstilbestrol	0.005	μg/L	2093	Ethephon	0.02	μg/L	6739	Fluvoxamine	0.01	μg
2982	Difenacoum	0.005	μg/L	1763	Ethidimuron	0.02	μg/L	7342	fluxapyroxade	0.01	μе
1905	Difénoconazole	0.02	μg/L	5528	Ethiofencarbe sulfone	0.005	μg/L	1192	Folpel	0.01	μд
5524	Difenoxuron	0.005		6534	Ethiofencarbe sulfoxyde	0.02	μg/L	2075	Fomesafen	0.05	μg
			μg/L	1183	Ethion	0.02	μg/L	1674	Fonofos	0.005	μg
2983	Difethialone	0.02	μg/L	1874	Ethiophencarbe	0.02	μg/L	2806	Foramsulfuron	0.03	μд
1488	Diflubenzuron	0.02	μg/L	1184	Ethofumésate	0.005	μg/L	5969	Forchlorfenuron	0.005	μд
1814	Diflufénicanil	0.001	μg/L	1495	Ethoprophos	0.02	μg/L	1702	Formaldéhyde	1	μg
6647	Dihydrocodeine	0.005	μg/L	5527	Ethoxysulfuron	0.02	μg/L	1975	Foséthyl aluminium	0.02	μg
5325	Diisobutyl phthalate	0.4	μg/L	2673	Ethyl tert-butyl ether	0.5	μg/L	1816	Fosetyl	0.0185	μg
6729	Diltiazem	0.005	μg/L	1497	Ethylbenzène	0.5	μg/L	2744	Fosthiazate	0.02	μg
1870	Diméfuron	0.02	μg/L	5648	EthylèneThioUrée	0.1	μg/L	1908	Furalaxyl	0.005	μg
7142	Dimepiperate	0.005	μg/L	6601	EthylèneUrée	0.1	μg/L	2567	Furathiocarbe	0.02	μg
				6644	Ethylparaben	0.01	μg/L	7441	Furilazole	0.1	μд
2546	Dimétachlore	0.005	μg/L	2629	Ethynyl estradiol	0.001	μg/L	5364	Furosemide	0.02	μg
5737	Dimethametryn	0.005	μg/L	5625	Etoxazole	0.005	μg/L	7602	Gabapentine	0.01	μg
6865	Dimethenamid ESA	0.01	μg/L	5760	Etrimfos	0.005	μg/L	6653	gamma- Hexabromocyclododeca	0.05	μg
1678	Diméthénamide	0.005	μg/L	2020	Famoxadone	0.005	μg/L	5365	Gemfibrozil	0.02	μg
7735	Diméthénamide OXA	0.01	μg/L	5761	Famphur	0.005	μg/L	1526	Glufosinate	0.02	μв
5617	Dimethenamid-P	0.03	μg/L	2057	Fénamidone	0.02	μg/L	1506	Glyphosate	0.03	μд
1175	Diméthoate	0.01	μg/L	1185	Fénarimol	0.005		5508	Halosulfuron-methyl	0.03	μв
1403	Diméthomorphe	0.02	μg/L	2742		0.003	μg/L	2047	Haloxyfop	0.05	μд
2773	Diméthylamine	10	μg/L		Fénazaquin		μg/L	1833	Haloxyfop-éthoxyéthyl	0.02	μд
1641	, i	0.02		6482	Fenbendazole	0.005	μg/L	1909	Haloxyfop-R	0.005	μд
	Diméthylphénol-2,4		μg/L	1906	Fenbuconazole	0.02	μg/L	1200	HCH alpha	0.001	μд
6972	Dimethylvinphos	0.005	μg/L	2078	Fenbutatin oxyde	0.0217	μg/L	1201	HCH beta	0.001	μе
1698	Dimétilan	0.02	μg/L	7513	Fenchlorazole-ethyl	0.1	μg/L	1202	HCH delta	0.001	μд
5748	dimoxystrobine	0.02	μg/L	1186	Fenchlorphos	0.005	μg/L	2046	HCH epsilon	0.005	μд
1871	Diniconazole	0.02	μg/L	2743	Fenhexamid	0.005	μg/L	1203	HCH gamma	0.001	μд
1578	Dinitrotoluène-2,4	0.5	μg/L	1187	Fénitrothion	0.001	μg/L	1197	Heptachlore	0.005	μд
1577	Dinitrotoluène-2,6	0.5	μg/L	5627	Fenizon	0.005	μg/L	1748	Heptachlore époxyde cis	0.005	μд
5619	Dinocap	0.05	μg/L	5763	Fenobucarb	0.005	μg/L	1749	Heptachlore époxyde	0.005	μд
1491	Dinosèbe	0.02	μg/L	5368	Fenofibrate	0.01	μg/L	1910	Heptenophos	0.005	μд
1176	Dinoterbe	0.02	μg/L μg/L	6970	Fenoprofen	0.05	μg/L	1199	Hexachlorobenzène	0.001	μе
				5970	Fenothiocarbe	0.005	μg/L	1652	Hexachlorobutadiène	0.02	μд
7494	Dioctyletain cation	0.0025	μg/L	1973	Fénoxaprop éthyl	0.02	μg/L	1656	Hexachloroéthane	0.3	μg
5743	Dioxacarb	0.005	μg/L	1967	Fénoxycarbe	0.005	μg/L	2612	Hexachloropentadiène	0.1	μе
7495	Diphenyletain cation	0.00046	μg/L	1188	Fenpropathrine	0.005	μg/L	1405	Hexaconazole	0.02	μg
1699	Diquat	0.03	μg/L	1700	Fenpropidine	0.01	μg/L	1875	Hexaflumuron	0.005	μg
1492	Disulfoton	0.005	μg/L	1189	Fenpropimorphe	0.005	μg/L	1673	Hexazinone	0.02	μg
5745	Ditalimfos	0.05	μg/L	1190	Fenthion	0.005	μg/L	1876	Hexythiazox	0.02	μд
1966	Dithianon	0.1	μg/L	1500	Fénuron	0.003		5645	Hydrazide maleique	0.5	μg
1177	Diuron	0.02	μg/L				μg/L	6746	Hydrochlorothiazide	0.005	μд
	DNOC			1701	Fenvalérate	0.01	μg/L	6730	Hydroxy-metronidazole	0.01	μд
1490		0.02	μg/L	2021	Ferbam	10000	μg/L	5350	Ibuprofene	0.01	μg
2933	Dodine	0.02	μg/L	2009	Fipronil	0.005	μg/L	6727	Ifosfamide	0.005	μg
6969	Doxepine	0.005	μg/L	1840	Flamprop-isopropyl	0.005	μg/L	1704	Imazalil	0.02	μg
				6539	Flamprop-methyl	0.005	μg/L	1695	Imazaméthabenz	0.02	μд
				1939	Flazasulfuron	0.02	μg/L	1911	Imazaméthabenz méthyl	0.01	μд
				6393	Flonicamid	0.005	μg/L		<i>,</i>		
				2810	Florasulam	0.02	μg/L				
				6764	Florfenicol	0.1	μg/L				
				6545	Fluazifop	0.02	μg/L	Ì			

Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Uni
2986	Imazamox	0.02	μg/L	2752	Mecoprop-2-	0.005	μg/L	1881	Myclobutanil	0.02	μg,
2090	Imazaniox	0.02	μg/L	2753	Mecoprop-2-ethylhexyl	0.005	μg/L	6380	N-(2,6-dimethylphenyl)-	0.01	μg,
		0.02		2754	Mecoprop-2-octyl ester	0.005	μg/L		N-(2-methoxyethyl		
2860	IMAZAQUINE		μg/L	2755	Mecoprop-methyl ester	0.005	μg/L	6443	Nadolol	0.005	μg
7510	Imibenconazole	0.005	μg/L	2084	Mécoprop-P	0.003		1516	Naled	0.005	μе
1877	Imidaclopride	0.02	μg/L				μg/L	1517	Naphtalène	0.005	μд
6971	Imipramine	0.005	μg/L	1968	Méfenacet	0.005	μg/L	1519	Napropamide	0.005	με
1204	Indéno (123c) Pyrène	0.0005	μg/L	2930	Méfenpyr diethyl	0.005	μg/L	5351	Naproxene	0.05	με
6794	Indometacine	0.02	μg/L	2568	Mefluidide	0.02	μg/L	1937	Naptalame	0.05	με
5483	Indoxacarbe	0.02	μg/L	2987	Méfonoxam	0.02	μg/L	1462	n-Butyl Phtalate	0.05	μ
6706	Iobitridol	0.1	μg/L	5533	Mepanipyrim	0.005	μg/L	1520	Néburon	0.02	μ
2741	Iodocarbe	0.02	μg/L	5791	Mephosfolan	0.005	μg/L	1882	Nicosulfuron	0.01	μ
2025				1969	Mépiquat	0.03	μg/L	5657	Nicotine	0.02	μ
	lodofenphos	0.005	μg/L	2089	Mépiquat chlorure	0.04	μg/L	2614	Nitrobenzène	0.1	μ
2563	lodosulfuron	0.02	μg/L	6521	Mepivacaine	0.01	μg/L	1229	Nitrofène	0.005	μ
5377	Iopromide	0.1	μg/L	1878	Mépronil	0.005	μg/L	1637	Nitrophénol-2	0.05	μ
1205	loxynil	0.02	μg/L	1677	Meptyldinocap	1	μg/L	5400	Norethindrone	0.001	μ
2871	loxynil methyl ester	0.005	μg/L					6761	Norfloxacine	0.1	μ
1942	loxynil octanoate	0.01	μg/L	1510	Mercaptodiméthur	0.01	μg/L	6772	Norfluoxetine	0.005	μ
7508	Ipoconazole	0.02	μg/L	1804	Mercaptodiméthur	0.02	μg/L	1669	Norflurazon	0.005	μ
5777	Iprobenfos	0.005	μg/L	2578	Mesosulfuron methyle	0.02	μg/L	2737	Norflurazon desméthyl	0.005	щ
1206	Iprodione	0.005	μg/L	2076	Mésotrione	0.03	μg/L	1883	Nuarimol O Domothyltramadol	0.005	щ
	·			1706	Métalaxyl	0.02	μg/L	6767	O-Demethyltramadol Ofloxacine	0.005	μ
2951	Iprovalicarbe	0.02	μg/L	1796	Métaldéhyde	0.02	μg/L	6533 2027	Office	0.02	щ
6535	Irbesartan	0.005	μg/L	1215	Métamitrone	0.02	μg/L	1230	Ométhoate	0.005	щ
1935	Irgarol (Cybutryne)	0.0025	μg/L	6894	Metazachlor oxalic acid	0.1	μg/L	1668	Orrezalin	0.0005	щ
1976	Isazofos	0.02	μg/L	6895	Metazachlor sulfonic	0.1	μg/L	2068	Oxadiargyl	0.005	Щ
1836	Isobutylbenzène	0.5	μg/L	1670	Métazachlore	0.005	μg/L	1667	Oxadiargyi	0.005	μ μ
1207	Isodrine	0.001	μg/L	1879	Metconazole	0.02	μg/L	1666	Oxadixyl	0.005	μ
1829	Isofenphos	0.005	μg/L	6755	Metformine	0.005	μg/L	1850	Oxamyl	0.02	щ
5781	Isoprocarb	0.005	μg/L	1216	Méthabenzthiazuron	0.005	μg/L	5510	Oxasulfuron	0.005	Щ
1633	Isopropylbenzène	0.5	μg/L	5792	Methacrifos	0.003	μg/L	5375	Oxazepam	0.005	Щ
								7107	Oxyclozanide	0.005	щ
2681	Isopropyltoluène o	0.5	μg/L	1671	Méthamidophos	0.02	μg/L	6682	Oxycodone	0.01	щ
1856	Isopropyltoluène p	0.5	μg/L	1217	Méthidathion	0.02	μg/L	1231	Oxydéméton méthyl	0.02	щ
1208	Isoproturon	0.02	μg/L	1218	Méthomyl	0.02	μg/L	1952	Oxyfluorfène	0.002	щ
6643	Isoquinoline	0.01	μg/L	6793	Methotrexate	0.005	μg/L	6532	Oxytetracycline	0.005	щ
2722	Isothiocyanate de	0.05	μg/L	1511	Méthoxychlore	0.005	μg/L	1920	p-(n-octyl)phénol	0.03	щ
1672	Isoxaben	0.02	μg/L	5511	Methoxyfenoside	0.1	μg/L	2545	Paclobutrazole	0.02	щ
2807	Isoxadifen-éthyle	0.005	μg/L	1619	Méthyl-2-Fluoranthène	0.001	μg/L	5354	Paracetamol	0.025	μ
1945	Isoxaflutol	0.02	μg/L	1618	Méthyl-2-Naphtalène	0.005	μg/L	5806	Paraoxon	0.005	μ
5784	Isoxathion	0.005	μg/L	6695	Methylparaben	0.01	μg/L	1232	Parathion éthyl	0.01	μ
7505				2067	Metiram	0.03	μg/L	1233	Parathion méthyl	0.005	μ
	Karbutilate	0.005	μg/L	1515	Métobromuron	0.02	μg/L	6753	Parconazole	0.1	μ
5353	Ketoprofene	0.01	μg/L	6854	Metolachlor ESA	0.02	μg/L	1242	PCB 101	0.0012	μ
7669	Ketorolac	0.01	μg/L					1627	PCB 105	0.0003	μ
1950	Kresoxim méthyl	0.02	μg/L	6853	Metolachlor OXA	0.02	μg/L	5433	PCB 114	0.00003	μ
1094	Lambda Cyhalothrine	0.00006	μg/L	1221	Métolachlore	0.005	μg/L	1243	PCB 118	0.0012	μ
1406	Lénacile	0.005	μg/L	5796	Metolcarb	0.005	μg/L	5434	PCB 123	0.00003	μ
6711	Levamisole	0.005	μg/L	5362	Metoprolol	0.005	μg/L	2943	PCB 125	0.005	щ
6770	Levonorgestrel	0.02	μg/L	1912	Métosulame	0.005	μg/L	1089	PCB 126	0.000006	μ
7843	Lincomycine	0.005	μg/L	1222	Métoxuron	0.02	μg/L	1884	PCB 128	0.0012	μ
1209	Linuron			5654	Metrafenone	0.005	μg/L	1244	PCB 138	0.0012	щ
		0.02	μg/L	1225	Métribuzine	0.02	μg/L	1885	PCB 149	0.0012	μ
5374	Lorazepam	0.005	μg/L	6731	Metronidazole	0.005	μg/L	1245	PCB 153	0.0012	μ
1210	Malathion	0.005	μg/L	1797	Metsulfuron méthyl	0.02	μg/L	2032	PCB 156	0.00012	μ
5787	Malathion-o-analog	0.005	μg/L	1226	Mévinphos	0.005	μg/L	5435	PCB 157	0.000018	μ
1211	Mancozèbe	0.03	μg/L	7143	Mexacarbate	0.005	μg/L	5436	PCB 167	0.00003	μ
6399	Mandipropamid	0.02	μg/L	1707	Molinate	0.005	μg/L	1090	PCB 169	0.000006	μ
1705	Manèbe	0.03	μg/L	2542	Monobutyletain cation	0.0025	μg/L	1626	PCB 170	0.0012	μ
6700	Marbofloxacine	0.1	μg/L	1880	Monocrotophos	0.0023		1246	PCB 180	0.0012	μ
2745	MCPA-1-butyl ester	0.005	μg/L	1227	·	0.02	μg/L	5437	PCB 189	0.000012	μ
2746	MCPA-2-ethylhexyl	0.005	μg/L μg/L		Monolinuron		μg/L	1625	PCB 194	0.0012	μ
				7496	Monooctyletain cation	0.001	μg/L	1624	PCB 209	0.005	μ
2747	MCPA-butoxyethyl ester	0.005	μg/L	7497	Monophenyletain cation	0.001	μg/L	1239	PCB 28	0.0012	μ
2748	MCPA-ethyl-ester	0.01	μg/L	1228	Monuron	0.02	μg/L	1886	PCB 31	0.005	μ
2749	MCPA-methyl-ester	0.005	μg/L	6671	Morphine	0.02	μg/L	1240	PCB 35	0.005	μ
5789	Mecarbam	0.005	μg/L	7475	Morpholine	2	μg/L	2031	PCB 37	0.005	μ
1214	Mécoprop	0.02	μg/L	1512	MTBE	0.5	μg/L	1628	PCB 44	0.0012	μ
2870	Mecoprop n isobutyl	0.005	μg/L	6342	Musc xylène	0.1	μg/L	1241	PCB 52	0.0012	μ
2750	Mecoprop-1-octyl ester	0.005	μg/L		,			2048	PCB 54	0.0012	μ
2,30	Mecoprop-2,4,4-	0.003						5803	PCB 66	0.005	μ
2751		0.005	μg/L					1091	PCB 77	0.00006	μ
	trimethylphenyl ester							5432	PCB 81	0.000006	μ

Code SANDRE paramètre	Libellé paramètre	ιQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité
1762	Penconazole	0.02	μg/L	1092	Prosulfocarbe	0.03	μg/L	2085	Sulfosufuron	0.02	μg/L
1887	Pencycuron	0.02	μg/L	2534	Prosulfuron	0.02	μg/L	1894	Sulfotep	0.005	μg/L
1234	Pendiméthaline	0.005	μg/L	5603	Prothioconazole	0.05	μg/L	5831	Sulprofos	0.02	μg/L
6394	Penoxsulam	0.02	μg/L	7442	Proximpham	0.005	μg/L	1193 1694	Taufluvalinate Tébuconazole	0.005	μg/L μg/L
1888	Pentachlorobenzène	0.001	μg/L	5416	Pymétrozine	0.02	μg/L	1895	Tébufénozide	0.02	μg/L
1235	Pentachlorophénol	0.03	μg/L	6611	Pyraclofos	0.005	μg/L	1896	Tébufenpyrad	0.005	μg/L
7670	Pentoxifylline	0.005	μg/L	2576	Pyraclostrobine	0.02	μg/L	7511	Tébupirimfos	0.02	μg/L
6219	Perchlorate	0.1	μg/L	5509	Pyraflufen-ethyl	0.1	μg/L	1661	Tébutame	0.005	μg/L
0219	Perfluorooctanesulfona	0.1	μg/ L	1258	Pyrazophos	0.02	μg/L	1542	Tébuthiuron	0.005	μg/L
6548		0.02	μg/L	6386	Pyrazosulfuron-ethyl	0.005	μg/L	5413	Tecnazène	0.01	μg/L
1522	mide (PFOSA)	0.01	/1	6530	Pyrazoxyfen	0.005	μg/L	1897	Téflubenzuron	0.005	μg/L
1523	Perméthrine	0.01	μg/L	1537	Pyrène	0.005	μg/L	1953	Téfluthrine	0.005	μg/L
7519	Pethoxamide	0.02	μg/L	5826	Pyributicarb	0.005	μg/L	7086	Tembotrione	0.05	μg/L
1499	Phénamiphos	0.005	μg/L	1890	Pyridabène	0.005	μg/L	1898	Téméphos	0.02	μg/L
1524	Phénanthrène	0.005	μg/L	5606	Pyridaphenthion	0.005	μg/L	1659	Terbacile	0.005	μg/L
5420	Phénazone	0.005	μg/L	1259	Pyridate	0.01	μg/L	1266 1267	Terbuméton Terbuphos	0.02	μg/L
1236	Phenmédiphame	0.02	μg/L	1663	Pyrifénox	0.01	μg/L	6963	Terbutaline	0.003	μg/L μg/L
5813	Phenthoate	0.005	μg/L	1432	Pyriméthanil	0.005	μg/L	1268	Terbuthylazine	0.02	μg/L
7708	Phenytoin	0.05	μg/L	1260	Pyrimiphos éthyl	0.02	μg/L	2045	Terbuthylazine déséthyl	0.005	μg/L
1525	Phorate	0.005	μg/L	1261	Pyrimiphos méthyl	0.005	μg/L	2043		0.003	дв/ с
1237	Phosalone	0.005	μg/L	5499	Pyriproxyfène	0.005	μg/L	7150	Terbuthylazine desethyl- 2-hydroxy	0.02	μg/L
1971	Phosmet	0.02	μg/L	7340	Pyroxyrene	0.005	μg/L μg/L	1954	Terbuthylazine hydroxy	0.02	μg/L
1238	Phosphamidon	0.005	μg/L	1891	Quinalphos	0.03	μg/L μg/L	1269	Terbutryne	0.02	μg/L μg/L
1665	Phoxime	0.005	μg/L	2087	·	0.02		5384	Testosterone	0.005	μg/L
1489	Phtalate de diméthyle	0.4	μg/L		Quinmerac		μg/L	1936	Tetrabutyletain	0.00058	μg/L
1708	Piclorame	0.03	μg/L	2028	Quinoxyfen	0.005	μg/L	1270	Tétrachloréthane-1,1,1,2		μg/L
5665	Picolinafen	0.005		1538	Quintozène	0.01	μg/L	1271	Tétrachloréthane-1,1,2,2		μg/L
			μg/L	2069	Quizalofop	0.02	μg/L	1272	Tétrachloréthylène	0.5	μg/L
2669	Picoxystrobine	0.02	μg/L	2070	Quizalofop éthyl	0.1	μg/L	2735	Tétrachlorobenzène	0.02	μg/L
7057	Pinoxaden	0.05	μg/L	6529	Ranitidine	0.005	μg/L	2010	Tétrachlorobenzène-	0.02	μg/L
1709	Piperonil butoxide	0.005	μg/L	1892	Rimsulfuron	0.005	μg/L	1276	Tétrachlorure de C	0.5	μg/L
5819	Piperophos	0.005	μg/L	2029	Roténone	0.005	μg/L	1277	Tétrachlorvinphos	0.005	μg/L
1528	Pirimicarbe	0.02	μg/L	5423	Roxythromycine	0.05	μg/L	1660	Tétraconazole	0.02	μg/L
5531	Pirimicarbe Desmethyl	0.02	μg/L	7049	RS-Iopamidol	0.1	μg/L	6750	Tetracycline	0.1	μg/L
5532	Pirimicarbe Formamido	0.005	ua/I	2974	S Métolachlore	0.1	μg/L	1900	Tétradifon	0.005	μg/L
5532	Desmethyl	0.005	μg/L	6527	Salbutamol	0.005	μg/L	5249	Tétraphénylétain	0.005	μg/L
7668	Piroxicam	0.02	μg/L	1923	Sébuthylazine	0.02	μg/L	5837 1713	Tetrasul Thiabendazole	0.01	μg/L
5821	p-Nitrotoluene	0.15	μg/L	6101	Sebuthylazine 2-hydroxy	0.005	μg/L	5671	Thiacloprid	0.02	μg/L μg/L
6771	Pravastatine	0.02	μg/L	5981	Sebutylazine desethyl	0.005	μg/L	1940	Thiafluamide	0.03	μg/L μg/L
6734	Prednisolone	0.02	μg/L	1262	Secbumeton	0.02	μg/L	6390	Thiamethoxam	0.02	μg/L
1949	Pretilachlore	0.005	μg/L	7724	Sedaxane	0.02	μg/L	1714	Thiazasulfuron	0.05	μg/L
6531	Prilocaine	0.005	μg/L	6769	Sertraline	0.005	μg/L	5934	Thidiazuron	0.02	μg/L
6847	Pristinamycine IIA	0.003	μg/L	1808	Séthoxydime	0.02	μg/L	7517	Thiencarbazone-methyl	0.03	μg/L
	·			1893	Siduron	0.005	μg/L	1913	Thifensulfuron méthyl	0.02	μg/L
1253	Prochloraze	0.001	μg/L	5609	Silthiopham	0.02	μg/L	7512	Thiocyclam hydrogen	0.01	μg/L
1664	Procymidone	0.005	μg/L	1539	Silvex	0.02	μg/L	1093	Thiodicarbe	0.02	μg/L
1889	Profénofos	0.005	μg/L	1263	Simazine	0.005	μg/L	1715	Thiofanox	0.05	μg/L
5402	Progesterone	0.02	μg/L	1831	Simazine hydroxy	0.02	μg/L	5476	Thiofanox sulfone	0.02	μg/L
1710	Promécarbe	0.005	μg/L	5477	Simétryne	0.005	μg/L	5475	Thiofanox sulfoxyde	0.02	μg/L
1711	Prométon	0.005	μg/L		somme de			2071	Thiométon	0.005	μg/L
1254	Prométryne	0.02	μg/L	5855	Méthylphénol-3 et de	0.05	μg/L	5838 7514	Thionazin Thionhanate-ethyl	0.05	μg/L
1712	Propachlore	0.01	μg/L		Somme du 1,2,3,5			7514 1717	Thiophanate-ethyl Thiophanate-méthyl	0.05	μg/L μg/L
6398	Propamocarb	0.02	μg/L	6326	tetrachlorobenzene et1,	0.02	μg/L	1717	Thirame	0.03	μg/L μg/L
1532	Propanil	0.005	μg/L		Somme du			6524	Ticlopidine	0.01	μg/L
6964	Propaphos	0.005	μg/L	3336	Dichlorophenol-2,4 et du	0.02	μg/L	7965	Timolol	0.005	μg/L
1972	Propaquizafop	0.02	μg/L	5424		0.005	ua/I	5922	Tiocarbazil	0.005	μg/L
1255	Propargite	0.005	μg/L	5610	Sotalol Spinosad	0.005	μg/L μg/L	5675	Tolclofos-methyl	0.005	μg/L
1256	Propazine	0.02	μg/L					1278	Toluène	0.5	μg/L
5968	Propazine 2-hydroxy	0.02	μg/L	7506	Spirotetramat	0.02	μg/L	1719	Tolylfluanide	0.005	μg/L
1533	Propétamphos	0.005	μg/L μg/L	2664	Spiroxamine	0.02	μg/L	6720	Tramadol	0.005	μg/L
		0.003		3160	s-Triazin-2-ol, 4-amino-6-	0.05	μg/L	1544	Triadiméfon	0.005	μg/L
1534	Prophame		μg/L		(ethylamino)-			1280	Triadiménol	0.02	μg/L
1257	Propiconazole	0.005	μg/L	1541	Styrène	0.5	μg/L				
1535	Propoxur	0.02	μg/L	1662	Sulcotrione	0.03	μg/L				
5602	Propoxycarbazone-	0.02	μg/L	6525	Sulfamethazine	0.005	μg/L				
5363	Propranolol	0.005	μg/L	6795	Sulfamethizole	0.005	μg/L				
1837	Propylbenzène	0.5	μg/L	5356	Sulfamethoxazole	0.005	μg/L				
6214	Propylene thiouree	0.5	μg/L	6575	Sulfaquinoxaline	0.05	μg/L				
6693	Propylparaben	0.01	μg/L	6572	Sulfathiazole	0.005	μg/L				
5421	Propyphénazone	0.005	μg/L	5507	Sulfomethuron-methyl	0.005	μg/L				
1414	Propyzamide	0.005	μg/L	6555	Sulfonate de	0.00	, ,				
				6561	perfluorooctane	0.02	μg/L	1			

	-		
Code			
SANDRE	Libellé paramètre	LQ	Unité
paramètre			
1281	Triallate	0.02	μg/L
1914	Triasulfuron	0.02	μg/L
1901	Triazamate	0.005	μg/L
1657	Triazophos	0.005	μg/L
2064	Tribenuron-Methyle	0.02	μg/L
5840	Tributyl phosphorotrithioite	0.02	μg/L
2879	Tributyletain cation	0.0002	μg/L
1847	Tributylphosphate	0.005	μg/L
1288	Trichlopyr	0.02	μg/L
1284	Trichloréthane-1,1,1	0.05	μg/L
1285	Trichloréthane-1,1,2	0.25	μg/L
1286	Trichloréthylène	0.5	μg/L
1630	Trichlorobenzène-1,2,3	0.05	μg/L
1283	Trichlorobenzène-1,2,4	0.05	μg/L
1629	Trichlorobenzène-1,3,5	0.05	μg/L
1195	Trichlorofluorométhane	0.05	μg/L
1548	Trichlorophénol-2,4,5	0.05	μg/L
1549	Trichlorophénol-2,4,6	0.05	μg/L
1854	Trichloropropane-1,2,3	0.5	μg/L
	Trichlorotrifluoroéthane-1,1,2		μg/L
6989	Triclocarban	0.005	μg/L
5430	Triclosan	0.05	μg/L
2898	Tricyclazole	0.02	μg/L
2885	Tricyclohexyletain cation	0.0005	μg/L
5842	Trietazine	0.005	μg/L
6102	Trietazine 2-hydroxy	0.005	μg/L
5971	Trietazine desethyl	0.005	μg/L
2678	Trifloxystrobine	0.02	μg/L
1902	Triflumuron	0.02	μg/L
1289	Trifluraline	0.005	μg/L
2991	Triflusulfuron-methyl	0.005	μg/L
1802	Triforine	0.005	μg/L
6732	Trimetazidine	0.005	μg/L
5357	Trimethoprime	0.005	μg/L
1857	Triméthylbenzène-1,2,3	1	μg/L
1609	Triméthylbenzène-1,2,4	1	μg/L
1509	Triméthylbenzène-1,3,5	1	μg/L
2096	Trinexapac-ethyl	0.02	μg/L
2886	Trioctyletain cation	0.0005	μg/L
6372	Triphenyletain cation	0.00059	μg/L
2992	Triticonazole	0.02	μg/L
7482	Uniconazole	0.005	μg/L
1290	Vamidothion	0.005	μg/L
1291	Vinclozoline	0.005	μg/L
1293	Xylène-meta	0.5	μg/L
1292	Xylène-ortho	0.5	μg/L
1294	Xylène-para	1	μg/L
1722	Zirame	100	μg/L
5376	Zolpidem	0.005	μg/L
2858	Zoxamide	0.02	μg/L

Annexe 2. LISTE DES MICROPOLLUANTS ANALYSES SUR SEDIMENT

Code	Paramètre	LQ	Unité
SANDRE			44>
1370	Aluminium	5	mg/(kg MS)
1376	Antimoine	0.2	mg/(kg MS)
1368	Argent	0.1	mg/(kg MS)
1369	Arsenic	0.2	mg/(kg MS)
1396	Baryum	0.4	mg/(kg MS)
1377	Beryllium	0.2	mg/(kg MS)
1362	Bore	1	mg/(kg MS)
1388	Cadmium	0.1	mg/(kg MS)
1389	Chrome	0.2	mg/(kg MS)
1379	Cobalt	0.2	mg/(kg MS)
1392	Cuivre	0.2	mg/(kg MS)
1380	Etain	0.2	mg/(kg MS)
1393	Fer	5	mg/(kg MS)
1364	Lithium	0.2	mg/(kg MS)
1394	Manganèse	0.4	mg/(kg MS)
1387	Mercure	0.01	mg/(kg MS)
1395	Molybdène	0.2	mg/(kg MS)
1386	Nickel	0.2	mg/(kg MS)
1382	Plomb	0.2	mg/(kg MS)
1385	Sélénium	0.2	mg/(kg MS)
2559	Tellure	0.2	mg/(kg MS)
2555	Thallium	0.2	mg/(kg MS)
1373	Titane	1	mg/(kg MS)
1361	Uranium	0.2	mg/(kg MS)
1384	Vanadium	0.2	mg/(kg MS)
1383	Zinc	0.4	mg/(kg MS)
6536		10	G: 1 G ,
5474	4-Methylbenzylidene camphor	40	μg/(kg MS)
	4-n-nonylphénol		μg/(kg MS)
6369	4-nonylphenol diethoxylate (mélange d'is	15	μg/(kg MS)
1958	4-nonylphénols ramifiés	40	μg/(kg MS)
7101	4-sec-Butyl-2,6-di-tert-butylphenol	20	μg/(kg MS)
2610	4-tert-butylphénol	40	μg/(kg MS)
1959	4-tert-octylphénol	40	μg/(kg MS)
1453	Acénaphtène	10	μg/(kg MS)
1622	Acénaphtylène	10	μg/(kg MS)
1903	Acétochlore	4	μg/(kg MS)
6509	Acide perfluoro-decanoïque (PFDA)	50	μg/(kg MS)
6830	Acide perfluorohexanesulfonique (PFHS)	50	μg/(kg MS)
5978	Acide perfluoro-n-hexanoïque (PFHxA)	50	μg/(kg MS)
6560	Acide perfluorooctanesulfonique (PFOS)	5	μg/(kg MS)
5347	Acide perfluoro-octanoïque (PFOA)	50	μg/(kg MS)
1688	Aclonifen	20	μg/(kg MS)
1103	Aldrine	20	μg/(kg MS)
6651	alpha-Hexabromocyclododecane	10	μg/(kg MS)
1812	Alphaméthrine	4	μg/(kg MS)
7102	Anthanthrene	10	μg/(kg MS)
1458	Anthracène	10	μg/(kg MS)
2013	Anthraquinone	4	μg/(kg MS)
1951	Azoxystrobine	10	μg/(kg MS)
5989	BDE 196	10	μg/(kg MS)
5990	BDE 197	10	μg/(kg MS)
5991	BDE 198	10	μg/(kg MS)
5986	BDE 203	10	μg/(kg MS)
5996	BDE 204	10	μg/(kg MS)
5997	BDE 205	10	μg/(kg MS)
2915	BDE 203	10	μg/(kg MS)
2913	BDE138	10	μg/(kg MS)
2912	BDE153	10	μg/(kg MS)
2912		10	μg/(kg lvis) μg/(kg MS)
	BDE154		
2910	BDE183	10	μg/(kg MS)
1815	BDE209	5	μg/(kg MS)
2920	BDE28	10	μg/(kg MS)
	BDE47	10	μg/(kg MS)
2919 7437	BDE47 BDE77	10	μg/(kg MS)

	erranee ei Corse – Sainte Crotx (04)		
Code SANDRE	Paramètre	LQ	Unité
2916	BDE99	10	μg/(kg
1114	Benzène	5	μg/(kg
1607	Benzidine	100	μg/(kg
1082	Benzo (a) Anthracène	10	μg/(kg
1115	Benzo (a) Pyrène	10	μg/(kg
1116	Benzo (b) Fluoranthène	10	μg/(kg
1118	Benzo (ghi) Pérylène	10	μg/(kg N
1117	Benzo (k) Fluoranthène	10	μg/(kg
1924	Benzyl butyl phtalate	100	μg/(kg
6652	beta-Hexabromocyclododecane	10	μg/(kg
1119	Bifénox	50	μg/(kg
1584	Biphényle	20	μg/(kg
1122	Bromoforme	5	μg/(kg
1464	Chlorfenvinphos	20	μg/(kg
1134	Chlorméphos	10	μg/(kg N
1955	Chloroalcanes C10-C13	2000	μg/(kg N
1593	Chloroaniline-2	50	μg/(kg
1467	Chlorobenzène	10	μg/(kg
1135	Chloroforme (Trichlorométhane)	5	μg/(kg
1635	Chlorométhylphénol-2,5	50	μg/(kg
1636	Chlorométhylphénol-4,3	50	μg/(kg N
1469	Chloronitrobenzène-1,2	20	μg/(kg N
1468	Chloronitrobenzène-1,3	20	μg/(kg
1470	Chloronitrobenzène-1,4	20	μg/(kg
1471	Chlorophénol-2	50	μg/(kg
1651	Chlorophénol-3	50	μg/(kg N
1650	Chlorophénol-4	50	μg/(kg
2611	Chloroprène	20	μg/(kg
2065	Chloropropène-3	5	μg/(kg
1602	Chlorotoluène-2	5	μg/(kg
1601	Chlorotoluène-3	5	μg/(kg N
1600	Chlorotoluène-4	5	μg/(kg
1474	Chlorprophame	4	μg/(kg
1083	Chlorpyriphos éthyl	10	μg/(kg
1540	Chlorpyriphos méthyl	20	μg/(kg
1476	Chrysène	10	μg/(kg
2017	Clomazone	4	μg/(kg
5360	Clotrimazole	100	μg/(kg
1639	Crésol-méta	50	μg/(kg
1640	Crésol-ortho	50	μg/(kg
1638	Crésol-para	50	μg/(kg
1140	Cyperméthrine	20	μg/(kg
1680	Cyproconazole	10	μg/(kg
1359	Cyprodinil	2	μg/(kg
1143	DDD-o,p'	5	μg/(kg
1144	DDD-p,p'	5	μg/(kg
1145	DDE-o,p'	5	μg/(kg
1146	DDE-p,p'	5	μg/(kg
1147	DDT-o,p'	5	μg/(kg
1148	DDT-p,p'	5	μg/(kg
6616	DEHP	100	μg/(kg
1149	Deltaméthrine	2	μg/(kg
1157	Diazinon	25	μg/(kg N
1621	Dibenzo (ah) Anthracène	10	μg/(kg
1158	Dibromochlorométhane	5	μg/(kg
1498	Dibromoéthane-1,2	5	μg/(kg N
7074	Dibutyletain cation	10	μg/(kg N
1160	Dichloréthane-1,1	10	μg/(kg
1161	Dichloréthane-1,2	10	μg/(kg
1162	Dichloréthylène-1,1	10	μg/(kg
1456	Dichloréthylène-1,2 cis	10	μg/(kg
1727	Dichlorethylène-1,2 trans	10	μg/(kg
1589	Dichloroaniline-2,4	50	μg/(kg
1588	Dichloroaniline-2,5	50	μg/(kg N
1165	Dichlorobenzène-1,2	10	μg/(kg
1164 1166	Dichlorobenzène-1,3 Dichlorobenzène-1,4	10 10	μg/(kg N μg/(kg N
		101	110/(KO

Code	Paramètre	LQ	Unité
SANDRE 1167	Dichlorobromométhane	5	μg/(kg MS
1168	Dichlorométhane	10	μg/(kg MS
1617	Dichloronitrobenzène-2,3	50	μg/(kg MS
1616	· · · · · · · · · · · · · · · · · · ·	50	μg/(kg MS
	Dichloronitrobenzène-2,4		
1615	Dichloronitrobenzène-2,5	50	μg/(kg MS
1614	Dichloronitrobenzène-3,4	50	μg/(kg MS
1613	Dichloronitrobenzène-3,5	50	μg/(kg MS
1645	Dichlorophénol-2,3	50	μg/(kg MS
1486	Dichlorophénol-2,4	50	μg/(kg MS
1649	Dichlorophénol-2,5	50	μg/(kg MS
1648	Dichlorophénol-2,6	50	μg/(kg MS
1647	Dichlorophénol-3,4	50	μg/(kg MS
1646	Dichlorophénol-3,5	50	μg/(kg MS
1655	Dichloropropane-1,2	10	μg/(kg MS
1654	Dichloropropane-1,3	10	μg/(kg MS
2081	Dichloropropane-2,2	10	μg/(kg MS
2082	Dichloropropène-1,1	10	μg/(kg MS
1834	Dichloropropylène-1,3 Cis	10	μg/(kg MS
1835	Dichloropropylène-1,3 Trans	10	μg/(kg MS
	1 11		
1653	Dichloropropylène-2,3	10	μg/(kg MS
1170	Dichlorvos	30	μg/(kg MS
1172	Dicofol	20	μg/(kg MS
1173	Dieldrine	20	μg/(kg MS
1814	Diflufénicanil	10	μg/(kg MS
5325	Diisobutyl phthalate	100	μg/(kg MS
6658	Diisodecyl phthalate	10000	μg/(kg MS
6215	Diisononyl phtalate	5000	μg/(kg MS
1403	Diméthomorphe	10	μg/(kg MS
1641	Diméthylphénol-2,4	50	μg/(kg MS
1578	Dinitrotoluène-2,4	50	μg/(kg MS
		_	
1577	Dinitrotoluène-2,6	50	μg/(kg MS
7494	Dioctyletain cation	102	μg/(kg MS
7495	Diphenyletain cation	11.5	μg/(kg MS
1178	Endosulfan alpha	20	μg/(kg MS
1179	Endosulfan beta	20	μg/(kg MS
1742	Endosulfan sulfate	20	μg/(kg MS
1181	Endrine	20	μg/(kg MS
1744	Epoxiconazole	10	μg/(kg MS
5397	Estradiol	20	μg/(kg MS
1497	Ethylbenzène	5	μg/(kg MS
2629	Ethynyl estradiol	20	μg/(kg MS
1187	Fénitrothion	10	μg/(kg MS
2022		4	μg/(kg M
	Fludioxonil		
1191	Fluoranthène	10	μg/(kg MS
1623	Fluorène	10	μg/(kg M
2547	Fluroxypyr-meptyl	20	μg/(kg MS
1194	Flusilazole	20	μg/(kg MS
6618	Galaxolide	100	μg/(kg MS
6653	gamma-Hexabromocyclododecane	10	μg/(kg MS
1200	HCH alpha	10	μg/(kg MS
1201	HCH beta	10	μg/(kg MS
1202	HCH delta	10	μg/(kg MS
2046	HCH epsilon	10	μg/(kg MS
1203	•	10	μg/(kg MS
	HCH gamma		
1197	Heptachlore	10	μg/(kg MS
1748	Heptachlore époxyde cis	10	μg/(kg MS
1749	Heptachlore époxyde trans	10	μg/(kg MS
1199	Hexachlorobenzène	10	μg/(kg MS
1652	Hexachlorobutadiène	10	μg/(kg MS
1656	Hexachloroéthane	1	μg/(kg MS
1405	Hexaconazole	10	μg/(kg MS
1204	Indéno (123c) Pyrène	10	μg/(kg MS
1206	Iprodione	10	μg/(kg MS
7129	•	20	
	Irganox 1076		μg/(kg MS
1935	Irgarol (Cybutryne)	10	μg/(kg MS
1207	Isodrine	4	μg/(kg MS
1633	Isopropylbenzène	5	μg/(kg MS
1950	Kresoxim méthyl	10	μg/(kg MS

Knone-we	allerrance el Corse – Saime Croix (C	77)	
Code SANDRE	Paramètre	LQ	Unité
1094	Lambda Cyhalothrine	10	μg/(kg MS)
6664	Methyl triclosan	20	μg/(kg MS)
1619	Méthyl-2-Fluoranthène	10	μg/(kg MS)
1618	Méthyl-2-Naphtalène	10	μg/(kg MS)
2542	Monobutyletain cation	75	μg/(kg MS)
7496	Monooctyletain cation	40	μg/(kg MS)
7497	Monophenyletain cation	41.5	μg/(kg MS)
1517	Naphtalène	25	μg/(kg MS)
1519	Napropamide	10	μg/(kg MS)
1462	n-Butyl Phtalate	100	μg/(kg MS)
1637	Nitrophénol-2	50	μg/(kg MS)
6598	Nonylphénols linéaire ou ramifiés	40	μg/(kg MS)
1669	Norflurazon	4	μg/(kg MS)
2609	Octabromodiphénylether	10	μg/(kg MS)
6686	Octocrylene	100	μg/(kg MS)
1667	Oxadiazon	10	μg/(kg MS)
1952	Oxyfluorfène	10	μg/(kg MS)
1920	p-(n-octyl)phénol	40	μg/(kg MS)
1232	Parathion éthyl	20	μg/(kg MS)
1242	PCB 101	1	μg/(kg MS)
1627	PCB 105	1	μg/(kg MS)
5433	PCB 114	1	μg/(kg MS)
1243	PCB 118	1	μg/(kg MS)
5434	PCB 123	1	μg/(kg MS)
1089	PCB 126	1	μg/(kg MS)
1244	PCB 138	1	μg/(kg MS)
1885	PCB 149	1	μg/(kg MS)
1245	PCB 153	1	μg/(kg MS)
2032 5435	PCB 156	1	μg/(kg MS)
5436	PCB 157	1	μg/(kg MS)
1090	PCB 167 PCB 169	1	μg/(kg MS) μg/(kg MS)
1626	PCB 169	1	μg/(kg MS)
1246	PCB 170	1	μg/(kg MS)
5437	PCB 180	1	μg/(kg MS)
1625	PCB 194	1	μg/(kg MS)
1624	PCB 209	1	μg/(kg MS)
1239	PCB 28	1	μg/(kg MS)
1886	PCB 31	1	μg/(kg MS)
1240	PCB 35	1	μg/(kg MS)
1628	PCB 44	1	μg/(kg MS)
1241	PCB 52	1	μg/(kg MS)
1091	PCB 77	1	μg/(kg MS)
5432	PCB 81	1	μg/(kg MS)
1234	Pendiméthaline	10	μg/(kg MS)
1888	Pentachlorobenzène	5	μg/(kg MS)
1235	Pentachlorophénol	50	μg/(kg MS)
1523	Perméthrine	5	μg/(kg MS)
1524	Phénanthrène	10	μg/(kg MS)
1664	Procymidone	10	μg/(kg MS)
1414	Propyzamide	10	μg/(kg MS)
1537	Pyrène	10	μg/(kg MS)
2028	Quinoxyfen	10	μg/(kg MS)
7128	Somme de 3 Hexabromocyclododecanes	10	μg/(kg MS)
1662	Sulcotrione	10	μg/(kg MS)
6561	Sulfonate de perfluorooctane	5	μg/(kg MS)
1694	Tébuconazole	10	μg/(kg MS)
1661	Tébutame Terbuthylazine	4	μg/(kg MS)
1268 1269	Terbutryne	10 4	μg/(kg MS) μg/(kg MS)
1936	Tetrabutyletain	15	μg/(kg MS)
1270	Tétrachloréthane-1,1,1,2	5	μg/(kg MS)
1271	Tétrachloréthane-1,1,2,2	10	μg/(kg MS)
1271	Tétrachloréthylène	5	μg/(kg MS)
16/6	rendemotentylene	, ,	MP/ (WE 1412)

Code SANDRE	Paramètre	LQ	Unité
2010	Tétrachlorobenzène-1,2,3,4	10	μg/(kg MS)
2536	Tétrachlorobenzène-1,2,3,5	10	μg/(kg MS)
1631	Tétrachlorobenzène-1,2,4,5	10	μg/(kg MS)
1273	Tétrachlorophénol-2,3,4,5	50	μg/(kg MS)
1274	Tétrachlorophénol-2,3,4,6	50	μg/(kg MS)
1275	Tétrachlorophénol-2,3,5,6	50	μg/(kg MS)
1276	Tétrachlorure de C	5	μg/(kg MS)
1660	Tétraconazole	10	μg/(kg MS)
5921	Tetramethrin	40	μg/(kg MS)
1278	Toluène	5	μg/(kg MS)
2879	Tributyletain cation	25	μg/(kg MS)
1847	Tributylphosphate	4	μg/(kg MS)
1288	Trichlopyr	10	μg/(kg MS)
1284	Trichloréthane-1,1,1	5	μg/(kg MS)
1285	Trichloréthane-1,1,2	5	μg/(kg MS)
1286	Trichloréthylène	5	μg/(kg MS)
2732	Trichloroaniline-2,4,5	50	μg/(kg MS)
1595	Trichloroaniline-2,4,6	50	μg/(kg MS)
1630	Trichlorobenzène-1,2,3	10	μg/(kg MS)
1283	Trichlorobenzène-1,2,4	10	μg/(kg MS)
1629	Trichlorobenzène-1,3,5	10	μg/(kg MS)
1195	Trichlorofluorométhane	1	μg/(kg MS)
1644	Trichlorophénol-2,3,4	50	μg/(kg MS)
1643	Trichlorophénol-2,3,5	50	μg/(kg MS)
1642	Trichlorophénol-2,3,6	50	μg/(kg MS)
1548	Trichlorophénol-2,4,5	50	μg/(kg MS)
1549	Trichlorophénol-2,4,6	50	μg/(kg MS)
1723	Trichlorophénol-3,4,5	50	μg/(kg MS)
6506	Trichlorotrifluoroethane	5	μg/(kg MS)
6989	Triclocarban	20	μg/(kg MS)
2885	Tricyclohexyletain cation	15	μg/(kg MS)
1289	Trifluraline	10	μg/(kg MS)
2886	Trioctyletain cation	100	μg/(kg MS)
6372	Triphenyletain cation	15	μg/(kg MS)
1293	Xylène-meta	2	μg/(kg MS)
1292	Xylène-ortho	2	μg/(kg MS)
1294	Xylène-para	2	μg/(kg MS)
1780	Xylènes (o,m,p)	2	μg/(kg MS)

Annexe 3. COMPTES RENDUS DES CAMPAGNES PHYSICO-CHIMIQUES ET PHYTOPLANCTONIQUES

DONNEES GENERALES PLAN D'EAU

Plan d'eau : **Sainte Croix** Date: 26/03/2019 Artificiel Code lac: X2--3003 Types (naturel, artificiel ...): Ingrid Mathieu Campagne: 1 Organisme / opérateur : STE : Lionel Bochu & Organisme demandeur : Marché n°: 160000037 Agence de l'Eau RMC

Page 1/6

LOCALISATION PLAN D'EAU

Commune: Sainte Croix du Verdon Type: Lac marnant : retenues de moyenne montagne, calcaire, profondes oui

Temps de séjour : 280 jours 2203 ha Superficie du plan d'eau : Profondeur maximale:

Carte (extrait SCAN 25 IGN 1/25 000)

STATION

Photo du site :

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES GEN	ERALES PLAN D'EAU	
Plan d'eau:	Sainte Croix	Date : 26/03/19
Types (naturel, artific	iel): Artificiel	Code lac: X23003
Organisme / opérateu		Campagne: 1
Organisme demander	r: Agence de l'Eau RMC	Marché n°: 160000037
	CTT L TY CAY	Page 2/6
6 1 (11 (STATION	
Coordonnée de la sta	ion : Système de Géolocalisation	Portable
Lambert 93:	X: 952974 Y:	6298202 alt.: 477 m
WGS 84 (syst.interna		3°44'15,17" N
Profondeur:	71 m	
Météo :	✓ 1- temps sec ensoleillé	· = ·
	☐ 7- gel ☐ 8- fortement nu	
P atm. :	961 hPa	
Vent :	☐ 0- nul ☑ 1- faible ☐ 2- moyen ☐ 3- fort	
Conditions d'observa	ion :	
Surface de l'eau :	☐ 1- lisse ☑ 2- faiblement agitée ☐ 3- agitée ☐ 4	- très agitée
Hauteur de vagues :	0.05 m	
Bloom algal:	NON	
Marnage:	OUI Hauteur de bande : 3.4 m	Cote échelle : 473.6 m
Campagne 1	campagne de fin d'hiver : homothermie du plan d' biologique	'eau avant démarrage de l'activité
	REMARQUES ET OBSERVATIONS	
Contact préalable :	EDF -GEH Durance à Ste Tulle Préfecture des Alpes-de-Haute-Provence	
Observation:	Zone pour le de prélèvement de fond en amont du pont l Léger décalage entre le le prélèvement et le profil (légèr	
Remarques:	Navigation de plus de 2.5 km en moteur électrique	

DONNEES GENE	CRALES PLAN D'EAU	
Plan d'eau :	Sainte Croix Date :	26/03/19
Types (naturel, artificiel	d): Code lac	: X23003
Organisme / opérateur :	: STE : Lionel Bochu & Ingrid Mathieu Campa	gne:1
Organisme demandeur	: Agence de l'Eau RMC Marché i	n°: 160000037
	PRELEVEMENTS ZONE EUPHOTIQUE	Page 3/6
	TREBETEMENTO BOND BOTTO TIQUE	
Prélèvement pour ana	alyses physico-chimiques et phytoplancton	
Heure de relevé :	15:00	
Profondeur :	0 à 30 m	
Volume prélevé :	8 L Nbre de prélèvements : 3	
Matériel employé :	35 m de tuyau intégrateur	
Chlorophylle:	OUI Volume filtré sur place : 1000 ml	
Phytoplancton:	OUI Ajout de lugol : 5 ml	
Prélèvement pour ana	alyses micropolluants	OUI
pour una		
Heure de relevé :	15:00	
Profondeur:	0 à 30 m	
Prélèvement :	1 pvlt tous les 3 m	
Volume prélevé :	13 L Nbre de prélèvements : 11	
Matériel employé :	Bouteille téflon 1,2L	
Materiel employe:	PRELEVEMENTS DE FOND	OUI
		OUI
	PRELEVEMENTS DE FOND alyses physico-chimiques	
Prélèvement pour ana	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants	OUI
Prélèvement pour ana	PRELEVEMENTS DE FOND alyses physico-chimiques	OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé :	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants 14:00	OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur :	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants 14:00 70 m	OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Volume prélevé :	PRELEVEMENTS DE FOND Alyses physico-chimiques Alyses micropolluants 14:00 70 m 17 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L	OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Volume prélevé : Matériel employé : Remarques prélèvement :	PRELEVEMENTS DE FOND Alyses physico-chimiques Alyses micropolluants 14:00 70 m 17 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L	OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Volume prélevé : Matériel employé : Remarques prélèvement : Zone de plus grande proj	PRELEVEMENTS DE FOND Alyses physico-chimiques Alyses micropolluants 14:00 70 m 17 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L Section 14:00 months of the prélèvements in the prélèvements in the prélèvement in the	OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Volume prélevé : Matériel employé : Remarques prélèvement : Zone de plus grande proj	PRELEVEMENTS DE FOND Alyses physico-chimiques Alyses micropolluants 14:00 70 m 17 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L	OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Volume prélevé : Matériel employé : Remarques prélèvement : Zone de plus grande proj	PRELEVEMENTS DE FOND Alyses physico-chimiques Alyses micropolluants 14:00 70 m 17 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L Section 14:00 months of the prélèvements in the prélèvements in the prélèvement in the	OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Volume prélevé : Matériel employé : Remarques prélèvement : Zone de plus grande proj	PRELEVEMENTS DE FOND Alyses physico-chimiques Alyses micropolluants 14:00 70 m 17 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L Section 14:00 months of the prélèvements in the prélèvements in the prélèvement in the	OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Matériel employé : Remarques prélèvement : Zone de plus grande proj Pas de profil FDOM suit	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants 14:00 70 m 17 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L fondeur très étroite. te à un dysfonctrionnement de la sonde YSI REMISE DES ECHANTILLONS	OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Matériel employé : Remarques prélèvement : Zone de plus grande proj Pas de profil FDOM suit Code prélèvement zone e	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants 14:00 70 m 17 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L fondeur très étroite. te à un dysfonctrionnement de la sonde YSI REMISE DES ECHANTILLONS suphotique: 624485 Bon de transport : 6913423500	OUI OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Matériel employé : Remarques prélèvement : Zone de plus grande proj Pas de profil FDOM suit	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants 14:00 70 m 17 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L fondeur très étroite. te à un dysfonctrionnement de la sonde YSI REMISE DES ECHANTILLONS suphotique: 624485 Bon de transport : 6913423500	OUI OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Volume prélevé : Matériel employé : Remarques prélèvement : Zone de plus grande proj Pas de profil FDOM suit Code prélèvement zone e Code prélèvement de fonc	PRELEVEMENTS DE FOND alyses physico-chimiques 14:00 70 m 17 L Bouteille téflon 5,3 L fondeur très étroite. te à un dysfonctrionnement de la sonde YSI REMISE DES ECHANTILLONS suphotique: 624485; Bon de transport: 6913423500. d : 624537; Bon de transport: 6913423500.	OUI OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Matériel employé : Remarques prélèvement : Zone de plus grande proj Pas de profil FDOM suit Code prélèvement zone e	PRELEVEMENTS DE FOND Alyses physico-chimiques Alyses micropolluants 14:00 70 m 17 L Bouteille téflon 5,3 L Fondeur très étroite. te à un dysfonctrionnement de la sonde YSI REMISE DES ECHANTILLONS PREMISE DES ECHANTILLON	OUI OUI

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES PHYSICO-CHIMIQUES

 Plan d'eau :
 Sainte Croix
 Date :
 26/03/19

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 X2--3003

Organisme / opérateur : STE : Lionel Bochu & Ingrid Mathieu Campagne : 1

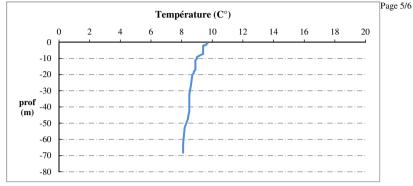
Organisme demandeur : Agence de l'Eau RMC Marché n° : 160000037
Page 4/6

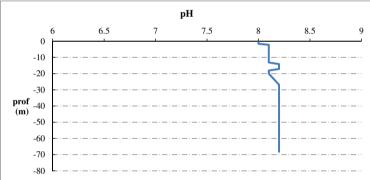
TRANSPARENCE

Disque Secchi = 12 m Zone euphotique (x 2,5 secchi) =	30 n
---	------

PROFIL VERTICAL

Type de pvlt	Prof.	Temp	pН	Cond.	O2	02	Matières organiques dissoutes	Heure
	(m)	(° C)		(μS/cm 25°)	(%)	(mg/l)	ppb	
	-0.4	9.7	8	399	100	10.8		15:00
	-1.6	9.6	8	397	100	10.8		
	-2.2	9.4	8.1	399	100	10.8		
	-3.1	9.4	8.1	399	100	10.8		
	-4.1	9.4	8.1	399	100	10.8		
	-5.1	9.4	8.1	399	100	10.8		
	-6.1	9.4	8.1	399	100	10.8		
	-7.2	9.4	8.1	399	100	10.8		
	-8.1	9.2	8.1	398	100	10.8		
	-9.2	9	8.1	398	99	10.8		
Prélèvement	-10.1	9	8.1	398	99	10.9		
de la zone	-11.1	8.9	8.1	398	99	10.9		
euphotique	-12.1	8.9	8.1	398	99	10.8		
	-13.1	8.9	8.1	398	99	10.9	Pas de profil	
	-14.1	8.9	8.2	398	99	10.9	FDOM	
	-15.1	8.9	8.2	398	99	10.8	FDOM	
	-16.1	8.9	8.2	398	99	10.9		
	-17.1	8.9	8.2	398	99	10.9		
	-18.1	8.8	8.1	397	99	10.8		
	-19.1	8.8	8.1	398	99	10.9		
	-20	8.7	8.1	397	98	10.8		
	-26.9	8.6	8.2	397	98	10.9		
	-32.3	8.5	8.2	398	98	10.8		
	-37.5	8.5	8.2	398	97	10.8		:
	-42.5	8.5	8.2	398	97	10.8		:
	-42.5 -47.6	8.4	8.2	398	96	10.7		
	-52.7	8.2	8.2	398	95	10.6		
	-62.7	8.1	8.2	397	95	10.6		 !
Pvlt de fond	-68.2	8.1	8.2	396	95	10.6		14:00
						:		:
		:						
						 !		


DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE

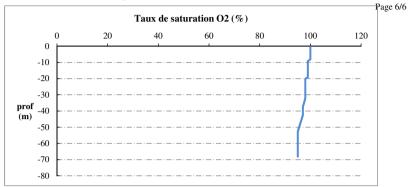

 Plan d'eau :
 Sainte Croix
 Date :
 26/03/19

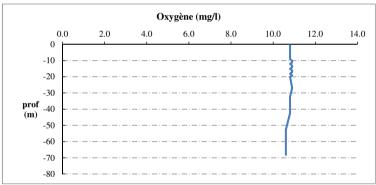

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 X2-3003

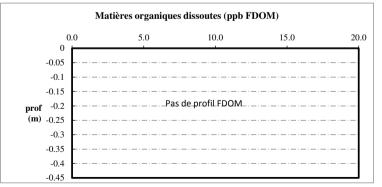
 Organisme / opérateur :
 STE : Lionel Bochu & Ingrid Mathieu
 Campagne : 1

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

Relevé phytoplanctonique et physico-chimique en plan d'eau


DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE


 Plan d'eau :
 Sainte Croix
 Date :
 26/03/19


 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 X2--3003

 Organisme / opérateur :
 STE : Lionel Bochu & Ingrid Mathieu
 Campagne : 1

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

DONNEES GENERALES PLAN D'EAU

 Plan d'eau :
 Sainte Croix
 Date :
 04/06/2019

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 X2--3003

 Organisme / opérateur :
 STE : Aurélien Morin & Ingrid Mathieu
 Campagne : 2

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

Page 1/6

LOCALISATION PLAN D'EAU

Commune: Sainte Croix du Verdon oui retenues de moyenne montagne, calcaire, profondes

Temps de séjour: 280 jours

Superficie du plan d'eau: 2203 ha

Profondeur maximale: 83 m

Carte (extrait SCAN 25 IGN 1/25 000)

Photo du site :

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES GENE	RALES PLAN D'EAU
Plan d'eau :	Sainte Croix Date: 04/06/19
Types (naturel, artificiel): Code lac: X23003
Organisme / opérateur :	STE : Aurélien Morin & Ingrid Mathieu Campagne : 2
Organisme demandeur :	Agence de l'Eau RMC Marché n°: 160000037
	Page 2/6
	STATION
Coordonnée de la station	Système de Géolocalisation Portable Carte IGN
Lambert 93 :	X: 952981 Y: 6298204 alt.: 477 m
WGS 84 (syst.internatio	,,,
Profondeur:	70.3 m
	1- temps sec ensoleillé
P atm. :	960 hPa:
Vent :	0- nul
Conditions d'observation Surface de l'eau :	n : 1 - lisse
Hauteur de vagues :	0.1 m
Bloom algal:	NON
Marnage:	OUI Hauteur de bande : 3.5 m Côte échelle : 473.45 m
Campagne 2	campagne printanière de croissance du phytoplancton : mise en place de la thermocline
	REMARQUES ET OBSERVATIONS
Contact préalable :	EDF -GEH Durance à Ste Tulle Préfecture des Alpes-de-Haute-Provence
Observation :	
Remarques :	Les mesures des sondes ont été effectuées la veille des prélèvements (03/06/19) Début de stratification thermique.

DONNEES GENERALES PLAN D'EAU

Plan d'eau : Types (naturel, artificie		Date: 04/06/19 Code lac: X23003
Organisme / opérateur : Organisme demandeur	STE : Aurélien Morin & Ingrid Mathieu	Campagne : 2 Marché n° : 160000037 Page 3/6
	PRELEVEMENTS ZONE EUPHOTIQUE	Tage 5/6
Prélèvement pour ans	alyses physico-chimiques et phytoplancton	
Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	14:20 0 à 20 m 9 L Nbre de prélèvements: 3 20 m de tuyau intégrateur	
Chlorophylle:	OUI Volume filtré sur place : 1000 ml	
Phytoplancton:	OUI Ajout de lugol : 5 ml	
Prélèvement pour ans	alyses micropolluants organiques	OUI
Heure de relevé : Profondeur : Prélèvement : Volume prélevé :	14:20 0 à 20 m plyt tous les 1,2 m 20 L Nbre de prélèvements : 17	
Matériel employé :	Bouteille téflon 1,2L	
Matériel employé :	PRELEVEMENTS DE FOND	OUI
		OUI OUI
Prélèvement pour ans	PRELEVEMENTS DE FOND	
Prélèvement pour ans	PRELEVEMENTS DE FOND alyses physico-chimiques	OUI
Prélèvement pour ans Prélèvement pour ans Heure de relevé : Profondeur : Volume prélevé :	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants organiques 14:00 68 m 16 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L	OUI
Prélèvement pour ans Prélèvement pour ans Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants organiques 14:00 68 m 16 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L	OUI
Prélèvement pour ans Prélèvement pour ans Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	PRELEVEMENTS DE FOND alyses physico-chimiques 14:00 68 m 16 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L REMISE DES ECHANTILLONS suphotique: 624486 Bon de transport : 691	OUI

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES PHYSICO-CHIMIQUES

 Plan d'eau :
 Sainte Croix
 Date :
 04/06/19

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 X2--3003

 Organisme / opérateur :
 STE : Aurélien Morin & Ingrid Mathieu
 Campagne : 2

Organisme demandeur : Agence de l'Eau RMC Marché n° : 160000037 Page 4/6

TRANSPARENCE

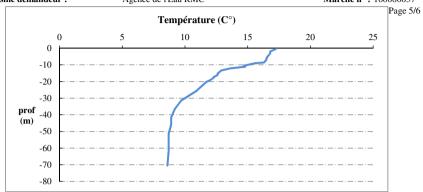
Disque Secchi = 8 m Zone euphotique (x 2,5 secchi) = 20 m

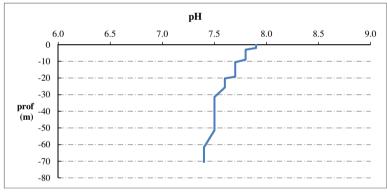
PROFIL VERTICAL

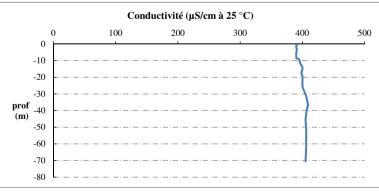
,.....

Moyen de mesure utilisé : ☑ in situ à chaque profondeur ☐ en surface dans un récipient

Type de pvlt	Prof.	Temp	pН	Cond.	O2	O2	Matières organiques dissoutes	Heure
	(m)	(° C)		(µS/cm 25°)	(%)	(mg/l)	ppb	
	-0.2	17.3	7.9	392	107	9.7	0.1	14:10
	-1.0	17.1	7.9	390	107	9.8	0.1	
	-2.0	16.8	7.9	390	107	9.8	0.1	
	-3.0	16.8	7.8	391	108	9.9	0.2	
	-4.0	16.7	7.8	391	108	9.9	0.2	
	-4.9	16.6	7.8	390	108	9.9	0.1	
	-6.1	16.5	7.8	390	108	10.0	0.1	
	-6.9	16.5	7.8	390	108	10.0	0.1	
	-8.6	16.3	7.8	390	108	10.0	0.1	
Prélèvement	-9.0	15.6	7.8	394	109	10.2	0.0	
de la zone	-10.5	14.7	7.7	396	108	10.4	0.0	
euphotique	-11.1	14.8	7.7	396	108	10.4	0.0	
	-12.1	13.6	7.7	397	108	10.6	0.0	
	-13.4	12.9	7.7 7.7	399	108	10.7	0.1	
	-14.0	12.8	7.7	400	106	10.6	0.1	
	-15.3	12.6	7.7	400	106	10.7	0.2	
	-16.1	12.6	7.7	399	106	10.7	0.3	
	-17.3	12.3	7.7	399	105	10.6	0.4	
	-17.7	12.3	7.7	398	105	10.6	0.4	
	-19.2	12.0	7.7	400	104	10.6	0.5	
	-20.3	11.7	7.6	400	102	10.5	0.7	
	-25.7	10.9	7.6	400	102	10.6	1.0	
	-31.4	9.7	7.6 7.5	406	92	9.9	1.2	
	-36.4	9.2	7.5	409	89	9.7	1.3	
	-41.6	8.9	7.5	406	87	9.5	1.3	
	-45.8	8.9	7.5	405	87	9.6	1.4	
	-51.4	8.7	7.5	406	85	9.3	1.5	
	-61.7	8.7	7.4	406	82	9.1	1.0	
Pvlt de fond	-70.4	8.6	7.4	405	78	8.6	1.0	14:25
		·		{		 	j	
								
						<u> </u>		
						ļ		
		<u> </u>		j		<u>i</u>	i !	


DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE

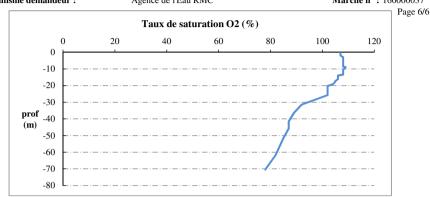

 Plan d'eau :
 Sainte Croix
 Date :
 04/06/19

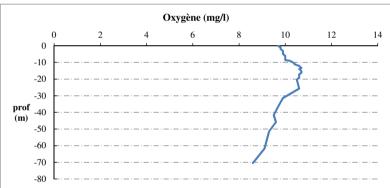

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 X2-3003

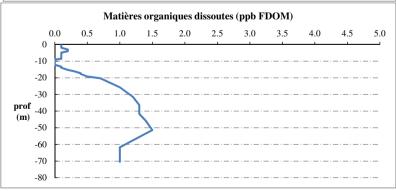
 Organisme / opérateur :
 STE : Aurélien Morin & Ingrid Mathieu
 Campagne : 2

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

Relevé phytoplanctonique et physico-chimique en plan d'eau


DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE


 Plan d'eau :
 Sainte Croix
 Date :
 04/06/19


 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 X2--3003

 Organisme / opérateur :
 STE : Aurélien Morin & Ingrid Mathieu
 Campagne : 2

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

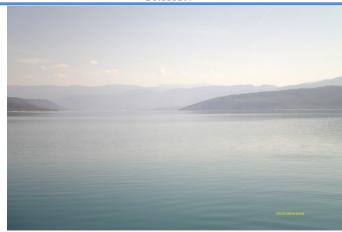
DONNEES GENERALES PLAN D'EAU

 Plan d'eau :
 Sainte Croix
 Date :
 23/07/2019

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 X2--3003

 Organisme / opérateur :
 STE : Lionel Bochu & Ingrid Mathieu
 Campagne : 3

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037


Page 1/6

LOCALISATION PLAN D'EAU

	LOCALISATION I LAND EAU					
Commune :	Sainte Croix du Verdon	Type:	A3			
Lac marnant :	oui	retenues de	e moyenne montagne, calcaire, profondes			
Temps de séjour :	280 jours					
Superficie du plan d'eau :	2203 ha					
Profondeur maximale :	83 m					
	Carte (extrait SCAN 25 I	GN 1/25 000)			

Relevé phytoplanctonique et physico-chimique en plan d'eau

				-
DONNEES GI	ENERALES PI	LAN D'EAU		
Plan d'eau : Types (naturel, art Organisme / opérat Organisme demand	eur:	Sainte Croix Artificiel STE : Lionel Bochu & Agence de l'Eau RMC	Ingrid Mathieu	Date: 23/07/19 Code lac: X23003 Campagne: 3 Marché nº: 160000037 Page 2/6
		STATIO	N	Page 2/0
Coordonnée de la s	tation :		e Géolocalisation Portable	Carte IGN
Lambert 93 :		X: 9529	85 Y: 6298	207 alt. : 477 m
WGS 84 (syst.inter	nationnal GPS ° " '	6°08'26,	0" E 43°44'1:	5,4" N
Profondeur :	72 m			
Météo :	☐ 1- temps sec☐ 4- pluie fine☐ 7- gel☐	ensoleillé [2- faiblement nuageux 5- orage-pluie forte 8- fortement nuageux	☐ 3- temps humide ☐ 6- neige
P atm. :	905 hPa			
Vent:	✓ 0- nul	1- faible 2- moyen	3- fort	
Conditions d'obser Surface de l'eau :	✓ 1-lisse		☐ 3- agitée ☐ 4- très ag	iitée
Hauteur de vagues :	0 m			
Bloom algal:	NON			
Marnage :	OUI	Hauteur de bande :	4.2 m	Côte échelle : 472.79 m
Campagne 3	campag	ne estivale : thermoclin	e bien installée, deuxièm phytoplancton	e phase de croissance des
·	R	EMARQUES ET OB	SERVATIONS	
Contact préalable :		Ourance à Ste Tulle s Alpes-de-Haute-Prover	nce	
Observation :		nage théorique mais seu ation thermique	lement 2 m observé sur le	s berges.
Remarques :	Navigation m	noteur électrique		

DONNEES GENERA	ALES PLAN D'EAU	
Plan d'eau :	Sainte Croix Date :	23/07/19
Types (naturel, artificiel)): Artificiel Code lac	: X23003
Organisme / opérateur :	STE : Lionel Bochu & Ingrid Mathieu Campa	igne: 3
Organisme demandeur :	Agence de l'Eau RMC Marché	n°: 160000037
		Page 3/6
	PRELEVEMENTS ZONE EUPHOTIQUE	
Prélèvement pour analys	ses physico-chimiques et phytoplancton	
Heure de relevé : 11	1:30	
Profondeur:	0 à 18 m	
Volume prélevé :	8 L Nbre de prélèvements : 3	
Matériel employé : 20	0 m tuyau integrateur	
Chlorophylle:	OUI Volume filtré sur place : 1000 ml	
Phytoplancton:	OUI Ajout de lugol : 5 m	
Prélèvement pour analys	ses micropolluants	OUI
Heure de relevé : 11	1:30	
Profondeur:	0 à 18 m	
Prélèvement : 1	plvmt tous les 2m	
Volume prélevé :	10.8 L Nbre de prélèvements : 9	
Matárial amplayá . D.	outeille téflon 1,2L	
Matériel employé : Bo	outcine terroir 1,22	
Materiel employe:	PRELEVEMENTS DE FOND	OUI
Prélèvement pour analys	PRELEVEMENTS DE FOND	OUI
	PRELEVEMENTS DE FOND ses physico-chimiques	
Prélèvement pour analys Prélèvement pour analys Heure de relevé : 11 Profondeur :	PRELEVEMENTS DE FOND ses physico-chimiques ses micropolluants 1:10 71 m	OUI
Prélèvement pour analys Prélèvement pour analys Heure de relevé : 11 Profondeur : Volume prélevé :	PRELEVEMENTS DE FOND ses physico-chimiques ses micropolluants 1:10	OUI
Prélèvement pour analys Prélèvement pour analys Heure de relevé : 11 Profondeur : Volume prélevé :	PRELEVEMENTS DE FOND ses physico-chimiques ses micropolluants 1:10 71 m 16 L Nbre de prélèvements : 3	OUI
Prélèvement pour analys Prélèvement pour analys Heure de relevé : 11 Profondeur : Volume prélevé : Be	PRELEVEMENTS DE FOND ses physico-chimiques ses micropolluants 1:10 71 m 16 L Nbre de prélèvements : 3	OUI
Prélèvement pour analys Prélèvement pour analys Heure de relevé : 11 Profondeur : Volume prélevé : Be	PRELEVEMENTS DE FOND ses physico-chimiques ses micropolluants 1:10 71 m 16 L Nbre de prélèvements : 3	OUI
Prélèvement pour analys Prélèvement pour analys Heure de relevé : 11 Profondeur : Volume prélevé : Be	PRELEVEMENTS DE FOND ses physico-chimiques ses micropolluants 1:10 71 m 16 L Nbre de prélèvements : 3	OUI
Prélèvement pour analys Prélèvement pour analys Heure de relevé : 11 Profondeur : Volume prélevé : Be	PRELEVEMENTS DE FOND ses physico-chimiques ses micropolluants 1:10 71 m 16 L Nbre de prélèvements : 3	OUI
Prélèvement pour analys Prélèvement pour analys Heure de relevé : 11 Profondeur : Volume prélevé : Be	PRELEVEMENTS DE FOND ses physico-chimiques ses micropolluants 1:10 71 m 16 L Nbre de prélèvements : 3 outeille téflon 5,3 L	OUI
Prélèvement pour analys Prélèvement pour analys Heure de relevé : 11 Profondeur : Volume prélevé : Be	PRELEVEMENTS DE FOND ses physico-chimiques ses micropolluants 1:10 71 m 16 L Nbre de prélèvements : 3	OUI
Prélèvement pour analys Prélèvement pour analys Heure de relevé : 11 Profondeur : Volume prélevé : Be	PRELEVEMENTS DE FOND Ses physico-chimiques Ses micropolluants 1:10 71 m 16 L Nbre de prélèvements : 3 outeille téflon 5,3 L REMISE DES ECHANTILLONS	OUI
Prélèvement pour analys Prélèvement pour analys Heure de relevé : 11 Profondeur : Volume prélevé : Matériel employé : Bo Remarques prélèvement : Code prélèvement zone eupho	PRELEVEMENTS DE FOND ses physico-chimiques ses micropolluants 1:10 71 m 16 L Nbre de prélèvements : 3 outeille téflon 5,3 L REMISE DES ECHANTILLONS otique: 624487 Bon de transport : 6913424250	OUI OUI
Prélèvement pour analys Prélèvement pour analys Heure de relevé : 11 Profondeur : Volume prélevé : Matériel employé : Bo Remarques prélèvement :	PRELEVEMENTS DE FOND Ses physico-chimiques Ses micropolluants 1:10 71 m 16 L Nbre de prélèvements : 3 outeille téflon 5,3 L REMISE DES ECHANTILLONS	OUI OUI
Prélèvement pour analys Prélèvement pour analys Heure de relevé : 11 Profondeur : Volume prélevé : Matériel employé : Bo Remarques prélèvement : Code prélèvement zone euphe Code prélèvement de fond : Dépôt : TNT C	PRELEVEMENTS DE FOND ses physico-chimiques ses micropolluants 1:10 71 m 16 L Nbre de prélèvements : 3 outeille téflon 5,3 L REMISE DES ECHANTILLONS otique: 624487 Bon de transport : 6913424250	OUI OUI
Prélèvement pour analys Prélèvement pour analys Heure de relevé : 11 Profondeur : Volume prélevé : Matériel employé : Bo Remarques prélèvement : Code prélèvement zone eupho Code prélèvement de fond :	### PRELEVEMENTS DE FOND Sees physico-chimiques	OUI OUI

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES PHYSICO-CHIMIQUES

 Plan d'eau :
 Sainte Croix
 Date :
 23/07/19

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 X2--3003

 Organisme / opérateur :
 STE : Lionel Bochu & Ingrid Mathieu
 Campagne : 3

Organisme demandeur : Agence de l'Eau RMC **Marché n° :** 160000037

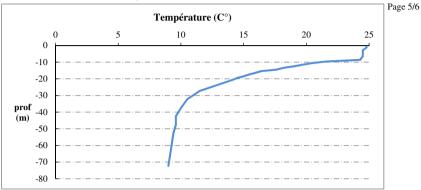
Page 4/6

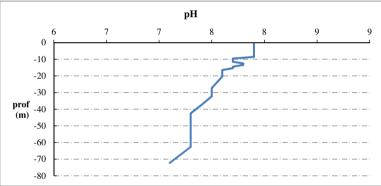
TRANSPARENCE

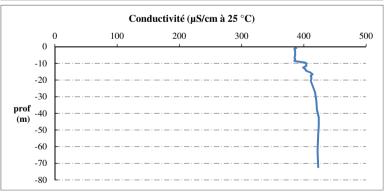
Disque Secchi = 7.2 m Zone euphotique (x 2,5 secchi) = 18 m

PROFIL VERTICAL

Type de pvlt	Prof.	Temp	pН	Cond.	O2	O2	Matières organiques dissoutes	Heure	
	(m)	(° C)		(µS/cm 25°)	(%)	(mg/l)	ppb		
	-0.8	24.8	7.9	388	107	7.9	1.0	11:10	
	-1.2	24.8	7.9	385	107	7.9	1.1		
	-2.8 -3.6	24.5	7.9	386	107	7.9	1.0		
		24.5	7.9	386	107	7.9	1.1		
	-4.5	24.5	7.9	386	107	7.9	1.1		
	-5.5	24.5	7.9	386	107	7.9	1.0		
	-6.6	24.5	7.9	385	107	7.9	1.0		
D (1)	-7.4	24.4	7.9	386	107	8.0	0.3		
Prélèvement de la	-8.6	24.3	7.9 7.7	385	108	8.1	0.2		
de ia zone	-9.6	21.6	7.7	403	125	9.8	0.1		
euphotique	-10.5	20.5	7.7	404	131	10.5	0.0		
caphotique	-11.5	19.7	7.7	404	133	10.8	0.0		
	-12.5	19.0	7.8	399	131	10.8	0.0		
	-13.4	18.2	7.8	402	129	10.8	0.1		
	-14.5	17.6	7.7	404	127	10.8	0.1	•••••	
	-15.4	16.4	7.7	410	122	10.6	0.1	•••••	
	-16.5	15.9	7.6	414	119	10.5	0.2		
	-17.5	15.4	7.6	411	116	10.4	0.2		
	-18.5	15.0	7.6	412	116	10.4	0.2		
	-19.4	14.5	7.6	412	114	10.3	0.3		
	-20.4	14.2	7.6	411	112	10.2	0.3		
	-27.3	11.5	7.5	418	92	9.0	0.4		
	-32.3	10.5	7.5	420	88	8.8	0.6		
	-37.5	10.0	7.4	421	83	8.3	0.7		
	-42.5	9.6	7.3	424	81	8.2	0.8		
	-47.6	9.6	7.3	424	79	8.1	0.9		
	-52.6	9.4	7.3	423	78	8.0	1.0		
	-62.7	9.2	7.3	422	74	7.6	1.1		
Pvlt de fond	-72.3	9.0	7.1	423	66	6.8	1.0		
				!					
		(
	}	({ <u>-</u>		{ :	}		
						(:			
						 !			
		·····						•••••	
						: :		•••••	
	٠	i	·	·i	·	!	i		


DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE

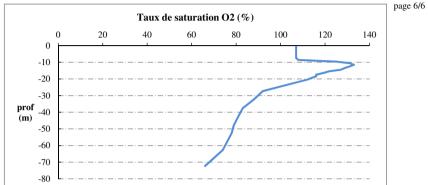

 Plan d'eau :
 Sainte Croix
 Date :
 23/07/19

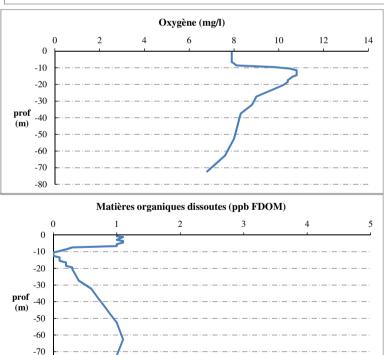

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 X2--3003

 Organisme / opérateur :
 STE : Lionel Bochu & Ingrid Mathieu
 Campagne : 3

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

Relevé phytoplanctonique et physico-chimique en plan d'eau


DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE


 Plan d'eau :
 Sainte Croix
 Date :
 23/07/19

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 X2-3003

 Organisme / opérateur :
 STE : Lionel Bochu & Ingrid Mathieu
 Campagne : 3

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

-80

DONNEES GENERALES PLAN D'EAU

 Plan d'eau :
 Sainte Croix
 Date :
 01/10/2019

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 X2--3003

 Organisme / opérateur :
 STE : Lionel Bochu & Adrien Bonnefoy
 Campagne : 4

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

Page 1/7

LOCALISATION PLAN D'EAU

Commune: Sainte Croix du Verdon Type: A3

Lac marnant: oui retenues de moyenne montagne, calcaire, profondes

Temps de séjour: 280 jours

Superficie du plan d'eau: 2203 ha

Profondeur maximale: 83 m

Carte (extrait SCAN 25 IGN 1/25 000)

Angle de prise de vue

STATION

Photo du site :

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES GENE	RALES PLAN D'EAU		
Plan d'eau :	Sainte Croix	Date :	01/10/19
Types (naturel, artificiel): Artificiel	Code lac:	X23003
Organisme / opérateur :	STE : Lionel Bochu & Adrien Bonnefoy	Campagn	ie:4
Organisme demandeur :	· · · · · · · · · · · · · · · · · · ·		: 160000037
Ü			Page 2/7
	STATION		
Coordonnée de la station	système de Géolocalisation Portable		Carte IGN
Lambert 93:	X: 952993 Y: 6298204	alt.	: 477 m
WGS 84 (syst.internatio	nnal GPS ° '' ') : 6°08'26,4" E 43°44'15,3"	N	
Profondeur:	67 m		
	1 - temps sec ensoleillé □ 2- faiblement nuageux 2 - pluie fine □ 5- orage-pluie forte 3 - gel □ 8- fortement nuageux	3- temps 6- neige	humide
P atm. :	959 hPa		
Vent :	0- nul 🗹 1- faible 🗌 2- moyen 🔲 3- fort		
Conditions d'observation Surface de l'eau :	n :] 1- lisse ☑ 2- faiblement agitée □ 3- agitée □ 4- très agitée	;	
Hauteur de vagues :	0.04 m		
Bloom algal:	NON		
Marnage:	OUI Hauteur de bande : 6.4 m Côt	e échelle :	470.68 m
Campagne 4	campagne de fin d'été : fin de stratification avant baisse	de la tempé	rature
	REMARQUES ET OBSERVATIONS		
Contact préalable :	EDF -GEH Durance à Ste Tulle Préfecture des Alpes-de-Haute-Provence		
Observation:			
Remarques :	Navigation moteur électrique Belle stratification thermique, les eaux sont encore chaudes en surfa	ace (20,4°C)	

DONNEES GENI	ERALES PLAN D'EAU	
Plan d'eau : Types (naturel, artificie		
Organisme / opérateur Organisme demandeur	*	gne: 4 n°: 160000037 Page 3/7
	PRELEVEMENTS ZONE EUPHOTIQUE	ruge 3//
Prélèvement pour an	alyses physico-chimiques et phytoplancton	
Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	11:50 0 à 20 m 10 L Nbre de prélèvements : 4 20 m tuyau integrateur	
Chlorophylle:	OUI Volume filtré sur place : 1000 ml	
Phytoplancton:	OUI Ajout de lugol : 5 ml	
Prélèvement pour an	alyses micropolluants	OUI
Heure de relevé : Profondeur : Prélèvement : Volume prélevé : Matériel employé :	12:00 0 à 20 m 1 pvlt tous les 2 m 11 L Nbre de prélèvements : 10 Bouteille téflon 1,2L	
	PRELEVEMENTS DE FOND	OUI
Prélèvement pour an	alyses physico-chimiques	OUI
	nalyses physico-chimiques nalyses micropolluants	OUI OUI
	* * *	
Prélèvement pour an Heure de relevé : Profondeur : Volume prélevé :	10:50 65 m 16 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L	
Prélèvement pour an Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	10:50 65 m 16 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L	
Prélèvement pour an Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	10:50 65 m 16 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L REMISE DES ECHANTILLONS euphotique: 624488 Bon de transport : XY471732	OUI 55EE

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES PHYSICO-CHIMIQUES

 Plan d'eau :
 Sainte Croix
 Date :
 01/10/19

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 X2--3003

 Organisme / opérateur :
 STE : Lionel Bochu & Adrien Bonnefoy
 Campagne : 4

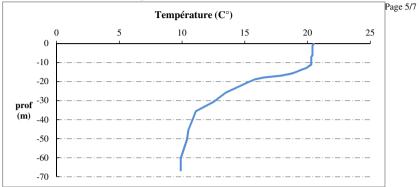
Organisme demandeur : Agence de l'Eau RMC Marché n° : 160000037 Page 4/7

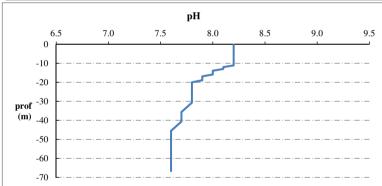
TRANSPARENCE

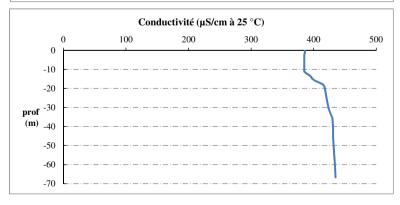
Disque Secchi = 8 m Zone euphotique (x 2,5 secchi) = 20 m

PROFIL VERTICAL

Type de pvlt	Prof.	Temp	pН	Cond.	O2	O2	Matières organiques dissoutes	Heure
	(m)	(°C)		(μS/cm 25°)	(%)	(mg/l)	ppb	
	-0.2	20.5	8.2	386	104	8.9	0.7	11:08
	-1.3	20.4	8.2	386	104	8.9	0.6	
	-2.3	20.4	8.2	385	104	8.9	0.6	
	-3.3	20.4	8.2 8.2	385	104	8.9	0.6	
	-4.2	20.4	8.2	385	104	8.9	0.7	
	-5.1	20.4	8.2	385	104	8.9	0.7	
	-6.1	20.4	8.2	385	104	8.9	0.7	
	-7.1	20.3	8.2	385	104	8.9	0.7	
	-8.1	20.3	8.2	385	104	8.9	0.7	
Prélèvement	-9.1	20.3	8.2	385	104	8.9	0.6	
de la zone	-10.1	20.3	8.2	385	104	8.9	0.7	
euphotique	-11.1	20.3	8.2	385	104	8.9	0.6	
	-12.0	20.1	8.1	388	105	9.0	0.5	
	-13.0	19.9	8.1	393	108	9.3	0.3	
	-13.9	19.5	8.0	396	110	9.6	0.2	
	-15.0	19.1	8.0	398	114	10.0	0.1	
	-15.9	18.7	8.0	402	116	10.2	0.0	
	-16.9	17.9	7.9	409	117	10.5	0.0	
	-17.9	16.5	7.9	415	115	10.6	0.0	
	-18.9	15.8	7.9	417	112	10.5	0.0	
	-20.0	15.4	7.8	418	110	10.4	0.1	
	-25.8	13.5	7.8	421	101	9.9	0.4	
	-30.7	12.5	7.8	424	95	9.6	0.5	
	-35.6	11.1		430		8.0	0.8	
	-40.6	10.8	7.7 7.7	431	77 73	7.7	1.0	
	-45.5	10.5	7.6	431	69	7.3	1.2	
	-50.4	10.4	7.6	432	68	7.2	1.2	
	-60.3	9.9	7.6	434	62	6.6	1.3	
Pvlt de fond	-66.6	9.9	7.6	435	60	6.4	1.3	
de rond	00.0					<u> </u>	:	
						<u> </u>	}	
							<u> </u>	
		<u> </u>					!	
							!	
						ļ	ļ	
							!	
		1	!			1	<u>.</u>	


DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE

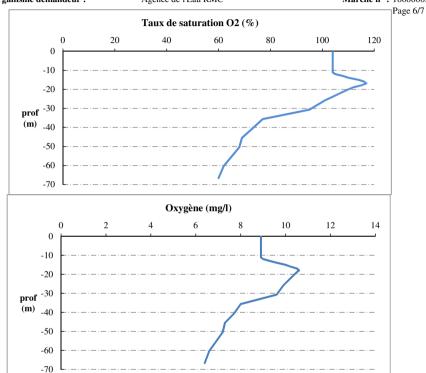

 Plan d'eau :
 Sainte Croix
 Date :
 01/10/19

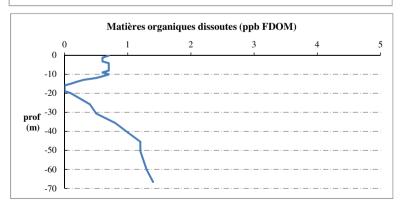

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 X2-3003

 Organisme / opérateur :
 STE : Lionel Bochu & Adrien Bonnefoy
 Campagne : 4

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

Relevé phytoplanctonique et physico-chimique en plan d'eau


DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE


 Plan d'eau :
 Sainte Croix
 Date :
 01/10/19

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 X2-3003

 Organisme / opérateur :
 STE : Lionel Bochu & Adrien Bonnefoy
 Campagne : 4

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

Prélèvement de sédiments pour analyses physico-chimiques

Plan d'eau : Types (naturel, artificiel) : Organisme / opérateur : Organisme demandeur :	Sainte Croix Artificiel STE : Lionel B Agence de l'E		Adrien Bonnet	foy	Date : Code lac : Campagne : Marché n° :	01/10/2019 X23003 4 160000037 Page 7/7				
	CONDIT	TIONS DU	MILIEU			1 age 777				
Météo 2- fa	mps sec ensoleillé iblement nuageux mps humide		4- pluie fine 5- orage-plui 6- neige	e forte	7- gel 8- fortement nuageux					
Vent :	☐ 0- nul ✓ 1- faible		2- moyen 3- fort		4- brise 5- brise modé	ré				
Surface de l'eau :	☐ 1- lisse ✓	2- faiblemen	t agitée 🗌	3- agitée 🗌	4- très agitée					
Période estimé favorable à : ✓ mort et sédimentation du pl. ✓ sédimentation de MES de to	oute nature	MATERIE	ZI-S							
✓ benne Ekmann	pelle à main	 ELEVEME	Autre : NTS							
Localisation générale de la zone (correspond au point de plus gra	•		X :	952993	Y :	6298204				
Pélèvements		1	2	3	4	5				
Profondeur (en m)		67	67	67						
Epaisseur échantillonnée										
récents (< 2cm) anciens (> 2cm) Granulométrie dominante		Х	х	Х						
graviers sables limons vases argile		x	x	x						
Aspect du sédiments										
homogène hétérogène		X	Х	Х						
couleur odeur		beige Non	beige Non	beige Non						
Présence de débris végétaux no	n décomposés	Non	Non	Non						
Présence d'hydrocarbures		Non	Non	Non						
Présence d'autres débris		Non	Non	Non						
	REMISE D	ES ECHA	NTILLONS							
Code prélèvement :		Bon de trans		X	V506251425E	E				
	02/10/19 02/10/19	Ville : Heure :	Gréoux les B 15:00							

Annexe 4. SYNTHESE PISCICOLE OFB -2019

Fiche synthétique état du peuplement piscicole

Protocole CEN 14757

Plan d'eau : SAINTE CROIX Réseau : DCE RCS

Superficie: 2203 Ha Zmax: 83 m

Date échantillonnage : 23 au 26/09/2019 Opérateur : AFB (DiR8 et SD04/83)

Nb filets benthiques : 64 (2880 m2)

Nb filets pélagiques : 22 (3630 m2)

Composition et structure du peuplement :

	2009	Rendeme	ents surfacique	es	2013	Rendeme	ents surfacique	es	2019	Rendeme	ents surfaciq	ues
	Benthic	ques	Globa	ux	Benthio	ques	Globa	ux	Benthic	ues	Glob	aux
	Nb.ind/1000m ²	1000m ² g/1000m ² Nb.ind/1000m ² g/1000m ² Nb		Nb.ind/1000m ²	g/1000m ²	Nb.ind/1000m ²	g/1000m ²	Nb.ind/1000m ²	g/1000m ²	Nb.ind/1000m	g/1000m ²	
Ablette	57	718	44	568	36	491	83	569	29	330	19	188
Barbeau Fluviatile	3	6850	1	3026	3	7133	1	3155	1	4130	1	1828
Brème bordelière	43	2815	19	1244	36	2303	16	1019	7	1740	3	771
Brème commune	1	78	<1	31	1	160	<1	71	13	4610	6	2039
Brochet	4	1220	2	538	3	1112	2	551	3	1910	1	846
Carpe commune									<1	1220	<1	537
Chevaine	9	10801	4	4777	4	4308	2	1906	4	6000	2	2653
Gardon	249	16190	112	7266	215	13485	96	5995	262	19140	117	8481
Gobie à tâches noi	ires						15	147	4	20	2	7
Goujon	26	228	12	109	34	332	15	147	<1	10	<1	2
Omble chevalier	1	128		61								
Perche	78	5319	35	2350	65	6879	29	3056	94	6980	42	3047
Perche soleil	14	142	6	61	17	143	7	63	18	110	8	49
Rotengle	2	411	1	184	3	1224	1	541	8	2190	4	976
Sandre									10	5980	5	2643
Tanche	3	3455	1	1536	3	4742	2	2098	<1	740	<1	148
Truite arc en ciel									<1	340	<1	325
Truite fario			1	1828	1	1156	1	1404	1	1750	1	1196
Ecrevisse américa	27	319	12	140	99	1184	44	524	184	2140	81	947
Total	517	48676	250	23717	520	45213	299	21098	644	59240	293	26690
Richesse spécifique		1	5			1	4			1	8	

Tab. 1 : Comparaison des résultats de pêche sur le plan d'eau de Sainte Croix entre 2009, 2013 et 2019

En 2019, le peuplement pisciaire du plan d'eau de Ste Croix se compose de 17 espèces de poissons et d'une espèce d'écrevisse, l'écrevisse américaine (*Orconectes limosus*).

Evolution de la richesse spécifique pour ces trois échantillonnages DCE : l'omble chevalier n'a été échantillonné qu'en 2009. Le sandre et la carpe sont capturés pour la première fois en 2019, ainsi que le gobie à tâches noires (*Neogobius melanostomus*), espèce invasive indésirable, originaire d'Europe de l'Est. Cette espèce devrait faire prochainement l'objet d'un classement dans l'annexe 2 de l'arrêté ministériel du 14 février 2018 (notamment interdiction de transport et d'introduction...).

Les densités numériques sont dominées par le gardon, la perche et l'ablette. Les biomasses les plus fortes sont rencontrées pour le gardon, la perche, le sandre, le chevaine et la brème. L'écrevisse américaine *Orconectes limosus* montre des densités numériques (effectif et biomasse) élevées, elles ont doublé entre 2013 et 2019.

Les captures dans les filets benthiques font apparaître un effectif 2019 en hausse (rendement 2019 est de 24% supérieur à 2009 et 2013). Les biomasses correspondantes montrent des valeurs nettement supérieures aux précédentes (+ 22% / 2009 et + 31% / 2013).

Les faibles captures dans les filets pélagiques atténuent ces écarts notamment pour les effectifs globaux alors que le rendement global pondéral reste bien supérieur à ceux des échantillonnages précédents (+13% / 2009 et + 27% / 2013).

Cette année, les densités numériques sont particulièrement faibles (rendements globaux inférieurs à 10ind/1000m²) pour 14 des 17 espèces de poissons présentes.

Malgré des effectifs aussi faibles, certaines populations présentent plus d'individus adultes que lors des échantillonnages précédents (BRE, CAR, SAN, GAR) ce qui contribue à élever le rendement pondéral global (+13% > 2009 et + 27% > 2013).

Cet état confirme le caractère tolérant de ce peuplement, dominé par les espèces d'eau calme et majoritairement peu exigeantes vis-à-vis de la température de l'eau, de la richesse trophique et

des habitats. Les espèces à affinité rhéophile marquée comme le barbeau fluviatile, le chevesne et la truite fario, dépendante du Verdon pour accomplir leur cycle de vie (témoins relictuels du peuplement avant la retenue) maintiennent leur présence en abondances faibles (pour 1000m²: 1 chevaine, 2 barbeaux, 1 truite fario) avec des rendements en biomasses significatifs du fait de l'âge de ces individus.

Un peuplement typique des grandes retenues artificielles est maintenant clairement implanté dans le plan d'eau de Sainte Croix, contrairement à ce qui était observé dans les années 1970 voire 1990.

<u>Distribution spatiale des captures :</u>

	Filets Benthiques																Filets	Péla	gique	s					
Strate (m)	ABL	BAF	BRB	BRE	BRO	CCO	CHE	GAR	GOU	GTN	OCL	PER	PES	ROT	SAN	TAC	TAN	TRL	Total	Strate (m)	ABL	GAR	ROT	TRF	Total
0-3	19	1	5	1	3	1	4	177	1	1	97	45	22	13	2		3		395	0-6	40	6	1		47
3-6	7	1	3	15	2			164	1	3	175	55	19	9	5	1		3	463	6-12					
6-12	46	1	4	5	2		5	94		5	69	101	12		16				360	12-18					
12-20	9	1	7	14	2		3	162		3	77	53	1	3	5				340	18-24					1
20-35	3		2	1				134			21	15			1			1	178	24-30				3	3
35-50	1			1				27			87	1			1				118						1
50-75											4	1							5	60-66					
Total	85	4	21	37	9	1	12	758	2	12	530	271	54	25	30	1	3	4	1859	Total	40	6	1	3	50

ABL : ablette / BAF : barbeau fluviatile / BRB : brème bordelière / BRE : brème commune / BRO : brochet / CCO : carpe commune / CHE : chevaine / GAR : gardon / GOU : goujon / GTN : gobie à tâches noires / OCL : écrevisse américaine / PER : perche / PES : perche soleil / ROT : rotengle / SAN : sandre / TAC : truite-arc-en-ciel / TAN : tanche / TRL : truite de lac / TRF : truite de rivière

Tab. 2 : Distribution spatiale des captures sur le plan d'eau de Sainte Croix en 2019 (effectifs bruts)

Lors de la campagne d'échantillonnage, la température de surface est de l'ordre de 21°C. La thermocline se situe entre -13m et -22m et la température des couches profondes s'abaisse à 10°C. La concentration en oxygène dissous est relativement homogène et favorable avec des valeurs comprises entre 8,7 mg/l en surface et 6.3 mg/l au fond (-68 m), avec un pic s'élevant 10,3 mg/l au niveau de la thermocline.

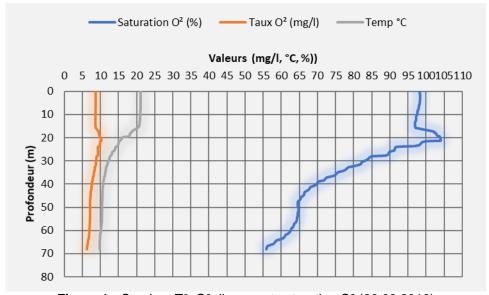


Figure 1 : Courbes T°, O² dissous et saturation O² (26 09 2019)

Ces conditions permettent aux espèces de coloniser l'ensemble des strates de la zone benthique du plan d'eau. La grande majorité est capturée au dessus de la thermocline, dans les couches tempérées du plan d'eau de façon assez homogène dans les strates supérieures à 20m. Cependant, les strates de bordure (0-3 m pour les filets benthiques) et surtout l'épilimnion (entre 0 et 6 m pour les filets pélagiques) ne montrent pas les plus fortes densités. Cette répartition spatiale est similaire à celles rencontrées lors des 2 précédents échantillonnages.

Comme en 2013, un faible effectif et peu d'espèces sont capturées dans les filets pélagiques. En surface (0 à 6m), hormis l'ablette (40 individus), seuls quelques gardons (6 ind) et un rotengle ont été recensés. La truite fario est présente dans les couches les plus profondes (24 à 30m), correspondant aux zones plus fraîches de la retenue (12 à 14°C entre 24 et 30m).

Structure des populations majoritaires :

Les structures de taille des populations les plus abondantes sont relativement équilibrées et dynamiques pour le gardon, la perche et l'ablette, même si les effectifs de cette dernière sont plus faibles en 2019. Par contre, la brème est déficitaire en juvéniles en 2019. Le brochet est toujours capturé en densité modeste, avec une proportion d'individus immatures en baisse et une hausse des adultes reproducteurs. L'absence d'information sur les repeuplements rend plus difficile la compréhension de l'évolution de cette population, qui reste en équilibre instable sur ce type de plan d'eau.

<u>La population de perche</u> est bien équilibrée avec des cohortes bien marquées et une dominance des alevins. Les juvéniles, sub adultes et adultes sont également bien représentés. Cette structure est relativement proche de celles des précédentes et témoigne d'un état dynamique et de la réussite régulière de la reproduction.

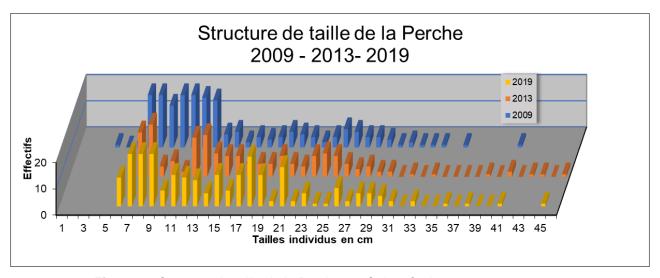


Figure 3 : Structure de taille de la Perche sur Sainte Croix en 2009, 2013, 2019

<u>La structure de taille du gardon</u> est dynamique même si la cohorte de l'année, bien que plus abondante qu'en 2009 et 2013, paraisse relativement faible au regard de l'effectif de 1+ . La période de l'échantillonnage peut expliquer ce faible effectif de 0+ qui en réalité est probablement plus important.

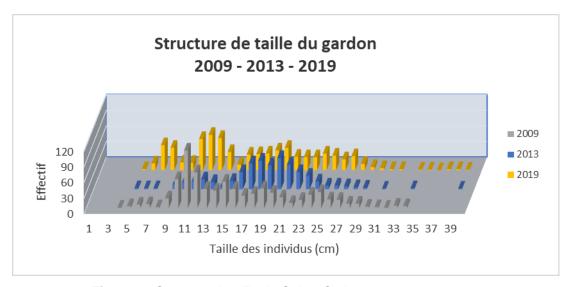


Figure 4 : Structure de taille du Sainte Croix en 2009, 2013, 2019

<u>La structure de taille de l'ablette</u> est dominée par les alevins de l'année et montre des abondances plus faibles que les années précédentes.

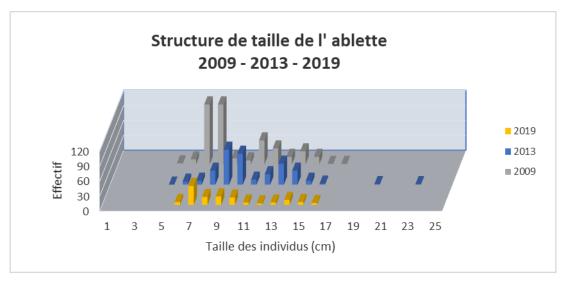


Figure 5 : Structure de taille de l'ablette sur Sainte Croix en 2009, 2013, 2019

Éléments de synthèse :

La classe d'état de l'IIR (Indice Ichtyofaune Retenue) pour l'échantillonnage de 2019 est de niveau « moyen » contrairement à un état qualifié de « très bon » lors des 2 échantillonnages précédents (valeurs de 0.41 en 2019, 0.72 en 2013 et 0.67 en 2009).

Cette dégradation en 2019 est principalement liée à l'augmentation de la biomasse des espèces planctivores (notamment des brèmes dont le rendement a plus que doublé), espèces indicatrices du niveau trophique et des espèces non natives prodiguant des soins parentaux (perche soleil et sandre dans ce peuplement).

Le gobie à tâches noires n'étant actuellement pas pris en compte dans cette guilde, la valeur de l'indice pour 2019 serait donc à péjorer.

Le peuplement pisciaire de la retenue de Sainte Croix apparaît très proche de celui observé en 2009 et en 2013, dominé par les cyprinidés d'eau calme thermophiles (gardon, ablette, brème) ainsi que par la perche.

Le rapport proies/carnassiers est déséquilibré donnant une importance pondérale très forte aux populations de carnassiers apicaux par rapport à la biomasse de populations non piscivores pouvant être considérées comme proies.

Un certain nombre d'espèces rhéophiles, autrefois directement inféodés au Verdon, sont encore présentes, mais leurs abondances sont marginales (1 à 2 individu(s) / 1000m²) par rapport aux années 1970 et 1990 (CEMAGREF 1991). Cette évolution est celle classiquement constatée sur les retenues artificielles à marnage de moyenne montagne. Ses potentiels restent cependant intéressants, compte tenu de sa grande dimension et de l'importance de l'afférence principale constituée par le Verdon.

Il conviendrait de surveiller avec attention l'évolution de la population du gobie à tâches noires qui est susceptible de se développer de façon importante¹ et d'influencer le peuplement actuellement en place.

¹⁾ Sur les secteurs canalisés du Rhin et de la Moselle, les effectifs de cette espèce ont augmenté très rapidement et représentaient au bout d'un an (dès 2012) des proportions importantes (60 à 90 %) des effectifs de possons capturés par pêche électrique en berge sur des stations représentatives de ces milieux (Manné, 2017).