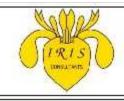


Agence de l'Eau Rhône-Méditerranée et Corse


ETUDE DES PLANS D'EAU DU PROGRAMME DE SURVEILLANCE DES BASSINS RHONE-MEDITERRANEE ET CORSE - RAPPORT DE DONNEES BRUTES ET INTERPRETATION - RETENUE DE PUYVALADOR (66) SUIVI ANNUEL 2010

crédit photo : Sciences et Techniques de l'Environnement

Rapport n° 08-283/2011-PE2010-18- Mai 2011

co-traitants

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Puyvalador (66)

Maître d'Ouvrage :	0					
	Interlocuteur:	Mr Imbert Loïc				
	Coordonnées :	loic.imbert@eaurmc.fr				

Titre du Rapport	ETUDE DES PLANS D'EAU DU PROGRAMME DE SURVEILLANCE DES BASSINS RHONE-MEDITERRANEE ET CORSE				
Résumé	Le rapport rend compte de l'ensemble des données collectées sur la retenue de Puyvalador, lors des campagnes de suivi 2010. Une présentation du plan d'eau et du cadre d'intervention est menée puis les résultats des investigations sont développés dans la suite du document.				
Mots-clés	Retenue de Puyvalad	ssins Rhône-Méditerranée et Corse – Pyr or aux de surveillance - Etat trophique - Pla	` ,		
Date	mai 2011	Statut du rapport	provisoire		
Présent tirage en exemplaire (s)	1	Diffusion informatique au Maître d'Ouvrage	oui		
Auteur					
Rédacteur(s)	Audrey Péricat, Herv				
Chef de projet – contrôle qualité	Eric Bertrand				

SOMMAIRE

<u>- P</u>	REAMBULE	<u> 1</u>
1	CADRE DU PROGRAMME DE SUIVI	3
$\frac{1}{1.1}$		
1.2		
2	PRESENTATION DU PLAN D'EAU ET LOCALISATION	
3	CONTENU DU SUIVI 2010	7
<u>- R</u>	ESULTATS DES INVESTIGATIONS	9
1	INVESTIGATIONS PHYSICOCHIMIQUES	11
1.1	ANALYSES DES EAUX DU LAC	11
1.2	ANALYSES DE SEDIMENTS	19
2	PHYTOPLANCTON	23
2.1		
2.2		
2.3		
3	OLIGOCHETES	
3.1		-
3.2		
3.3	· ·	
3.4		
4		
4.1		
4.2		
4.3		
5	MACROPHYTES	
5.1		
5.2		
5.3		
5.4		
5.5	APPROCHE DU NIVEAU TROPHIQUE DU PLAN D'EAU	40
<u>IN'</u>	FERPRETATION GLOBALE DES RESULTATS	<u>41</u>
- A	NNEXES -	42

	_ DD1					
	<u>- 1 IVI</u>	<u> 2/1///L</u>)			
		- PRI	- PREAME	- PREAMBULE-	-PREAMBULE-	- PREAMBULE-

1 CADRE DU PROGRAMME DE SUIVI

Dans le cadre de la mise en œuvre de la Directive Cadre Européenne sur l'Eau (DCE), un programme de surveillance doit être établi pour suivre l'état écologique (ou le potentiel écologique) et l'état chimique des eaux douces de surface.

Différents réseaux constituent le programme de surveillance. Parmi ceux-ci, deux réseaux sont actuellement mis en œuvre sur les plans d'eau :

- Le réseau de contrôle de surveillance (RCS) vise à donner une image globale de la qualité des eaux. Tous les plans d'eau naturels supérieurs à 50ha ont été pris en compte sur les bassins Rhône-Méditerranée et Corse. Pour les plans d'eau d'origine anthropique, une sélection a été opérée parmi les plans d'eau supérieurs à 50 ha, afin de couvrir au mieux les différents types présents (grandes retenues, plans d'eau de digue, plans d'eau de creusement).
- <u>Le contrôle opérationnel (CO)</u> vise à suivre spécifiquement les masses d'eau (naturelles ou anthropiques) supérieures à 50 ha, à risque de non atteinte du bon état (ou du bon potentiel) des eaux en 2015.

Au total, 80 plans d'eau sont suivis sur les bassins Rhône-Méditerranée et Corse dans le cadre de ces deux réseaux.

Le contenu du programme de suivi sur les plans d'eau est identique pour le RCS et le CO. Un plan d'eau concerné par le CO sera cependant suivi à une fréquence plus soutenue (tous les 3 ans) comparativement à un plan d'eau strictement visé par le RCS (tous les 6 ans).

Le tableau 1 résume les différents éléments suivis par an et les fréquences d'intervention associées. Il s'agit du suivi qualitatif type mis en place sur les plans d'eau du programme de surveillance.

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Puyvalador (66)

Tableau 1 : synoptique des investigations menées sur une année de suivi du plan d'eau

			Paramètres	Type de prélèvements/ Mesures	HIVER	PRINTEMPS	ЕТЕ	AUTOMNE
		Mesures in situ	O2 dis. (mg/l, %sat.), pH, COND (25℃), T℃, transparence secchi	Profils verticaux	Х	Х	Х	х
	2	Physico-chimie classique	DBO5, PO4, Ptot, NH4, NKJ, NO3, NO2, COT, COD, MEST, Turbidité, Si dissoute	Intégré Ponctuel de fond	X	x x x x x x x x x x x x x x x x x x x		
	Sur EAU	Substances prioritaires, autres substances et pesticides	Micropolluants sur eau*	Intégré Ponctuel de fond	X X X X X X X X X X			
		Pigments chlorophylliens	Chlorophylle a + phéopigments	Intégré Ponctuel de fond	Х	Х	Х	Х
		Minéralisation	Ca ²⁺ , Na ⁺ , Mg ²⁺ , K ⁺ , dureté, TA, TAC, SO ₄ ²⁻ , Cl ⁻ , HCO ₃ ⁻	Intégré Ponctuel de fond	Х			
6	Eau	interstitielle : Physico-chimie	PO4, Ptot, NH4					
Ϊ́								
r SEDIMENTS	nase solide (<2mm)	Physico-chimie	Corg., Ptot, NKJ, Granulomètrie, perte au feu	Prélèvement au point de plus grande profondeur				х
Sur SEDIMEN	Phase solide (<2mm)	Physico-chimie Substances prioritaires, autres substances et pesticides		grande profondeur				х
Sur SEDIMEN	Phase solide (<2mm)	Substances prioritaires, autres	perte au feu	grande profondeur Prélèvement Intégré	X	X	X	
Sur SEDIMEN	Phase solide (<2mm)	Substances prioritaires, autres	perte au feu Micropolluants sur sédiments*	grande profondeur	X	X	X	Х
Sur SEDIMEN		Substances prioritaires, autres	perte au feu Micropolluants sur sédiments* Phytoplancton	grande profondeur Prélèvement Intégré (Cemagref/Utermöhl)	X	X	X	X
Sur SEDIMEN		Substances prioritaires, autres substances et pesticides	perte au feu Micropolluants sur sédiments* Phytoplancton Oligochètes	Prélèvement Intégré (Cemagref/Utermöhl) IOBL IMOL Protocole Cemagref		X		X
Sur SEDIMEN		Substances prioritaires, autres substances et pesticides	perte au feu Micropolluants sur sédiments* Phytoplancton Oligochètes Mollusques	grande profondeur Prélèvement Intégré (Cemagref/Utermöhl) IOBL IMOL		×	X	X

^{* :} se référer à l'annexe 5 de la circulaire DCE 2006/16, analyses à réaliser sur les paramètres pertinents à suivre sur le support concerné

RCS: un passage par plan de gestion (soit une fois tous les six ans)

CO: un passage tous les trois ans

Poissons en charge de l'ONEMA (un passage tous les 6 ans)

1.1 INVESTIGATIONS PHYSICOCHIMIQUES

Les différents paramètres physico-chimiques analysés sur l'eau sont suivis lors de quatre campagnes calées aux différentes phases du cycle annuel de fonctionnement du plan d'eau, soit entre le mois de février et le mois d'octobre. Les dates d'intervention sont mentionnées dans le tableau 2, au paragraphe 3.

A chaque campagne, sont réalisés au point de plus grande profondeur :

- 1. un profil vertical des paramètres physico-chimiques de terrain : température, conductivité, oxygène dissous (en mg/l et % saturation) et pH;
- 2. des échantillons d'eau pour analyses (physico-chimie, micropolluants, pigments chlorophylliens), il s'agit :
 - ✓ d'un prélèvement intégré sur la colonne d'eau (constitué à partir du mélange de prélèvements ponctuels réalisés tous les mètres entre la surface et 2,5 fois la transparence mesurée avec le disque de Secchi);
 - ✓ d'un prélèvement de fond (réalisé généralement à un mètre du fond).

Agence de l'Eau Rhône - Méditerranée & Corse

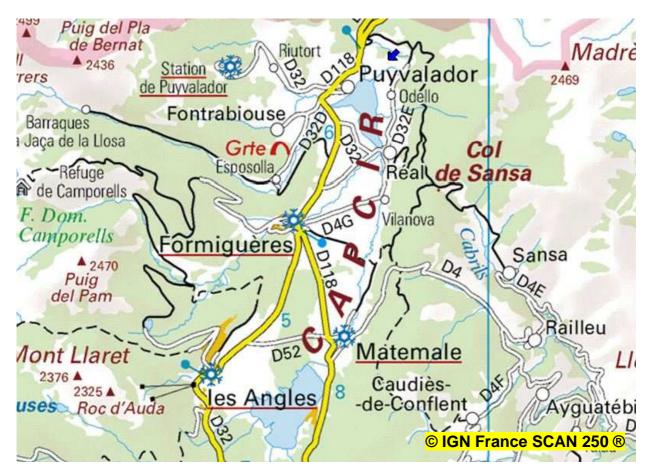
Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Puyvalador (66) Les sédiments sont prélevés une fois par an lors de la 4^{ème} et dernière campagne au point de plus grande profondeur.

Les échantillons d'eau et de sédiments ont été transmis au Laboratoire Départemental d'Analyses de la Drôme (LDA 26) en charge des analyses.

1.2 Investigations hydromorphologiques et hydrobiologiques

Les investigations hydromorphologiques et hydrobiologiques ont été réalisées à des périodes adaptées aux objectifs des méthodes utilisées.

L'évaluation morphologique du lac est établie en suivant le protocole du Lake Habitat Survey (LHS) dans sa version 3.1 (mai 2006).


Les investigations hydrobiologiques comprennent plusieurs volets :

- l'étude des peuplements phytoplanctoniques à partir du protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en œuvre de la DCE (CEMAGREF INRA; version 3.3 de mars 2009);
- 2 l'étude des peuplements d'oligochètes à travers la détermination de l'Indice Oligochètes de Bio-indication Lacustre : IOBL (Norme AFNOR NF T90-391, mars 2005) : les prélèvements suivent une méthode d'échantillonnage expérimentale des macroinvertébrés benthiques (cf. méthodologies) s'appliquant au cas des plans d'eau de retenue soumis à un marnage (Note technique : Protocole d'échantillonnage des invertébrés benthiques adapté aux plans d'eau de retenues ; Cemagref Mazzella, Argilier).
- 3 l'étude des peuplements de macrophytes sur le lac s'appuie sur la méthode mise au point par le CEMAGREF : Méthodologie d'étude des communautés de macrophytes en plan d'eau, version mai 2009.

2 Presentation du plan d'eau et localisation

La retenue de Puyvalador est située dans le Capcir (le plus haut plateau pyrénéen) dans le département des Pyrénées-Orientales, sur les communes de Formiguères, de Réal et de Puyvalador. Le plan d'eau est formé par un barrage sur l'Aude, il se trouve en aval du barrage de Matemale (étudié en 2009). Il est de taille moyenne avec une surface de 91 ha pour un volume de 10,1 millions de m³ en cote normale d'exploitation (soit 1421 m NGF).

La profondeur maximale qui a été mesurée en 2010 est de 21 m. Le lac s'étend sur 2 km de long et reçoit les eaux de l'Aude et du Galba. Son temps de séjour théorique est de 38 jours environ. Dans son cours supérieur, l'Aude présente un régime nivo-pluvial avec deux pics de débit bien marqués : un au printemps lié à la fonte des neiges, et le second en automne lié aux précipitations.

carte 1 : localisation de la retenue de Puyvalador (Pyrénées-Orientales)— (source : IGN Scan 250 - éch . 1/100 000°)

Cette retenue artificielle classée MEFM¹, est exploitée par EDF (GEH Aude-Ariège) pour l'hydroélectricité. La cote du plan d'eau varie de façon saisonnière entre 1408 et 1421 m NGF en

1

¹ Masse d'eau fortement modifiée

Agence de l'Eau Rhône - Méditerranée & Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Puyvalador (66) fonction des apports et des besoins énergétiques. Les turbinées maximales se font généralement en hiver et au début du printemps lors de la plus forte demande énergétique : le temps de séjour réel est donc plus difficile à définir. Le renouvellement des eaux est important jusqu'en juin-juillet (apports importants associés à un volume réduit dans la retenue) puis faible en été (apports réduits associés à un volume quasi maximal dans la retenue). Par ailleurs, le lac est gelé en surface en période hivernale, de décembre à mars environ.

La baignade et les activités nautiques ne sont pas autorisées sur le plan d'eau.

3 CONTENU DU SUIVI 2010

La retenue de Puyvalador est suivie au titre du contrôle opérationnel (CO). Tous les compartiments précités sont étudiés. Le tableau ci-dessous indique la répartition des missions au sein du groupement aussi bien en phase terrain qu'en phase laboratoire/détermination. S.T.E. a en outre eu en charge de coordonner la mission et de collecter l'ensemble des données pour établir les rapports et mener l'exploitation des données.

Tableau 2 : synoptique des interventions de terrain et de laboratoire sur le plan d'eau, par campagne

Retenue de Puyvalador (66)	phase terrain					laboratoire - détermination
Campagne	campagne IOBL	C1	C2	C3	C4	
date	28/04/2010	11/05/2010	16/06/2010	22/07/2010	18/08/2010	automne/hiver 2010-2011
physicochimie des eaux		S.T.E.	S.T.E.	S.T.E.	S.T.E.	LDA26
physicochimie des sédiments					S.T.E.	LDA26
phytoplancton		S.T.E.	S.T.E.	S.T.E.	S.T.E.	BECQ'Eau
hydromorphologie				S.T.E.		S.T.E.
macrophytes				Mosaïque environnement		Mosaïque environnement
oligochètes et macroinvertébrés	IRIS consultants					IRIS consultants

En 2010, les conditions météorologiques ont été froides sans grandes précipitations (quelques épisodes neigeux) en hiver. Le printemps a été doux et faiblement pluvieux jusqu'au mois de mai qui fut au contraire très arrosé. L'été a été assez sec induisant peu de renouvellement des eaux.

Les campagnes de prélèvements menées correspondent aux objectifs de la méthodologie sans toutefois que l'on ait pu distinguer une stratification thermique du plan d'eau en 2010. Malgré une première campagne un peu tardive en raison du faible remplissage des eaux sur le printemps (turbinées importantes), la colonne d'eau était toujours en quasi-homothermie le 11 mai 2010 donc cette campagne respecte les objectifs poursuivis.

A noter que la dernière campagne a du être avancée à la mi août en raison d'un abaissement du plan d'eau prévu pour début septembre 2010, pour la réalisation de travaux sur l'ouvrage.

TS I	<u>DES</u> DNS -	

1 INVESTIGATIONS PHYSICOCHIMIQUES

Les comptes rendus des campagnes de prélèvements physicochimiques et phytoplanctoniques sont présentés en annexe 3.

1.1 ANALYSES DES EAUX DU LAC

1.1.1 Profils verticaux et evolutions saisonnières

Le suivi prévoit la réalisation de profils verticaux sur la colonne d'eau à chaque campagne. Quatre paramètres sont mesurés : la température, la conductivité, l'oxygène (en concentration et en % saturation) et le pH. Les graphiques regroupant ces résultats pour chaque paramètre lors des 4 campagnes sont affichés dans ce chapitre.

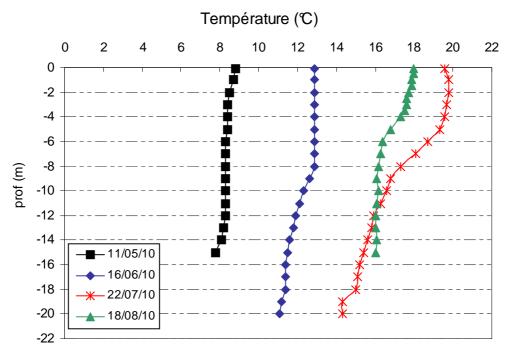


Figure 1: profils verticaux de température au point de plus grande profondeur

Lors de la 1^{ère} campagne, la température est relativement homogène sur la colonne d'eau (8°C). Puis un gradient de température commence à se mettre en place lors de la 2^{ème} campagne avec un léger réchauffement des 8 premiers mètres. L'amplitude thermique est faible avec 13°C en surface et 11°C en profondeur.

Lors de la 3^{ème} campagne, la couche supérieure se réchauffe et atteint 20°C, tandis que les eaux du fond sont à 14°C. Le saut thermique reste cependant peu prononcé.

Lors de la 4^{ème} campagne, le plan d'eau présente encore deux couches distinctes malgré un refroidissement des eaux de surface (18°C). Le saut thermique est établi entre 4 et 6 m. L'amplitude thermique est très faible (2°C).

La stratification thermique est peu marquée sur la retenue de Puyvalador sur l'année 2010.

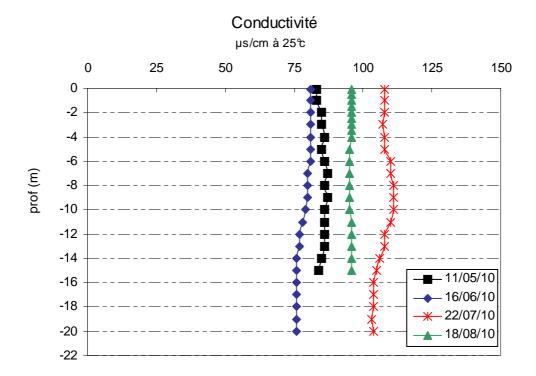


Figure 2 : profils verticaux de conductivité au point de plus grande profondeur

La conductivité est faible en raison de la nature cristalline des substrats. Elle est comprise entre 75 et $110~\mu S/cm$ à $25^{\circ}C$. La conductivité est faible en fin d'hiver ($85~\mu S/cm$). Au printemps, les minéraux sont consommés entraînant une légère baisse de la conductivité ($80~\mu S/cm$). En été, un net regain de minéralisation est constaté ($110~\mu S/cm$) avec des eaux entrantes plus minéralisées. En fin d'été, la colonne d'eau est homogène avec une conductivité qui se stabilise à une valeur intermédiaire ($95~\mu S/cm$).

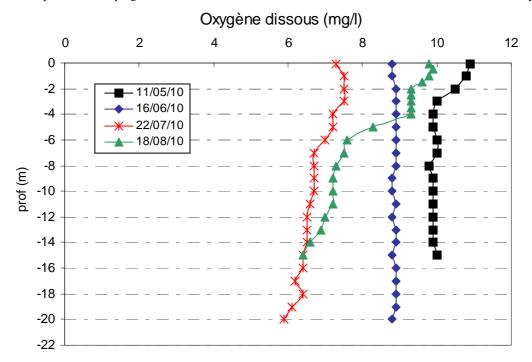


Figure 3 : profils verticaux d'oxygène (mg/l) au point de plus grande profondeur

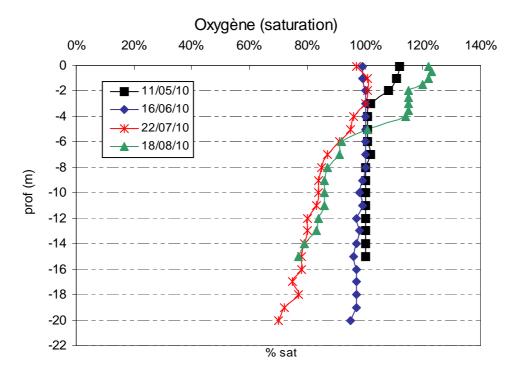


Figure 4: profils verticaux d'oxygène (% sat.) au point de plus grande profondeur

En fin d'hiver et au printemps, l'oxygène dissous est relativement homogène à 100% de saturation. On constate tout de même une sursaturation en oxygène sur les deux premiers mètres lors de la 1^{ère} campagne, signe qu'il existe une activité biologique (développement phytoplanctonique). Une stratification ou plus précisément un gradient d'oxygène se met en place en 3^{ème} campagne, la consommation d'oxygène est effective sous 6 m (90% sat).

Lors de la 4^{ème} campagne, on constate une sursaturation en oxygène sur les 4 premiers mètres (120% sat.), signe d'une activité photosynthétique importante (développement de cyanobactéries). Une oxycline est alors observée entre 4 et 6 m : amplitude de 120% à 90%.

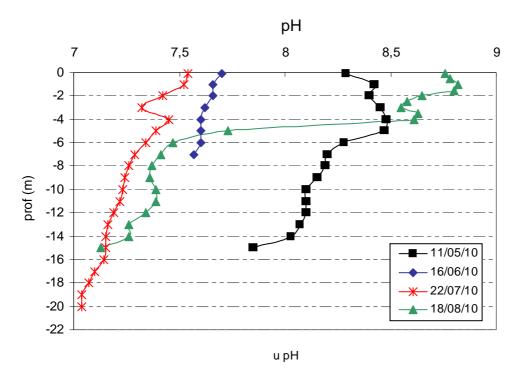


Figure 5 : profils verticaux de pH au point de plus grande profondeur

Le pH est compris entre 7,0 et 8,6. Lors de la 1^{ère} campagne, le pH est à 8,4 en surface (jusqu'à 5 m) et compris entre 7,8 et 8,2 en profondeur. En C2, le profil incomplet montre une relative homogénéité du pH (compris entre 7,6 et 7,7) jusqu'à 7 m. Un gradient se met en place lors de la 3^{ème} campagne (pH compris entre 7,5 en surface et 7,0 au fond). Enfin, lors de la 4^{ème} campagne, le pH augmente en surface avec le bloom de cyanobactéries observable (pH 8,6 à 8,8) et baisse significativement en dessous de 4 m (pH 7,1 à 7,5) en lien avec la dégradation de la matière organique.

1.1.2 PARAMETRES DE CONSTITUTION ET TYPOLOGIE DU LAC

N.B. pour tous les tableaux suivants :

LD = limite de détection, généralement =SQ/3, sauf pour DBO5 et turbidité pour lesquels LD=SQ, avec SQ = seuil de quantification; Présence = valeur comprise entre LD et SQ, composé présent mais non précisément quantifiable.

Les paramètres de minéralisation sont étudiés lors de la 1^{ère} campagne uniquement. Les résultats sont présentés dans le tableau 3.

Tableau 3 : résultats des paramètres de minéralisation lors de la 1° campagne

Retenue de Puyvalador		seuil quantification	11/05/2010	
code plan d'eau :	Y1005163	scan quantification	Intégré	Fond
Dureté calculée	°F	0.1 pour C1 seule	4	
T.A.C.	°F	0.5 pour C1 seule	3,8	
T.A.	°F	0.5 pour C1 seule	<ld< td=""><td></td></ld<>	
CO3	mg(CO3)/l	6 pour C1 seule	<ld< td=""><td></td></ld<>	
HCO3-	mg(HCO3)/l	6.1 pour C1 seule	46,4	
Calcium total	mg(Ca)/l	1 pour C1 seule	13	
Magnésium	mg(Mg)/l	1 pour C1 seule	1,9	
Sodium	mg(Na)/l	1 pour C1 seule	3,3	
Potassium	mg(K)/l	1 pour C1 seule	<ld< td=""><td></td></ld<>	
Chlorures	mg(Cl)/l	1 pour C1 seule	3,9	
Sulfates	mg(SO4)/l	1 pour C1 seule	4,1	

Les résultats indiquent une eau très faiblement carbonatée, de dureté faible. La retenue de Puyvalador et son bassin versant se trouvent sur des terrains granitiques, ce qui explique la faible minéralisation des eaux et les faibles concentrations observées pour les cations et anions.

1.1.3 RESULTATS DES ANALYSES PHYSICOCHIMIQUES DES EAUX (HORS MICROPOLLUANTS)

Tableau 4 : résultats des paramètres de physico-chimie classique sur eau.

Physico-chimie sur eau										
Retenue de	Puyvalador	seuil quantification	11/05/2010		16/06/2010		22/07/2010		18/08/2010	
code plan d'eau :	Y1005163	scan quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
Turbidité	NTU	0.1 pour C1 à C4	2,2	2	0,7	0,8	0,7	1,7	10	2,8
M.E.S.T.	mg/l	1 pour C1 à C4	4	5	<ld< td=""><td><ld< td=""><td>1</td><td><ld< td=""><td>5</td><td>2</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>1</td><td><ld< td=""><td>5</td><td>2</td></ld<></td></ld<>	1	<ld< td=""><td>5</td><td>2</td></ld<>	5	2
C.O.D.	mg(C)/l	0.1 pour C1 à C4	2,7	2,4	2	1,7	1,8	1,8	2,9	2,4
C.O.T.	mg(C)/l	0.1 pour C1 à C4	2,8	2,4	2	1,8	1,8	1,8	3,3	2,5
D.B.O.5	mg(O2)/l	0.5 pour C1 à C4	2,1	1,5	0,6	0,6	1,4	4	3	<ld< td=""></ld<>
Azote Kjeldahl	mg(N)/l	1 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1</td><td>1</td><td>1</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1</td><td>1</td><td>1</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>1</td><td>1</td><td>1</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>1</td><td>1</td><td>1</td></ld<></td></ld<>	<ld< td=""><td>1</td><td>1</td><td>1</td></ld<>	1	1	1
NH4+	mg(NH4)/l	0.05 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,08</td><td>0,16</td><td><ld< td=""><td>0,19</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,08</td><td>0,16</td><td><ld< td=""><td>0,19</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,08</td><td>0,16</td><td><ld< td=""><td>0,19</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,08</td><td>0,16</td><td><ld< td=""><td>0,19</td></ld<></td></ld<>	0,08	0,16	<ld< td=""><td>0,19</td></ld<>	0,19
NO3-	mg(NO3)/l	1 pour C1 à C4	<ld< td=""><td>1,2</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	1,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
NO2-	mg(NO2)/l	0.02 pour C1 à C4	0,02	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,03</td><td>0,03</td><td>0,06</td><td>0,06</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,03</td><td>0,03</td><td>0,06</td><td>0,06</td></ld<></td></ld<>	<ld< td=""><td>0,03</td><td>0,03</td><td>0,06</td><td>0,06</td></ld<>	0,03	0,03	0,06	0,06
PO4	mg(PO4)/l	0.015 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,015</td><td>0,034</td><td>0,021</td><td>0,067</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,015</td><td>0,034</td><td>0,021</td><td>0,067</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,015</td><td>0,034</td><td>0,021</td><td>0,067</td></ld<></td></ld<>	<ld< td=""><td>0,015</td><td>0,034</td><td>0,021</td><td>0,067</td></ld<>	0,015	0,034	0,021	0,067
Phosphore Total	mg(P)/l	0.005 pour C1 à C4	0,012	0,009	0,019	0,018	0,024	0,018	0,044	0,04
Silice dissoute	mg(SiO2)/l	0.2 pour C1 à C4	4,7	5,6	5,6	5,6	5,1	6	4,5	6
Chl. A	μg/l	1 pour C1 à C4	9,7		1,6		1,0		20,8	
Chl. B	μg/l	1 pour C1 à C4	<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td><td>5</td><td></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td><td>5</td><td></td></ld<></td></ld<>		<ld< td=""><td></td><td>5</td><td></td></ld<>		5	
Chl. C	μg/l	1 pour C1 à C4	3		<ld< td=""><td></td><td><ld< td=""><td></td><td>6</td><td></td></ld<></td></ld<>		<ld< td=""><td></td><td>6</td><td></td></ld<>		6	
Phéophytine	μg/l	1 pour C1 à C4	2,4		<ld< td=""><td></td><td><ld< td=""><td></td><td>13</td><td></td></ld<></td></ld<>		<ld< td=""><td></td><td>13</td><td></td></ld<>		13	
T 1 1 C				C1. / /C	OD MI	14 3100	NICO D	0.4 0.5		

Les analyses des fractions dissoutes ont été réalisées sur eau filtrée (COD, NH4, NO3, NO2, PO4, Si).

Les concentrations en carbone organique sont moyennes sur les 4 campagnes, comprises entre 1,7 et 3,3 mg/l. Les eaux de surface présentent peu de matières en suspension.

Globalement, les concentrations en nutriments disponibles sont faibles lors des campagnes de fin d'hiver et de printemps puis augmentent lors des campagnes d'été et de fin d'été. Le rapport N/P² ne peut pas être calculé car les éléments orthophosphates et nitrates sont en dessous du SQ en fin d'hiver. Il est plus que probable que l'azote soit limitant dans les eaux de Puyvalador notamment en période estivale où les orthophosphates sont, quant à eux, biodisponibles : ce qui explique le développement des efflorescences de cyanobactéries lors de la 4ème campagne.

Les concentrations en orthophosphates et en ammonium dans le fond sont plus importantes que sur l'échantillon intégré. Ce constat suggère des apports issus de la dégradation de la matière algale qui sédimente dans les couches profondes, et à l'inverse une consommation des nutriments par le phytoplancton dans les couches superficielles.

La teneur en silice dissoute est élevée sur l'échantillon intégré, elle ne semble donc pas limiter le développement des diatomées.

La production chlorophyllienne est importante dans les eaux de la retenue lors des 1^{ère} et 4^{ème} campagne. Au contraire, peu de chlorophylle est produite en C2 et C3 probablement en lien avec le broutage du phytoplancton par le zooplancton mais également en raison des mouvements hydrauliques qui déstabilisent les peuplements phytoplanctoniques.

² le rapport N/P est calculé à partir de [Nminéral]/ [P-PO₄³⁻] avec N minéral = [N-NO₃⁻]+[N-NO₂⁻]+[N-NH₄⁺] sur la campagne de fin d'hiver.

1.1.4 MICROPOLLUANTS MINERAUX

Tableau 5 : résultats d'analyses de métaux sur eau

Micropolluants minéraux sur eau										
	Puyvalador	seuil	11/05	/2010	16/06/2010		22/07/2010		18/08/2010	
code plan d'eau :	Y1005163	quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
Aluminium	μg (Al)/l	5 pour C1 à C4	66	87	37	42	23	23	34	<ld< td=""></ld<>
Antimoine	μg(Sb)/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Argent	μg(Ag)/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Arsenic	μg(As)/l	0.2 pour C1 à C4	1,1	1	1	1	1,5	1,9	1,3	2
Baryum	μg(Ba)/l	0.2 pour C1 à C4	6	5,2	4,5	4,1	5	5,1	5,1	5,2
Beryllium	μg(Be)/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Bore	μg(B)/l	5 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Cadmium	μg(Cd)/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Chrome Total	μg(Cr)/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Cobalt	μg(Co)/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Cuivre	μg(Cu)/l	0.2 pour C1 à C4	0,7	0,6	0,5	0,4	0,6	0,5	0,4	0,4
Etain	$\mu g(Sn)/l$	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Fer total	μg(Fe)/l	5 pour C1 à C4	167	136	94	89	115	274	127	352
Manganèse	$\mu g(Mn)/l$	0.2 pour C1 à C4	19,5	16	10,3	13,9	17,4	72,6	13,8	51,9
Mercure	μg(Hg)/l	0.1 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Molybdène	μg(Mo)/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Nickel	μg(Ni)/l	0.2 pour C1 à C4	0,3	0,3	0,2	<ld< td=""><td>0,4</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,4	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Plomb	μg(Pb)/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Sélénium	μg(Se)/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Thallium	μg(Tl)/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Titane	μg(Ti)/l	0.2 pour C1 à C4	2,2	3,8	1,5	1,5	1,7	1,8	0,8	1,4
Uranium	μg(U)/l	0.2 pour C1 à C4	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Vanadium	$\mu g(V)/l$	0.2 pour C1 à C4	0,3	0,3	0,2	0,2	<ld< td=""><td>0,2</td><td>0,3</td><td>0,3</td></ld<>	0,2	0,3	0,3
Zinc	$\mu g(Zn)/l$	2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2</td><td><ld< td=""><td>3</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>2</td><td><ld< td=""><td>3</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>2</td><td><ld< td=""><td>3</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>2</td><td><ld< td=""><td>3</td><td><ld< td=""></ld<></td></ld<></td></ld<>	2	<ld< td=""><td>3</td><td><ld< td=""></ld<></td></ld<>	3	<ld< td=""></ld<>

Les analyses sur les métaux ont été effectuées sur eau brute

Plusieurs micropolluants minéraux sont présents dans l'eau en quantité importante :

- ✓ l'Aluminium est présent dans l'eau à des concentrations comprises entre 23 et 87 µg/l;
- ✓ le Fer est présent dans l'eau à des concentrations comprises entre 89 et 352 µg/l;
- ✓ le Manganèse est présent dans l'eau à des concentrations comprises entre 10,3 et 72,6 μg/l.

La présence de Fer et de Manganèse dans les eaux du fond en campagnes estivales (C3 et C4) atteste de la mise en suspension d'oxydes ferriques et de manganèse, suite à des réactions d'oxydoréduction.

Arsenic, Baryum, Cuivre, Titane et Vanadium sont également quantifiés dans les eaux de la retenue à des concentrations relativement faibles.

1.1.5 MICROPOLLUANTS ORGANIQUES

Le tableau 6 indique les micropolluants organiques qui ont été quantifiés lors des campagnes de prélèvements en 2010. La liste de l'ensemble des substances analysées est fournie en annexe 1.

Agence de l'Eau Rhône - Méditerranée & Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Puyvalador (66) **Tableau 6: résultats d'analyses de micropolluants organiques présents sur eau**

Micropolluants organiques mis en évidence sur eau										
Retenue de	Puyvalador	seuil quantification	11/05	5/2010	16/06	/2010	22/07	7/2010	18/08	3/2010
code plan d'eau :	Y1005163	scun quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
Dioctylétain	μg/l	0.015 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,027</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,027</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,027</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,027	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Ethylbenzène	μg/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,3</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,3</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,3	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Formaldéhyde	μg/l	1 pour C1 à C4	1,6	1,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>2</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>2</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>2</td><td><ld< td=""></ld<></td></ld<>	2	<ld< td=""></ld<>
Toluène	μg/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,5</td><td>0,8</td><td>1,7</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,5</td><td>0,8</td><td>1,7</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,5</td><td>0,8</td><td>1,7</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,5	0,8	1,7	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Xylène méta + para	μg/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,5</td><td>1,1</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,5</td><td>1,1</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,5</td><td>1,1</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,5</td><td>1,1</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,5	1,1	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Xylène ortho	μg/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td><td>0,4</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td><td>0,4</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,3</td><td>0,4</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,3</td><td>0,4</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,3	0,4	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Xylènes (ortho, méta, para)	μg/l	0.2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,8</td><td>1,5</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,8</td><td>1,5</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,8</td><td>1,5</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,8</td><td>1,5</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,8	1,5	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

Toutes les valeurs quantifiées sont présentées dans le tableau 6. Cependant certaines valeurs pourront être qualifiées d'incertaines suite à la validation finale des résultats (cas des valeurs mesurées en DEHP, BTEX, Formaldéhyde, dont une contamination via la chaîne de prélèvement et/ou d'analyse de laboratoire est privilégiée).

Des composés de type BTEX (Ethylbenzène, Toluène et Xylène) ont été quantifiés lors de la campagne 3.

Le Formaldéhyde a été repéré en C1 et C4 à des concentrations comprises entre 1,4 et 2,0 μ g/l. Un composé organostanneux : le Dioctylétain a été détecté ponctuellement dans le fond en C2.

1.2 ANALYSES DE SEDIMENTS

1.2.1 Physicochimie des sediments

Le tableau 7 fournit la synthèse de l'analyse granulométrique menée sur les sédiments prélevés.

Tableau 7 : synthèse granulométrique sur le sédiment du point de plus grande profondeur

Sédiment	Sédiment : composition granulométrique (%)				
R	etenue	de Puyvalador	18/08/2010		
code pl	an d'ea	u: Y1005163	18/08/2010		
classe grai	nulomét	rique (µm)	%		
0	à	2	1,9		
2	à	20	40,3		
20	à	50	34		
50	à	63	7,1		
63	à	200	14,3		
200	à	1000	2,3		
1000	à	2000	0,0		
> 2000		_	0,0		

Il s'agit de sédiments très fins, de nature limono-vaseuse de 2 à $200~\mu m$ à 98~% (exempts de débris grossiers).

Les analyses de physico-chimie classique menées sur la fraction solide (MS de particules < 2mm) et sur l'eau interstitielle du sédiment sont rapportées au tableau 8.

Tableau 8 : analyses de sédiments

Eau interstitielle du sédiment chimie	: Physico-		
Retenue de	Puyvalador	seuil quantification	
code plan d'eau :	Y1005163	seun quantification	18/08/2010
NH4+	mg(NH4)/l	0,5	10,9
PO4	mg(PO4)/l	1,5	<ld< td=""></ld<>
Phosphore Total	mg(P)/l	0,1	0,13

Sédiment : Physico-chimie	,		
Retenue d	le Puyvalador	seuil quantification	
code plan d'eau	: Y1005163	seun quantification	18/08/2010
Matières sèches minérales	% MS	0,3	85,9
Perte au feu	% MS	0,3	14,2
Matières sèches totales	%	0,3	32,9
C.O.T.	mg(C)/kg MS	1	64200,0
Azote Kjeldahl	mg(N)/kg MS	1	6780,0
Phosphore Total	mg(P)/kg MS	0,5	2139,6

Il s'agit de sédiments « fluides », à forte teneur en eau (66%).

Dans les sédiments, la teneur en matière organique est relativement élevée avec plus de 14 % de perte au feu. La concentration en azote organique est assez élevée. Le rapport C/N est de 9,5, il

indique une légère prédominance (C/N<10) de matière algale récemment déposée dont une partie sera recyclée en azote minéral. La concentration en phosphore est élevée, supérieure à 2 g/kg MS, ce qui correspond à un stockage important de phosphore dans les sédiments, lié à des apports aux saisons précédentes issus de la production depuis la masse d'eau mais aussi par des apports allochtones (pollution domestique et agricole du bassin versant, débris végétaux).

L'eau interstitielle contient les minéraux facilement mobilisables dans les sédiments. L'ammonium est en quantité très importante alors que le phosphore apparaît peu biodisponible. NH₄⁺ provient de l'ammonification ou de la dégradation de l'azote organique, l'élément est alors relargué dans les eaux depuis les sédiments.

1.2.2 MICROPOLLUANTS MINERAUX

Ils ont été dosés sur la fraction solide du sédiment.

Tableau 9 : Micropolluants minéraux sur sédiment

Sédiment : Micrope	olluants minéraux		
Reten	ue de Puyvalador	seuil quantification	
code plan d'	eau : Y1005163	seun quantification —	18/08/2010
Aluminium	mg(Al)/kg MS	10	59245
Bore	mg(B)/kg MS	0,2	40,6
Fer total	mg(Fe)/kg MS	10	45723
Mercure	mg(Hg)/kg MS	0,02	<ld< td=""></ld<>
Zinc	mg(Zn)/kg MS	0,2	141,5
Antimoine	mg(Sb)/kg MS	0,2	2,2
Argent	mg(Ag)/kg MS	0,2	0,6
Arsenic	mg(As)/kg MS	0,2	20,1
Baryum	mg(Ba)/kg MS	0,2	409,8
Beryllium	mg(Be)/kg MS	0,2	2,7
Cadmium	mg(Cd)/kg MS	0,2	0,4
Chrome Total	mg(Cr)/kg MS	0,2	65,1
Cobalt	mg(Co)/kg MS	0,2	16,4
Cuivre	mg(Cu)/kg MS	0,2	33,1
Etain	mg(Sn)/kg MS	0,2	11,6
Manganèse	mg(Mn)/kg MS	0,2	542,1
Molybdène	mg(Mo)/kg MS	0,2	0,9
Nickel	mg(Ni)/kg MS	0,2	31,9
Plomb	mg(Pb)/kg MS	0,2	28,4
Sélénium	mg(Se)/kg MS	0,2	1,1
Tellurium	mg(Te)/kg MS	0,2	<ld< td=""></ld<>
Thallium	mg(Th)/kg MS	0,2	0,7
Titane	mg(Ti)/kg MS	0,2	3968,2
Uranium	mg(U)/kg MS	0,2	5,6
Vanadium	mg(V)/kg MS	0,2	107,3

Tous les métaux, hormis le Mercure, sont quantifiés dans le prélèvement de sédiment. Les éléments Aluminium et Fer sont à des teneurs très importantes. On note également des valeurs élevées pour les métaux de constitution : Baryum et Titane. Ces éléments se retrouvent dans certains minéraux.

On trouve de l'Uranium et du Vanadium en quantité relativement élevée, supérieure aux valeurs moyennes (origine géologique : substrat granitique).

Parmi les métaux lourds, le Chrome, le Nickel et le Zinc sont présents à des concentrations non négligeables.

1.2.3 MICROPOLLUANTS ORGANIQUES

Le tableau 10 indique les micropolluants organiques qui ont été quantifiés dans les sédiments lors de la campagne de prélèvements en 2010. La liste de l'ensemble des substances analysées est fournie en annexe 2.

Tableau 10 : résultats d'analyses de micropolluants organiques présents sur sédiment

Retenue de Puyvalador code plan d'eau : Y1005163 scuil quantification 18/08/2010 Anthracène μg/kg MS 20 41 Benzo (a) anthracène μg/kg MS 10 100 Benzo (b) pyrène μg/kg MS 10 138 Benzo (b) fluoranthène μg/kg MS 10 135 Benzo (ghi) pérylène μg/kg MS 10 99 Benzo (k) fluoranthène μg/kg MS 10 63 Biphényle μg/kg MS 10 63 Biphényle μg/kg MS 20 44 Di(2-éthylhexyl)phtalate (DEHP) μg/kg MS 20 44 Di(2-éthylhexyl)phtalate (DEHP) μg/kg MS 20 26 Equivalent Arochlor 1254 μg/kg MS 20 26 Equivalent Arochlor 1254 μg/kg MS 5 137 Fluoranthène μg/kg MS 40 304 Indéno (1,2,3-cd) pyrène μg/kg MS 10 140 Naphtalène μg/kg MS 25 85 Oxadiazon <t< th=""><th colspan="8">Sádiment a Micropellycoute ougoniques mis en ávidones</th></t<>	Sádiment a Micropellycoute ougoniques mis en ávidones							
code plan d'eau : Y1005163 quantification 18/08/2010 Anthracène μg/kg MS 20 41 Benzo (a) anthracène μg/kg MS 10 100 Benzo (b) fluoranthène μg/kg MS 10 138 Benzo (b) fluoranthène μg/kg MS 10 99 Benzo (k) fluoranthène μg/kg MS 10 63 Biphényle μg/kg MS 10 63 Biphényle μg/kg MS 20 44 Di(2-éthylhexyl)phtalate (DEHP) μg/kg MS 100 1684 Chrysène μg/kg MS 50 211 Dibenzo (a,h) anthracène μg/kg MS 20 26 Equivalent Arochlor 1254 μg/kg MS 5 137 Fluoranthène μg/kg MS 40 304 Indéno (1,2,3-cd) pyrène μg/kg MS 10 140 Naphtalène μg/kg MS 25 85 Oxadiazon μg/kg MS 1 5 PCB totaux μg/kg MS 1 8								
Anthracène μg/kg MS 20 41 Benzo (a) anthracène μg/kg MS 10 100 Benzo (b) fluoranthène μg/kg MS 10 138 Benzo (b) fluoranthène μg/kg MS 10 135 Benzo (k) fluoranthène μg/kg MS 10 99 Benzo (k) fluoranthène μg/kg MS 10 63 Biphényle μg/kg MS 20 44 Di(2-éthylhexyl)phtalate (DEHP) μg/kg MS 20 44 Di(2-éthylhexyl)phtalate (DEHP) μg/kg MS 50 211 Dibenzo (a,h) anthracène μg/kg MS 20 26 Equivalent Arochlor 1254 μg/kg MS 5 137 Fluoranthène μg/kg MS 40 304 Indéno (1,2,3-cd) pyrène μg/kg MS 10 140 Naphtalène μg/kg MS 25 85 Oxadiazon μg/kg MS 1 58 PCB totaux μg/kg MS 1 8 PCB 101 μg/kg MS 1 <td< th=""><th></th><th>•</th><th></th><th>19/09/2010</th></td<>		•		19/09/2010				
Benzo (a) anthracène μg/kg MS 10 100 Benzo (a) pyrène μg/kg MS 10 138 Benzo (b) fluoranthène μg/kg MS 10 135 Benzo (ghi) pérylène μg/kg MS 10 99 Benzo (k) fluoranthène μg/kg MS 10 63 Biphényle μg/kg MS 20 44 Di(2-éthylhexyl)phtalate (DEHP) μg/kg MS 20 44 Di(2-éthylhexyl)phtalate (DEHP) μg/kg MS 50 211 Dibenzo (a,h) anthracène μg/kg MS 50 211 Dibenzo (a,h) anthracène μg/kg MS 20 26 Equivalent Arochlor 1254 μg/kg MS 5 137 Fluoranthène μg/kg MS 40 304 11 Indéno (1,2,3-cd) pyrène μg/kg MS 10 140 304 Naphtalène μg/kg MS 10 140 304 Naphtalène μg/kg MS 20 87 PCB totaux μg/kg MS 1 8 <			-					
Benzo (a) pyrène μg/kg MS 10 138 Benzo (b) fluoranthène μg/kg MS 10 135 Benzo (ghi) pérylène μg/kg MS 10 99 Benzo (k) fluoranthène μg/kg MS 10 63 Biphényle μg/kg MS 20 44 Di(2-éthylhexyl)phtalate (DEHP) μg/kg MS 20 44 Di(2-éthylhexyl)phtalate (DEHP) μg/kg MS 50 211 Dibenzo (a,h) anthracène μg/kg MS 50 211 Dibenzo (a,h) anthracène μg/kg MS 50 211 Dibenzo (a,h) anthracène μg/kg MS 5 137 Fluoranthène μg/kg MS 5 137 Fluoranthène μg/kg MS 40 304 Indéno (1,2,3-cd) pyrène μg/kg MS 10 140 Naphtalène μg/kg MS 20 87 PCB totaux μg/kg MS 1 58 PCB totaux μg/kg MS 1 8 PCB101 μg/kg MS 1		100						
Benzo (b) fluoranthène μg/kg MS 10 135 Benzo (ghi) pérylène μg/kg MS 10 99 Benzo (k) fluoranthène μg/kg MS 10 63 Biphényle μg/kg MS 20 44 Di(2-éthylhexyl)phtalate (DEHP) μg/kg MS 100 1684 Chrysène μg/kg MS 50 211 Dibenzo (a,h) anthracène μg/kg MS 20 26 Equivalent Arochlor 1254 μg/kg MS 5 137 Fluoranthène μg/kg MS 40 304 Indéno (1,2,3-cd) pyrène μg/kg MS 10 140 Naphtalène μg/kg MS 25 85 Oxadiazon μg/kg MS 1 58 PCB totaux μg/kg MS 1 58 PCB 101 μg/kg MS 1 8 PCB 105 μg/kg MS 1 3 PCB 106 μg/kg MS 1 3 PCB 118 μg/kg MS 1 8 PCB 138		- ' ' '						
Benzo (ghi) pérylène μg/kg MS 10 99 Benzo (k) fluoranthène μg/kg MS 10 63 Biphényle μg/kg MS 20 44 Di(2-éthylhexyl)phtalate (DEHP) μg/kg MS 100 1684 Chrysène μg/kg MS 50 211 Dibenzo (a,h) anthracène μg/kg MS 20 26 Equivalent Arochlor 1254 μg/kg MS 5 137 Fluoranthène μg/kg MS 40 304 Indéno (1,2,3-cd) pyrène μg/kg MS 10 140 Naphtalène μg/kg MS 25 85 Oxadiazon μg/kg MS 1 58 PCB totaux μg/kg MS 1 58 PCB totaux μg/kg MS 1 8 PCB101 μg/kg MS 1 8 PCB102 μg/kg MS 1 8 PCB133 μg/kg MS 1 8 PCB134 μg/kg MS 1 5 PCB155 μg/kg MS								
Benzo (k) fluoranthène μg/kg MS 10 63 Biphényle μg/kg MS 20 44 Di(2-éthylhexyl)phtalate (DEHP) μg/kg MS 100 1684 Chrysène μg/kg MS 50 211 Dibenzo (a,h) anthracène μg/kg MS 20 26 Equivalent Arochlor 1254 μg/kg MS 5 137 Fluoranthène μg/kg MS 40 304 Indéno (1,2,3-cd) pyrène μg/kg MS 10 140 Naphtalène μg/kg MS 25 85 Oxadiazon μg/kg MS 20 87 PCB totaux μg/kg MS 1 58 PCB101 μg/kg MS 1 8 PCB105 μg/kg MS 1 8 PCB132 μg/kg MS 1 8 PCB133 μg/kg MS 1 8 PCB149 μg/kg MS 1 5 PCB156 μg/kg MS 1 7 PCB156 μg/kg MS 1	` '							
Biphényle μg/kg MS 20 44 Di(2-éthylhexyl)phtalate (DEHP) μg/kg MS 100 1684 Chrysène μg/kg MS 50 211 Dibenzo (a,h) anthracène μg/kg MS 20 26 Equivalent Arochlor 1254 μg/kg MS 5 137 Fluoranthène μg/kg MS 40 304 Indéno (1,2,3-cd) pyrène μg/kg MS 10 140 Naphtalène μg/kg MS 25 85 Oxadiazon μg/kg MS 20 87 PCB totaux μg/kg MS 1 58 PCB101 μg/kg MS 1 8 PCB105 μg/kg MS 1 8 PCB118 μg/kg MS 1 8 PCB132 μg/kg MS 1 8 PCB138 μg/kg MS 1 5 PCB149 μg/kg MS 1 7 PCB156 μg/kg MS 1 7 PCB167 μg/kg MS 1 7								
Di(2-éthylhexyl)phtalate (DEHP) μg/kg MS 100 1684 Chrysène μg/kg MS 50 211 Dibenzo (a,h) anthracène μg/kg MS 20 26 Equivalent Arochlor 1254 μg/kg MS 5 137 Fluoranthène μg/kg MS 40 304 Indéno (1,2,3-cd) pyrène μg/kg MS 10 140 Naphtalène μg/kg MS 25 85 Oxadiazon μg/kg MS 20 87 PCB totaux μg/kg MS 1 58 PCB101 μg/kg MS 1 8 PCB105 μg/kg MS 1 8 PCB132 μg/kg MS 1 8 PCB132 μg/kg MS 1 8 PCB138 μg/kg MS 1 8 PCB149 μg/kg MS 1 5 PCB156 μg/kg MS 1 7 PCB167 μg/kg MS 1 7 PCB180 μg/kg MS 1 9 </td <td>` · ·</td> <td></td> <td>+</td> <td></td>	` · ·		+					
Chrysène μg/kg MS 50 211 Dibenzo (a,h) anthracène μg/kg MS 20 26 Equivalent Arochlor 1254 μg/kg MS 5 137 Fluoranthène μg/kg MS 40 304 Indéno (1,2,3-cd) pyrène μg/kg MS 10 140 Naphtalène μg/kg MS 25 85 Oxadiazon μg/kg MS 20 87 PCB totaux μg/kg MS 1 58 PCB101 μg/kg MS 1 8 PCB105 μg/kg MS 1 8 PCB118 μg/kg MS 1 8 PCB132 μg/kg MS 1 8 PCB138 μg/kg MS 1 8 PCB149 μg/kg MS 1 5 PCB150 μg/kg MS 1 7 PCB156 μg/kg MS 1 7 PCB167 μg/kg MS 1 3 PCB180 μg/kg MS 1 3 PCB18			+					
Dibenzo (a,h) anthracène μg/kg MS 20 26 Equivalent Arochlor 1254 μg/kg MS 5 137 Fluoranthène μg/kg MS 40 304 Indéno (1,2,3-cd) pyrène μg/kg MS 10 140 Naphtalène μg/kg MS 25 85 Oxadiazon μg/kg MS 20 87 PCB totaux μg/kg MS 1 58 PCB101 μg/kg MS 1 8 PCB105 μg/kg MS 1 3 PCB118 μg/kg MS 1 8 PCB132 μg/kg MS 1 8 PCB138 μg/kg MS 1 8 PCB149 μg/kg MS 1 5 PCB153 μg/kg MS 1 7 PCB166 μg/kg MS 1 7 PCB170 μg/kg MS 1 3 PCB180 μg/kg MS 1 4 PCB194 μg/kg MS 1 1 PCB180 <td></td> <td></td> <td></td> <td></td>								
Equivalent Arochlor 1254 μg/kg MS 5 137 Fluoranthène μg/kg MS 40 304 Indéno (1,2,3-cd) pyrène μg/kg MS 10 140 Naphtalène μg/kg MS 25 85 Oxadiazon μg/kg MS 20 87 PCB totaux μg/kg MS 1 58 PCB101 μg/kg MS 1 8 PCB105 μg/kg MS 1 3 PCB106 μg/kg MS 1 3 PCB118 μg/kg MS 1 8 PCB132 μg/kg MS 1 5 PCB138 μg/kg MS 1 8 PCB149 μg/kg MS 1 5 PCB153 μg/kg MS 1 7 PCB166 μg/kg MS 1 9 PCB170 μg/kg MS 1 3 PCB180 μg/kg MS 1 4 PCB194 μg/kg MS 1 1 PCB28 μg/kg M		μg/kg MS	50					
Fluoranthène μg/kg MS 40 304 Indéno (1,2,3-cd) pyrène μg/kg MS 10 140 Naphtalène μg/kg MS 25 85 Oxadiazon μg/kg MS 20 87 PCB totaux μg/kg MS 1 58 PCB101 μg/kg MS 1 8 PCB105 μg/kg MS 1 3 PCB118 μg/kg MS 1 8 PCB132 μg/kg MS 1 5 PCB138 μg/kg MS 1 8 PCB149 μg/kg MS 1 5 PCB153 μg/kg MS 1 7 PCB156 μg/kg MS 1 7 PCB167 μg/kg MS 1 3 PCB180 μg/kg MS 1 3 PCB194 μg/kg MS 1 4 PCB194 μg/kg MS 1 1 PCB28 μg/kg MS 1 1 PCB31 μg/kg MS 1<	` ' '	μg/kg MS		26				
Indéno (1,2,3-cd) pyrène μg/kg MS 10 140 Naphtalène μg/kg MS 25 85 Oxadiazon μg/kg MS 20 87 PCB totaux μg/kg MS 1 58 PCB101 μg/kg MS 1 8 PCB105 μg/kg MS 1 3 PCB118 μg/kg MS 1 8 PCB132 μg/kg MS 1 5 PCB138 μg/kg MS 1 8 PCB149 μg/kg MS 1 5 PCB153 μg/kg MS 1 7 PCB156 μg/kg MS 1 7 PCB167 μg/kg MS 1 présence PCB170 μg/kg MS 1 3 PCB180 μg/kg MS 1 4 PCB194 μg/kg MS 1 4 PCB194 μg/kg MS 1 1 PCB28 μg/kg MS 1 1 PCB31 μg/kg MS 1 <td>Equivalent Arochlor 1254</td> <td>μg/kg MS</td> <td>5</td> <td>137</td>	Equivalent Arochlor 1254	μg/kg MS	5	137				
Naphtalène μg/kg MS 25 85 Oxadiazon μg/kg MS 20 87 PCB totaux μg/kg MS 1 58 PCB101 μg/kg MS 1 8 PCB105 μg/kg MS 1 3 PCB118 μg/kg MS 1 8 PCB132 μg/kg MS 1 5 PCB138 μg/kg MS 1 8 PCB149 μg/kg MS 1 5 PCB153 μg/kg MS 1 7 PCB156 μg/kg MS 1 présence PCB167 μg/kg MS 1 présence PCB170 μg/kg MS 1 3 PCB194 μg/kg MS 1 4 PCB194 μg/kg MS 1 présence PCB28 μg/kg MS 1 1 PCB31 μg/kg MS 1 1 PCB32 μg/kg MS 1 2 PCB52 μg/kg MS 1	Fluoranthène	μg/kg MS	40	304				
Oxadiazon μg/kg MS 20 87 PCB totaux μg/kg MS 1 58 PCB101 μg/kg MS 1 8 PCB105 μg/kg MS 1 3 PCB118 μg/kg MS 1 8 PCB132 μg/kg MS 1 5 PCB138 μg/kg MS 1 8 PCB138 μg/kg MS 1 5 PCB149 μg/kg MS 1 5 PCB153 μg/kg MS 1 7 PCB156 μg/kg MS 1 présence PCB167 μg/kg MS 1 présence PCB170 μg/kg MS 1 3 PCB180 μg/kg MS 1 4 PCB194 μg/kg MS 1 présence PCB28 μg/kg MS 1 1 PCB31 μg/kg MS 1 2 PCB44 μg/kg MS 1 2 PCB52 μg/kg MS 1	Indéno (1,2,3-cd) pyrène	μg/kg MS	10	140				
PCB totaux μg/kg MS 1 58 PCB101 μg/kg MS 1 8 PCB105 μg/kg MS 1 3 PCB118 μg/kg MS 1 8 PCB132 μg/kg MS 1 5 PCB138 μg/kg MS 1 8 PCB149 μg/kg MS 1 5 PCB153 μg/kg MS 1 7 PCB156 μg/kg MS 1 présence PCB167 μg/kg MS 1 présence PCB170 μg/kg MS 1 3 PCB180 μg/kg MS 1 4 PCB194 μg/kg MS 1 présence PCB28 μg/kg MS 1 1 PCB31 μg/kg MS 1 présence PCB44 μg/kg MS 1 2 PCB52 μg/kg MS 1 3	Naphtalène	μg/kg MS	25	85				
PCB totaux μg/kg MS 1 58 PCB101 μg/kg MS 1 8 PCB105 μg/kg MS 1 3 PCB105 μg/kg MS 1 3 PCB118 μg/kg MS 1 8 PCB132 μg/kg MS 1 5 PCB138 μg/kg MS 1 8 PCB149 μg/kg MS 1 5 PCB149 μg/kg MS 1 7 PCB150 μg/kg MS 1 présence PCB156 μg/kg MS 1 présence PCB167 μg/kg MS 1 3 PCB170 μg/kg MS 1 3 PCB180 μg/kg MS 1 4 PCB194 μg/kg MS 1 présence PCB28 μg/kg MS 1 1 PCB31 μg/kg MS 1 présence PCB44 μg/kg MS 1 2 PCB52 μg/kg MS 1 3	Oxadiazon	μg/kg MS	20	87				
PCB105 μg/kg MS 1 3 PCB118 μg/kg MS 1 8 PCB132 μg/kg MS 1 5 PCB138 μg/kg MS 1 8 PCB149 μg/kg MS 1 5 PCB153 μg/kg MS 1 7 PCB156 μg/kg MS 1 présence PCB167 μg/kg MS 1 présence PCB170 μg/kg MS 1 3 PCB180 μg/kg MS 1 4 PCB194 μg/kg MS 1 présence PCB28 μg/kg MS 1 1 PCB31 μg/kg MS 1 présence PCB44 μg/kg MS 1 2 PCB52 μg/kg MS 1 3	PCB totaux	μg/kg MS	1	58				
PCB105 μg/kg MS 1 3 PCB118 μg/kg MS 1 8 PCB132 μg/kg MS 1 5 PCB138 μg/kg MS 1 8 PCB149 μg/kg MS 1 5 PCB153 μg/kg MS 1 7 PCB156 μg/kg MS 1 présence PCB167 μg/kg MS 1 présence PCB170 μg/kg MS 1 3 PCB180 μg/kg MS 1 4 PCB194 μg/kg MS 1 présence PCB28 μg/kg MS 1 1 PCB31 μg/kg MS 1 présence PCB44 μg/kg MS 1 2 PCB52 μg/kg MS 1 3	PCB101	μg/kg MS	1	8				
PCB132 μg/kg MS 1 5 PCB138 μg/kg MS 1 8 PCB149 μg/kg MS 1 5 PCB153 μg/kg MS 1 7 PCB156 μg/kg MS 1 présence PCB167 μg/kg MS 1 présence PCB170 μg/kg MS 1 3 PCB180 μg/kg MS 1 4 PCB194 μg/kg MS 1 présence PCB28 μg/kg MS 1 1 PCB31 μg/kg MS 1 présence PCB44 μg/kg MS 1 2 PCB52 μg/kg MS 1 3	PCB105		1	3				
PCB132 μg/kg MS 1 5 PCB138 μg/kg MS 1 8 PCB149 μg/kg MS 1 5 PCB153 μg/kg MS 1 7 PCB156 μg/kg MS 1 présence PCB167 μg/kg MS 1 présence PCB170 μg/kg MS 1 3 PCB180 μg/kg MS 1 4 PCB194 μg/kg MS 1 présence PCB28 μg/kg MS 1 1 PCB31 μg/kg MS 1 présence PCB44 μg/kg MS 1 2 PCB52 μg/kg MS 1 3	PCB118	μg/kg MS	1	8				
PCB138 μg/kg MS 1 8 PCB149 μg/kg MS 1 5 PCB153 μg/kg MS 1 7 PCB156 μg/kg MS 1 présence PCB167 μg/kg MS 1 présence PCB170 μg/kg MS 1 3 PCB180 μg/kg MS 1 4 PCB194 μg/kg MS 1 présence PCB28 μg/kg MS 1 1 PCB31 μg/kg MS 1 présence PCB44 μg/kg MS 1 2 PCB52 μg/kg MS 1 3	PCB132		1	5				
PCB149 μg/kg MS 1 5 PCB153 μg/kg MS 1 7 PCB156 μg/kg MS 1 présence PCB167 μg/kg MS 1 présence PCB170 μg/kg MS 1 3 PCB180 μg/kg MS 1 4 PCB194 μg/kg MS 1 présence PCB28 μg/kg MS 1 1 PCB31 μg/kg MS 1 présence PCB44 μg/kg MS 1 2 PCB52 μg/kg MS 1 3	PCB138		1	8				
PCB153 μg/kg MS 1 7 PCB156 μg/kg MS 1 présence PCB167 μg/kg MS 1 présence PCB170 μg/kg MS 1 3 PCB180 μg/kg MS 1 4 PCB194 μg/kg MS 1 présence PCB28 μg/kg MS 1 1 PCB31 μg/kg MS 1 présence PCB44 μg/kg MS 1 2 PCB52 μg/kg MS 1 3	PCB149		1	5				
PCB156 μg/kg MS 1 présence PCB167 μg/kg MS 1 présence PCB170 μg/kg MS 1 3 PCB180 μg/kg MS 1 4 PCB194 μg/kg MS 1 présence PCB28 μg/kg MS 1 1 PCB31 μg/kg MS 1 présence PCB44 μg/kg MS 1 2 PCB52 μg/kg MS 1 3	PCB153		1	7				
PCB167 μg/kg MS 1 présence PCB170 μg/kg MS 1 3 PCB180 μg/kg MS 1 4 PCB194 μg/kg MS 1 présence PCB28 μg/kg MS 1 1 PCB31 μg/kg MS 1 présence PCB44 μg/kg MS 1 2 PCB52 μg/kg MS 1 3	PCB156			présence				
PCB170 μg/kg MS 1 3 PCB180 μg/kg MS 1 4 PCB194 μg/kg MS 1 présence PCB28 μg/kg MS 1 1 PCB31 μg/kg MS 1 présence PCB44 μg/kg MS 1 2 PCB52 μg/kg MS 1 3	PCB167		1	présence				
PCB180 μg/kg MS 1 4 PCB194 μg/kg MS 1 présence PCB28 μg/kg MS 1 1 PCB31 μg/kg MS 1 présence PCB44 μg/kg MS 1 2 PCB52 μg/kg MS 1 3				*				
PCB 194 μg/kg MS 1 présence PCB 28 μg/kg MS 1 1 PCB 31 μg/kg MS 1 présence PCB 44 μg/kg MS 1 2 PCB 52 μg/kg MS 1 3		- ' ' '	1	4				
PCB28 μg/kg MS 1 1 PCB31 μg/kg MS 1 présence PCB44 μg/kg MS 1 2 PCB52 μg/kg MS 1 3				présence				
PCB31 μg/kg MS 1 présence PCB44 μg/kg MS 1 2 PCB52 μg/kg MS 1 3				*				
PCB44 μg/kg MS 1 2 PCB52 μg/kg MS 1 3								
PCB52 μg/kg MS 1 3				*				
- 3 31								
Pyrène μg/kg MS 40 195								

Des hydrocarbures, des PCB et un pesticide sont quantifiés dans les sédiments de la retenue de Puyvalador:

- ✓ 16 substances appartenant aux PCB (polychlorobiphényles) sont mesurées pour une concentration totale assez élevée puisque atteignant 58 μg/kg;
- ✓ 14 hydrocarbures aromatiques polycycliques (HAP) sont quantifiés pour une concentration totale atteignant 1715 μg/kg. Les concentrations pour le pyrène et le fluoranthène et leurs dérivés sont assez élevées et traduisent une pollution certaine.
- ✓ 1 herbicide (oxadiazon) est quantifié à une concentration de 87 μg/kg.

Un indicateur plastifiant : le DEHP, est présent à une concentration assez forte (1684 µg/kg).

2 PHYTOPLANCTON

2.1 Prelevements integres

Les prélèvements intégrés destinés à l'analyse du phytoplancton ont été réalisés en même temps que les prélèvements pour analyses physicochimiques. Sur la retenue de Puyvalador, la zone euphotique et la transparence mesurées sont représentées par le graphique de la figure 6. La transparence est faible (< 2 m) lors des campagnes 1 et 4 en lien avec une forte croissance phytoplanctonique, elle est supérieure à 4 m lors des autres prélèvements où le phytoplancton est peu dense. La zone euphotique varie donc entre 3,5 et 12 m sur les quatre campagnes réalisées.

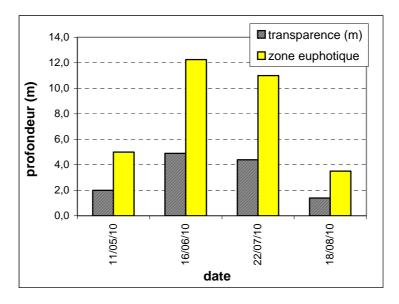


Figure 6 : évolution de la transparence et de la zone euphotique aux 4 campagnes

La liste des espèces de phytoplancton par plan d'eau a été établie selon la méthodologie développée par le CEMAGREF : *Protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en oeuvre de la DCE*, Mars 2009.

La diversité taxonomique N espèces correspond au nombre de taxons identifiés à l'espèce (à l'exclusion des groupes et familles, ainsi que des taxons identifiés au genre quand une espèce du même genre est présente et déterminée à l'espèce. Le nombre N' correspond à la diversité taxonomique totale incluant tous les taxons aux différents niveaux d'identification (nombre le plus probable)

2.2 LISTE FLORISTIQUE (NOMBRE DE CELLULES/ML)

Tableau 11: Liste taxonomique du phytoplancton

]	Date prélèvement					
CI	N. T.	11 mai 16 juin 22 juil 18 ac				
Classe	Nom Taxon	2010	2010	2010	2010	
Chlorophycées	Ankyra ancora			1.40	18	
	Ankyra inerme Ankyra judayi			149 9	91	
	Chlorella vulgaris	455	76	97	164	
	Chlorophycées flagellées	433	70	91	104	
	indéterminées diam 2 - 5 µm	1420	11	3	946	
	Chlorophycées flagellées					
	indéterminées diam 5 - 10 µm	36				
	Chlorophycées indéterminées	127		17	1292	
	Choricystis minor				18	
	Hyaloraphidium contortum		4			
	Lagerheimia genevensis	127	7			
	Monoraphidium circinale		4			
	Pseudanabaena monoliformis	146				
	Pteromonas cordiformis		11			
	Schroederia setigera			39		
	Sphaerocystis schroeteri			526	146	
	Tetraedron minimum	36	4			
Chrysophycées	Bicoeca cylindrica	18				
	Chrysophycées indéterminées				1165	
	Erkenia subaequiciliata	9792	73	36		
	Ochromonas sp.	237				
	Pseudopedinella sp.	36				
Cryptophycées	Cryptomonas marssonii	18		2		
	Cryptomonas sp.	218	18	102	18	
	Rhodomonas minuta var.					
	nannoplanctica	1165	823	143	127	
Cyanobactéries	Anabaena flos-aquae		673	156	1037	
	Anabaena spiroides			33	138579	
	Aphanizomenon flos-aquae			171		
	Aphanocapsa holsatica				1165	
	Microcystis aeruginosa				182	
	Pseudanabaena limnetica			9	455	
	Synechocystis parvula		131			
	Synechocystis sp.	1256				

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Puyvalador (66)

Re	tenue de Puyvalador (suite)		Date pré	lèvement	
		11 mai	16 juin	22 juil	18 août
Classe	Nom Taxon	2010	2010	2010	2010
Diatomées	Asterionella formosa	36	4		
	Aulacoseira subarctica	8208	62	11	36
	Caloneis bacillum		7		
	Cyclotella comensis	36			
	Cyclotella costei	18			382
	Cyclotella radiosa	55			
	Cyclotella stelligera	55			
	Cyclotella woltereckii	73			
	Fragilaria sp.	73		3	
	Nitzschia acicularis	18	11		
	Nitzschia sp.		25	2	
	Stephanodiscus minutulus	1365	25		
	Ulnaria ulna	36		12	
	Ulnaria ulna var. acus	55			
Dinoflagellés	Gymnodinium lantzschii	18			
Euglènes	Trachelomonas volvocina			2	
	nombre cellules/ml	25135	1969	1521	145823
	diversité taxonomique N espèces	24	16	17	14
	diversité taxonomique N'	28	18	20	17

2.3 ÉVOLUTION SAISONNIERE DES GROUPEMENTS PHYTOPLANCTONIQUES

Les échantillons destinés à la détermination du phytoplancton sont constitués d'un prélèvement intégré sur la zone euphotique (équivalant à 2,5 fois la transparence lors de la campagne). Les graphiques suivants présentent la répartition du phytoplancton par groupe algal à partir des résultats exprimés en cellules/ml d'une part et à partir des biovolumes (mm³/l) d'autre part.

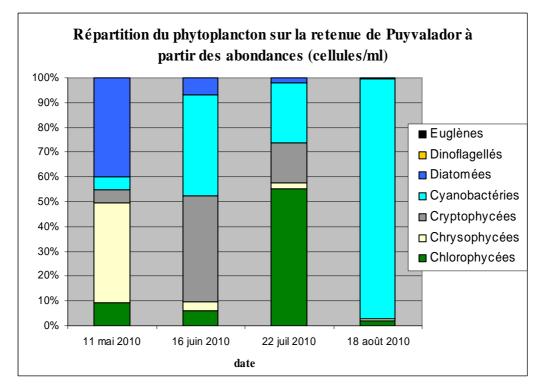


Figure 7: répartition du phytoplancton sur la retenue de Puyvalador à partir des abondances (cellules/ml)

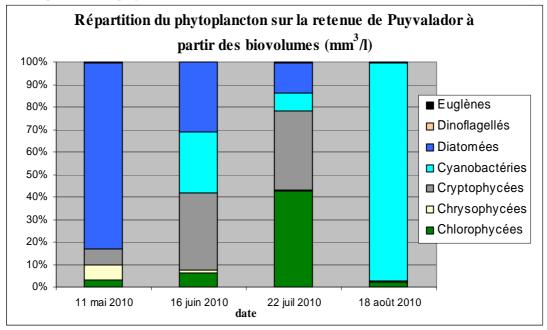
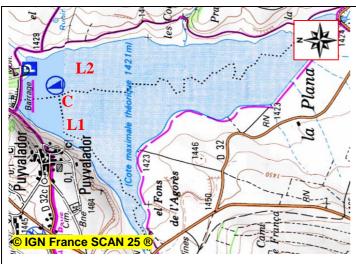


Figure 8: répartition du phytoplancton sur la retenue de Puyvalador à partir des biovolumes (mm³/ml)

Le peuplement phytoplanctonique présente une abondance faible en 2^{ème} et 3^{ème} campagne. L'abondance est plus importante en 1^{ère} mais surtout en 4^{ème} campagne. La biomasse est comprise entre 0,26 et 34,65 mm³/l.

En fin d'hiver, le peuplement phytoplanctonique est abondant avec la dominance des Diatomées avec l'espèce *Aulacoseira subarctica*. Les Diatomées occupent alors plus de 80% du volume algal. L'abondance et le biovolume sont très faibles en C2 comme en C3, semblant indiquer des périodes d'eaux claires, avec broutage du phytoplancton par le zooplancton, mais également des mouvements hydrauliques qui perturbent les communautés phytoplanctoniques (renouvellement régulier des eaux en juin-juillet). Les Cyanobactéries représentées par l'espèce *Anabaena spiroides* se développent massivement en C4 et dominent fortement le peuplement algal : plus de 95% du peuplement et du volume algal. C'est à cette campagne que le phytoplancton est le plus dense et la diversité taxonomique la plus faible. On peut considérer que l'espèce *Anabaena spiroides* forme un bloom algal lors de cette 4^{ème} campagne avec plus de 138 000 cellules/ml : des flocs algaux sont alors visibles dans l'eau et sur les berges.

Globalement, le peuplement phytoplanctonique est déséquilibré, les groupes algaux présents traduisent une eutrophisation marquée. L'Indice phytoplanctonique (IPL) est de 55,0, qualifiant le milieu d'eutrophe (l'indice calculé à partir de l'abondance cellulaire est un peu plus élevé).


3 OLIGOCHETES ET MACROINVERTEBRES

Les prélèvements destinés aux inventaires oligochètes en 2010 avaient deux objectifs :

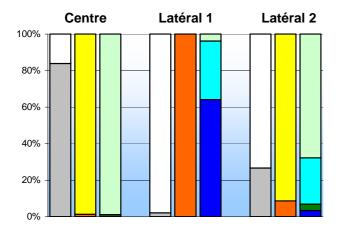
- ✓ tester une nouvelle méthodologie destinée au suivi des invertébrés benthiques dans le cadre de la DCE :
- ✓ et permettre le calcul de l'IOBL classique afin de pouvoir comparer ces résultats avec les données acquises antérieurement.

Du fait, les prélèvements ont été effectués en début de saison, et non, comme le stipule le protocole IOBL, en fin de saison; élément de condition de réalisation à prendre en compte dans l'interprétation.

3.1 CONDITIONS DE PRELEVEMENTS

carte 2 : Localisation des prélèvements de sédiments sur la retenue de Puyvalador

photo 1 : Vue sur l'aval de la retenue depuis la rive droite à proximité de L2


Echantillon	Central (C)	Latéral 1 (L1)	Latéral 2 (L2)	
Date et heure	28/04/2010 15:30	28/04/2010 16:00	28/04/2010 16:30	
Code point	o1	02	о3	
Prof (m)	13,5	7,0	7,0	
Type de benne	Ekman	Ponar	Ponar	
Nombre de bennes	5	6	5	
Surface prospectée (m²)	0,105	0,154	0,128	
Localisation	Z max	Ouest, proximité RG	Est, proximité RD	
Coordonnées X (LII étendu)	582625	582552	582742	
Coordonnées Y (LII étendu)	1738115	1738089	1738065	

Remarques (conditions extérieures remarquables, écart au protocole...):

- Protocole de type "retenue" avec les trois points situés sur un axe transversal parallèle au barrage.
- Points L1 et L2 décalés vers l'amont étant donné l'absence de sédiments meubles dans l'axe transversal.
- Contenu des bennes très hétérogène sur le point L2.
- Surface prospectée supérieure aux valeurs préconisées dans la Norme IOBL (0,03 à 0,1 m²) sur le point L1 en raison de la faible quantité de sédiments récoltés par benne.

3.2 CARACTERISTIQUES DES SEDIMENTS RECOLTES

Nom : Puyvalador Date : 28 avril 2010						
Type : Retenue de moyenne montagne, profonde						
Echantillon		Central (C)	Latéral (L1)	Latéral (L2)		
Couleur		Gris-beige	Gris-beige	Gris-vert		
Odeur		Léger	Nul	Léger		
Taux de remplissage (1 ^{ere} barre)		_				
Volume (ml) des bennes		17871	15360	12800		
Volume (ml) avec sédiments		15000	312	3400		
Présence de débris (2 ^{ème} barre)						
Volume (ml) < 0,5 mm (fines)		14818	0	3105		
Volume (ml) > 0,5 mm (débris)		182	312	295		
Granulométrie (3 ^{ème} barre)						
Volume (ml) 0,5 à 5 mm, organique		180	12	200		
Volume (ml) 0,5 à 5 mm, minéral		0	100	75		
Volume (ml) > 5 mm, organique		2	0	10		
Volume (ml) > 5 mm, minéral		0	200	10		

Le taux de remplissage de la benne est élevé (>75%) au centre alors qu'il est faible (< 25%) sur les points latéraux. Les débris sont peu abondants (< 10%) au centre et sur le point latéral 2 alors qu'ils constituent la totalité du prélèvement sur le point latéral 1. Ils sont dominés par la fraction organique fine (0,5 à 5 mm) au centre et sur le point latéral 2 alors que la fraction minérale est largement majoritaire sur le point latéral 1.

3.3 LISTE FAUNISTIQUE ET CALCUL DE L'INDICE IOBL

3.3.1 DEFINITIONS

Pour comprendre la détermination et le calcul de l'indice IOBL, il est nécessaire de définir certaines notions :

- (1) L'identification possible des taxons se fait soit à tous les stades (a) soit seulement à l'état mature (m).
- (2) Pour aider à l'interprétation, une analyse des espèces indicatrices est menée en utilisant les éléments de diagnostic de Lafont (2007). Les espèces sont réparties en 6 classes indicatrices de la dynamique du fonctionnement des sédiments lacustres :
- S = espèces sensibles à la pollution organique et toxique,
- I = espèces caractérisant un état intermédiaire,
- D = espèces indicatrices d'une impasse trophique naturelle (dystrophie) quand elles sont dominantes,
- P = espèces indicatrices d'un état de forte pollution quand elles sont dominantes,
- H = espèces indicatrices d'échanges hydriques entre les eaux superficielles et souterraines,
- R = espèces probablement liées à un réchauffement climatique

- (3) Le nombre de taxons = R est le nombre minimal possible de taxons parmi les 100 oligochètes comptés. Par exemple, le taxon Naididae ASC immat. (identification limitée par le caractère immature de l'individu) sera comptabilisé comme un taxon uniquement en cas d'absence d'autres Naididae ASC identifiables seulement au stade mature. Les valeurs d'abondance mises en caractère gras correspondent aux taxons pris en compte pour le calcul de la richesse.
- (4) Le calcul de l'Indice IOBL est le suivant : IOBL = R + 3log10 (D+1) où $R = nombre de taxons parmi les oligochètes comptés et <math>D = densité en oligochètes pour 0,1 m^2$.
- (5) La valeur IOBL global = ½(valeur centre) + ¼(valeur lat1) + ¼(valeur lat2). Il s'agit donc de la moyenne entre la valeur de la zone centrale profonde et celle des zones latérales, cette dernière étant égale à la moyenne des valeurs des deux zones latérales (lat 1 et lat 2). Pour le pourcentage des espèces sensibles, le nombre de taxon (R) et la densité sur la globalité du plan d'eau, on applique la moyenne arithmétique.

3.3.2 Liste faunistique pour l'IOBL

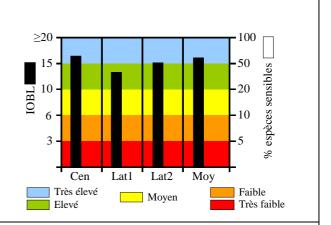
Tableau 12 : liste faunistique pour le calcul de l'IOBL

Groupe	Taxon	Code Sandre	Stades identifiables (1)	Espèces indicatrices (2)	Centre	Lat 1	Lat 2
Lumbriculidae sl	Lumbriculus variegatus	2979	a	P		2	
Naididae ASC	Aulodrilus japonicus	20747	a			5	
	Naididae ASC immat.	5231	a		59	16	15
	Spirosperma ferox	9840	a	I	1	3	
Tubifex tubifex		946	m	D	10	3	3
	Vejdovskyella comata	19325	a	D		1	
Naididae SSC	Aulodrilus limnobius	9836	a			57	41
	Bothrioneurum vejdovskyanum	19217	a	P			5
	Limnodrilus hoffmeisteri	2991	m	P	2	6	3
	Limnodrilus udekemianus	2989	a	P	4		1
	Naididae SSC immat.	5230	a		24	7	32

 $ASC = avec \ soies \ capillaires / SSC = sans \ soies \ capillaires$

		Centre	Lat 1	Lat 2	Glob (5)
Eléments utilisés pour le calcul de l'IOBL	Nombre de taxons = $R^{(3)}$	4	7	5	5
	Nombre d'oligochètes comptés	100	100	100	-
	Nombre d'oligochètes récoltés	13120	190	2689	-
	Surface échantillonnée (m²)	0,105	0,154	0,128	-
	Densité en oligochètes (pour 0,1 m²) = D	12495	123	2101	4906
Indicateurs	Indice IOBL ⁽⁴⁾	16,3	13,3	15,0	15,2
	% Espèces sensibles	0	0	0	0,0

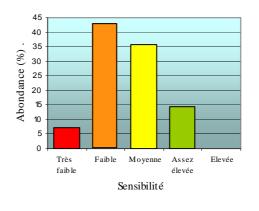
3.3.3 Liste faunistique des macroinvertebres


Tableau 13 : liste globale des invertébrés benthiques

Groupe	Taxons	Code Sandre	Sensibilité	n	b ind / m	2
Groupe	Taxons	Code Sandre	(1)	Centre	Lat 1	Lat 2
Chironomides	Chironomus	817	3	18286	39	7843
	Cladotanytarsus	2862	4,5		52	
	Procladius	2788	Е	1905	97	817
	Tanytarsus	2869	Е		364	327
Diptères autres	Ceratopogonidae	819	Е		1	
Invertébrés autres	Bryozoa	1087	Е	P		P
	Hydracarina	906	Е	P		P
	Nemathelmintha	3111	Е		P	
Mollusques	Pisidium	1043	Е	124	1	117
	Sphaeriidae	1042	Е	238		
Oligochètes	Aulodrilus japonicus	20747	3,5		58	
	Aulodrilus limnobius	9836	5,5		727	8333
	Bothrioneurum vejdovskyanum	19217	5			926
	Limnodrilus hoffmeisteri	2991	2	2	69	556
	Limnodrilus udekemianus	2989	3	5079		1
	Lumbriculus variegatus	2979	4		2	
	Naididae ASC immat.	5231	Е	74159	196	2963
	Naididae SSC immat.	5230	Е	30476	81	6296
	Spirosperma ferox	9840	6,5	1	35	
	Tubifex tubifex	946	Е	12190	35	556
	Vejdovskyella comata	19325	7		1	
Vers	Glossiphoniidae	908	5	2	·	

⁽¹⁾ Optimum de sensibilité par rapport à la charge trophique du plan d'eau. Varie de 1 à 9 avec des correspondances qui peuvent être exprimées en terme de niveau de sensibilité (1 = très faible, 3 = faible, 5 = moyenne, 7 = assez élevée et 9 = élevée) ou de charge trophique préférentielle (1 = hypertrophe, 3 = eutrophe, 5 = mésotrophe, 7 = oligotrophe et 9 = ultraoligotrophe). E = sensibilité non prise en compte car courbe multimodale dont les modes extrêmes sont très éloignés (concerne généralement les taxons plurispécifiques où les optima varient fortement d'une espèce à l'autre). En rouge, les valeurs associées à des taxons dont le niveau de détermination est plus fin que celui indiqué dans le tableau. Dans le cas présent, cela concerne *Polypedilum* (note donnée pour l'espèce *P.nubeculosum*).

3.4 Interpretation des resultats


Oligochètes : Le potentiel métabolique des sédiments est très élevé (IOBL global = 15,2). En revanche, les espèces sensibles sont absentes du peuplement d'Oligochètes, ce qui suggère une altération de la qualité des sédiments profonds. La présence de plusieurs espèces indicatrices de pollutions (dont *Limnodrilus hoffmeisteri*) confirme cette altération.

Macroinvertébrés: le peuplement est dominé par les taxons dont la sensibilité est faible (tels que *Chironomus*, *Aulodrilus japonicus* ou *Limnodrilus udekemianus*), associés à un milieu eutrophe, suivis de près par les taxons dont la sensibilité est moyenne (tels que *Aulodrilus limnobius* ou *Bothrioneurum vejdovskyanum*), associés à un milieu mésotrophe.

Près de 15% des individus présentent une sensibilité assez élevée.

Cette étude des invertébrés benthiques traduit un plan d'eau de type méso- eutrophe.

4 HYDROMORPHOLOGIE

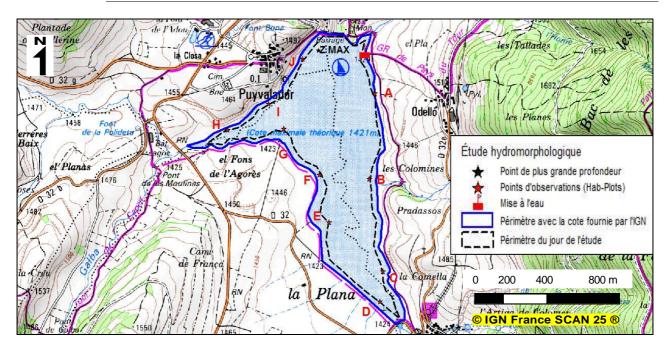
4.1 DEROULEMENT DES INVESTIGATIONS

La retenue de Puyvalador est un plan d'eau artificiel formé par le barrage de Puyvalador sur le cours de l'Aude. Sa superficie pour la cote normale d'exploitation est de 91 ha. La reconnaissance hydromorphologique a été réalisée le 22 juillet 2010. Le plan d'eau présentait alors un marnage de 2 m environ. Le périmètre déterminé sur le terrain est représenté sur la carte 3.

La méthode utilisée est le Lake Habitat Survey (LHS) qui aboutit au calcul de deux indices :

✓ LHMS : évaluation de l'altération du milieu ;

LHQA : évaluation de la qualité des habitats du lac.


La localisation des points d'observation sur le plan d'eau est présentée sur la carte 3.

Les vues sur les 10 points d'observation sont fournies dans la suite du document.

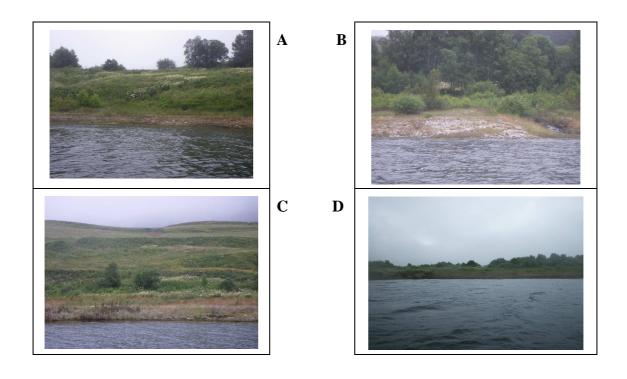


photo 2 : vue prise lors de la reconnaissance hydromorphologique

4.2 CARTOGRAPHIE ET PHOTOGRAPHIE DES POINTS D'OBSERVATIONS

carte 3 : localisation des points LHS sur la retenue de Puyvalador (échelle 1 / 20 000e)

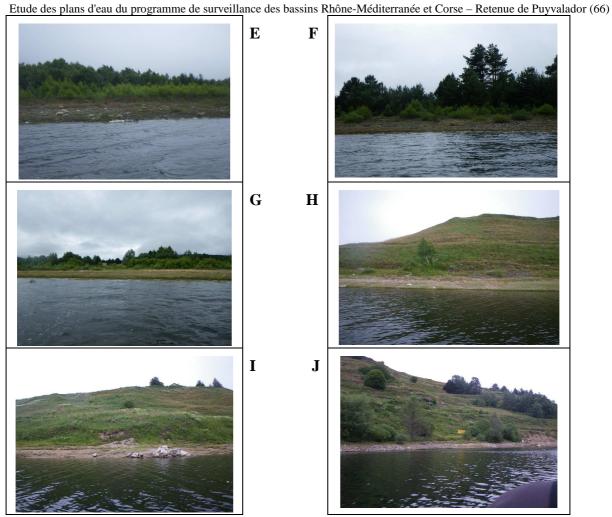


Figure 9 : photos des 10 points d'observation sur la retenue de Puyvalador

4.3 RESULTATS: INDICES DE QUALITE DES HABITATS ET D'ALTERATION MORPHOLOGIQUE

Cette retenue, formée par le barrage de Puyvalador, présente des rives naturelles (prairie, arbuste...) sur 90% de son périmètre. Excepté l'exploitation hydroélectrique du site et une faible portion de route située à l'extrémité sud du plan d'eau, le plan d'eau subit peu de pressions d'origine anthropique. L'indice LHMS indique un milieu peu altéré avec un score de 14/42.

La diversité des habitats est faible sur les rives du plan d'eau. En effet, les berges sont recouvertes de prairies pâturées sur plus de 80% du périmètre. Le faible niveau des eaux au jour de l'étude a laissé place à de larges grèves, colonisées par une végétation herbacée peu diversifiée. La zone littorale est peu diversifiée et peu de macrophytes sont présents. La qualité des habitats apparaît médiocre avec un score LHQA de 54/112.

Hydrology

Sediment regime

Introduced species

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Puyvalador (66) LAKE HABITAT SURVEY SUMMARY REPORT LAKE INFORMATION LAKE ID 7 Name of lake: Puyvalador Country: GB Lakes code WBID 0 22-juil-10 Date surveyed: Hab-Plots: 10 HP Principle use: **IMP** Water Body Type Lake surface area (km2) 0,91 Lake perimeter (m) 5760 Catchment area (km2) 134 Maximum depth (m 17 Lake attitude (m) 1421 Lake Perimeter Bank Construction Pressures and Land Uses % (whole numbers) Impoundments: 3 Coniferous logging: 0 Litter, dump, landfill: 0 0 0 Hard open: Imp grassland: Quarrying or mining: 0 Hard closed: 0 Tilled land: 0 Roads or railways: 0 Soft Engineering: Orchard: 0 Parks and gardens: 0 Docks, marinas, jetties 0 **Erosion:** 0 Recreational beaches: Commercial activities: 0 Residential: 0 Coniferous plantations: Soil poaching: Educational recreation: 0 Camping and caravans: 0 Lake Site Activities/Pressures (presence) **✓** Bridges Angling Non Litter ☐ Introduced species Causeways ■ Angling from boat ■ Wildfowling Macrophyte control ☐ Fish cages ✓ Angling from shore ☐ Surface films Powerlines \square Commercial Fishing \square Non-motor boat activities \square Liming ■ Non-boat recreation/swimmin ■ Navigation ■ Motorboat activities Dumping Military activities □ Dredging Other pressures (specify): ☐ Fish stocking Wetland and Other Habitats % (whole numbers) Geomorphology Emergent reed-bed: 0 Rough grassland: 46 Vegetated islands (non-deltaic): 0 Wet Woodland: Other: 0 0 Unvegetated islands (non-deltaic): Bog: 0 Broadleaf/mixed woodlan 3 Aggrading vegetated deltaic deposit: 0 Fen or marsh: 0 Coniferous woodland: Stable vegetated islands (deltaic): 0 Moorland/heath: 0 Floating veg mats: Deltaic unvegetated gravel bars: 0 Open water: Rock, scree or dunes: 0 Deltaic unvegetated fines bars: 0 LHMS LHQA **LHMS Score** LHQA 53 14 Shore zone modification 0 9 Riparian score Shore zone intensive use 2 Shore score 15 In-lake pressures Littoral score 19

Whole lake score

10

8

0 0

5 MACROPHYTES

5.1 METHODOLOGIE ADAPTEE AUX PLANS D'EAU MARNANTS

Le plan d'eau étudié ici présente une variation annuelle de niveau d'eau supérieure à 2 m. La méthode pour l'étude des peuplements de macrophytes a donc été adaptée conformément aux prescriptions du CEMAGREF pour ce type de plan d'eau. Ces hydrosystèmes sont considérés comme instables, les peuplements observés ne permettent pas de définir un état écologique, mais l'étude des zones propices au développement d'hydrophytes et d'hélophytes permet d'évaluer un certain potentiel.

Il s'agit donc d'étudier certains secteurs où les conditions sont plus favorables (faible pente, influence d'un cours d'eau,...) :

- ✓ Oueues de retenue :
- ✓ Zones de contact entre affluents et plan d'eau ;
- ✓ Zones aménagées : port, mise à l'eau, base nautique.

Ces zones sont étudiées de la manière suivante :

- ✓ Un profil perpendiculaire unique sur une zone colonisée, en appliquant la méthodologie du CEMAGREF pour les plans d'eau non marnants ;
- ✓ Un relevé de rive sur 100 m.

Le repérage des secteurs propices se fait par observation sur le terrain, et à partir de la cartographie. La méthode de Jensen n'est pas appliquée pour les plans d'eau marnants. Ces éléments sont reportés dans le fichier de saisie du CEMAGREF.

Le plan d'eau a été parcouru dans son intégralité en bateau lors de la campagne estivale. Les secteurs propices au développement de végétation aquatique ont été observés, et des prélèvements au râteau et au grappin ont été réalisés pour confirmer les observations et procéder à la détermination des macrophytes présents.

5.2 VEGETATION AQUATIQUE IDENTIFIEE

Le plan d'eau est bordé essentiellement par des prairies, des zones humides, des pelouses et quelques boisements. Le recouvrement global de macrophytes sur la retenue est assez faible. Il est évalué à 2-3%.

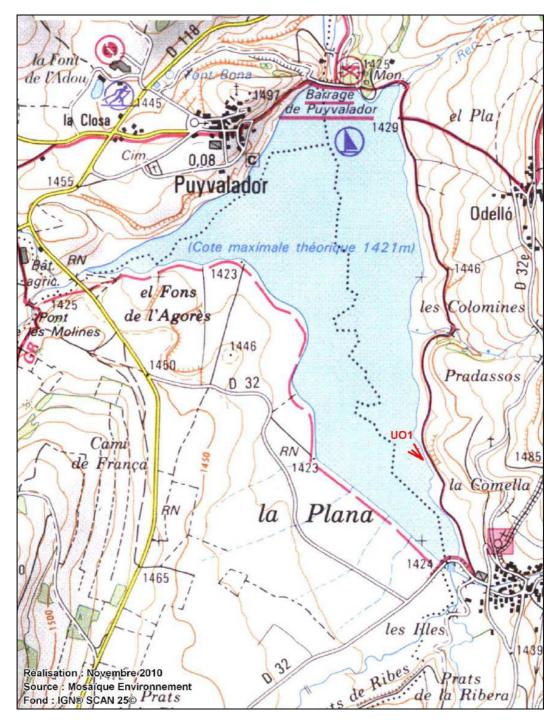
La retenue abrite une diversité faible d'espèces d'hydrophytes et d'hélophytes.

On retrouve en zone littorale sur tout le périmètre du plan d'eau, des herbiers de *Glyceria fluitans*, espèce assez commune de zone peu profonde.

5.2.1 Unite d'observation n°1

Photo 3 : vue sur l'UO 1 de la retenue de Puyvalador

L'UO1 se situe dans la partie sud-ouest du lac dans une anse adjacente à un aterrissement.


Le transect abrite une densité de macrophytes élevée bien que ceux-ci soient peu diversifiés. On y observe notamment *Glyceria fluitans*, *Eleocharis palustris* ainsi que des callitriches (*Callitriche sp.*).

Les algues filamenteuses sont également très présentes sur le transect avec notamment *Spirogyra sp.*, *Melosira sp.* et *Zygnema sp.*

Sur la berge, on observe de nombreuses plantes de roselières et de mégaphorbiaies telles que *Iris pseudacorus*, *Achillea ptarmica*, *Sanguisorba officinalis*, *Galium palustre*, *Juncus inflexus*, *Filipendula ulmaria*, etc.

Les relevés de végétation de cette unité d'observation sont reportés dans le formulaire de saisie du CEMAGREF. Les données sont disponibles sur demande.

5.3 CARTOGRAPHIE DE L'UNITE D'OBSERVATION

carte 4 : localisation de l'unité d'observation des macrophytes sur la retenue de Puyvalador

5.4 LISTE DES ESPECES PROTEGEES ET DES ESPECES INVASIVES

Aucune espèce protégée n'a été observée sur le secteur prospecté. Aucune espèce invasive n'a été observée sur le secteur.

5.5 APPROCHE DU NIVEAU TROPHIQUE DU PLAN D'EAU

La retenue est caractérisée par des peuplements de macrophytes assez clairsemés bien que de nombreuses zones humides soient présentes en zone riveraine.

On peut noter la présence de *Glyceria fluitans*, *Eleocharis palustris* et d'herbiers aquatiques à *Callitriche*. La relative pauvreté des cortèges ne permet pas vraiment de caractériser le niveau trophique du lac.

La forte présence d'algues filamenteuses caractérise probablement des apports azotés ou phosphatés dans le lac.

Interpretation globale des resultats

Les résultats acquis durant le suivi annuel ont été interprétés en termes de potentiel écologique pour les plans d'eau d'origine anthropique et d'état chimique selon les critères et méthodes d'évaluation décrits dans l'arrêté du 25 janvier 2010.

Ces résultats ont également été traités en termes de niveau trophique à l'aide des outils de la diagnose rapide (Cemagref, 2003).

Les résultats de ces deux approches sont présentés dans le document complémentaire : Note synthétique d'interprétation des résultats.

✓ Critères d'applicabilité de la diagnose rapide

La diagnose rapide vise à évaluer l'état trophique des lacs et à mettre en évidence les phénomènes d'eutrophisation. Elle fait appel au principe fondamental du fonctionnement des lacs qui suppose qu'il existe un lien entre la composition physico-chimique à l'époque du mélange hivernal et les phénomènes qu'elle est susceptible d'engendrer dans les divers compartiments de l'écosystème au cours de la période de croissance végétale qui lui succède.

Cette méthode est donc adaptée aux plans d'eau qui stratifient durablement en été et exclut les plans d'eau au temps de séjour réduit (CEMAGREF, 1990, 2003) et les lacs dont la profondeur moyenne est inférieure à 3 m. Il convient également de noter que la diagnose rapide ne prend en compte que la biomasse phytoplanctonique sous l'aspect "production végétale" et n'intègre donc pas l'importance du recouvrement en macrophytes du plan d'eau

La retenue de Puyvalador est un plan d'eau artificiel (MEFM) d'une profondeur moyenne de 9 m. Le plan d'eau ne présente pas vraiment de stratification thermique car il est soumis à des mouvements hydrauliques importants.

Le temps de séjour est court : il est évalué à 38 jours d'après les données disponibles.

Les périodes d'intervention pour les campagnes 2010 correspondent aux objectifs de la méthodologie.

La retenue de Puyvalador ne répond théoriquement pas aux exigences pour appliquer la diagnose rapide, avec un renouvellement des eaux fréquent qui ne permet pas une stratification nette du plan d'eau. La méthode a tout de même été appliquée pour appréhender le niveau trophique du plan d'eau.

Agence de l'Eau Etude o	ı Rhône - Méditerr des plans d'eau du	anée & Corse programme de	surveillance des	bassins Rhône-Mo	éditerranée et Co	rse – Retenue de	Puyvalador (6
			A				
			- ANN	EXES -			

1. LISTE DES MICROPOLLUANTS ANALYSES SUR EAU

Code			Code		
SANDRE	Libel param	Famille composés	SANDRE	Libel_param	Famille composés
5474	4-n-nonylphénol	Alkylphénols	1118	Benzo (ghi) Pérylène	HAP
1957	Nonylphénols	Alkylphénols	1117	Benzo (k) Fluoranthène	HAP
1920	p-(n-octyl)phénols	Alkylphénols	1476	Chrysène	HAP
1958	Para-nonylphénols ramifiés	Alkylphénols	1621	Dibenzo (ah) Anthracène	HAP
1959	Para-tert-octylphénol	Alkylphénols	1191	Fluoranthène	HAP
1593	Chloroaniline-2	Anilines et Chloroanilines	1623	Fluorène	HAP
1592	Chloroaniline-3	Anilines et Chloroanilines	1204	Indéno (123c) Pyrène	HAP
1591	Chloroaniline-4	Anilines et Chloroanilines	1619	Méthyl-2-Fluoranthène	HAP
1589	Dichloroaniline-2,4	Anilines et Chloroanilines	1618	Méthyl-2-naphtalène	HAP
1114	Benzène	BTEX	1517	Naphtalène	HAP
1602	Chlorotoluène-2	BTEX	1524	Phénanthrène	HAP
1601	Chlorotoluène-3	BTEX	1537	Pyrène	HAP
1600	Chlorotoluène-4	BTEX	1370	Aluminium	Métaux
1497	Ethylbenzène	BTEX	1376	Antimoine	Métaux
1633	Isopropylbenzène	BTEX	1368	Argent	Métaux
1278	Toluène	BTEX	1369	Arsenic	Métaux
5431	Xylène (ortho+meta+para)	BTEX	1396	Baryum	Métaux
1292	Xylène-ortho	BTEX	1377	Beryllium	Métaux
1955	Chloroalcanes C10-C13	Chloroalacanes	1362	Bore	Métaux
1467	Chlorobenzène (Mono)	Chlorobenzènes	1388	Cadmium	Métaux
1165	Dichlorobenzène-1,2	Chlorobenzènes	1389	Chrome	Métaux
1164	Dichlorobenzène-1,3	Chlorobenzènes	1379	Cobalt	Métaux
1166	Dichlorobenzène-1,4	Chlorobenzènes	1392	Cuivre	Métaux
1199	Hexachlorobenzène	Chlorobenzènes	1380	Etain	Métaux
1888	Pentachlorobenzène	Chlorobenzènes	1393	Fer	Métaux
1631	Tétrachlorobenzène-1,2,4,5	Chlorobenzènes	1394	Manganèse	Métaux
1630	Trichlorobenzène-1,2,3	Chlorobenzènes	1387	Mercure	Métaux
1283	Trichlorobenzène-1,2,4	Chlorobenzènes	1395	Molybdène	Métaux
1629	Trichlorobenzène-1,3,5	Chlorobenzènes	1386	Nickel	Métaux
1774	Trichlorobenzènes	Chlorobenzènes	1382	Plomb	Métaux
1469	Chloronitrobenzène-1,2	Chloronitrobenzènes	1385	Sélénium	Métaux
1468	Chloronitrobenzène-1,3	Chloronitrobenzènes	2559	Tellurium	Métaux
1470	Chloronitrobenzène-1,4	Chloronitrobenzènes	2555	Thallium	Métaux
1617	Dichloronitrobenzène-2,3	Chloronitrobenzènes	1373	Titane	Métaux
1615	Dichloronitrobenzène-2,5	Chloronitrobenzènes	1361	Uranium	Métaux
1614	Dichloronitrobenzène-3,4	Chloronitrobenzènes	1384	Vanadium	Métaux
2915	BDE100	Diphényléthers bromés	1383	Zinc	Métaux
2912	BDE153	Diphényléthers bromés	1135	Chloroforme (trichlorométhane)	OHV
2911	BDE154	Diphényléthers bromés	2611	Chloroprène	OHV
2920	BDE28	Diphényléthers bromés	2065	Chloropropène-3	OHV
2919	BDE47	Diphényléthers bromés	1160	Dichloréthane-1,1	OHV
2916	BDE99	Diphényléthers bromés	1161	Dichloréthane-1,2	OHV
1815	Décabromodiphényléther	Diphényléthers bromés	1162	Dichloréthylène-1,1	OHV
2609	Octabromodiphénylether	Diphényléthers bromés	1163	Dichloréthylène-1,2	OHV
1921	Pentabromodiphényléther	Diphényléthers bromés	1456	Dichloréthylène-1,2 cis	OHV
1465	Acide monochloroacétique	Divers	1727	Dichloréthylène-1,2 trans	OHV
1753	Chlorure de vinyle	Chlorure de vinyles	1168	Dichlorométhane	OHV
2826	Diéthylamine	Divers	1652	Hexachlorobutadiène	OHV
2773	Diméthylamine	Divers	1271	Tétrachloréthane-1,1,2,2	OHV
1494	Epichlorohydrine	Divers	1272	Tétrachloréthylène	OHV
1453	Acénaphtène	HAP	1276	Tétrachlorure de C	OHV
1622	Acénaphtylène	HAP	1284	Trichloréthane-1,1,1	OHV
1458	Anthracène	HAP	1285	Trichloréthane-1,1,2	OHV
1082	Benzo (a) Anthracène	HAP	1286	Trichloréthylène	OHV
1115	Benzo (a) Pyrène	HAP	1771	Dibutylétain	Organostanneux complets
1116	Benzo (b) Fluoranthène	HAP	1936	Tétrabutylétain	Organostanneux complets

Agence de l'Eau Rhône - Méditerranée & Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Puyvalador (66)

Code SANDRE	Libel_param	Famille_composés	Code SANDRE	Libel_param	Famille composés
	Tributylétain-cation	Organostanneux complets	1187	Fénitrothion	Pesticides
1779	Triphénylétain	Organostanneux complets	1967	Fénoxycarbe	Pesticides
	PCB 101	PCB	2022	Fludioxonil	Pesticides
1243	PCB 118	PCB	1765	Fluroxypyr	Pesticides
	PCB 138	PCB	2547	Fluroxypyr-meptyl	Pesticides
	PCB 153	PCB	1194	Flusilazole	Pesticides
	PCB 169	PCB	1702	Formaldéhyde	Pesticides
	PCB 180	PCB	1506	Glyphosate	Pesticides
1239	PCB 28	PCB	1200		Pesticides
1239	PCB 35	PCB	1200	HCH alpha HCH beta	Pesticides
	PCB 52	PCB		HCH delta	Pesticides
			1202		
	PCB 77	PCB	2046	HCH epsilon	Pesticides
	2 4 D	Pesticides	1203	HCH gamma	Pesticides
	2 4 MCPA	Pesticides	1405	Hexaconazole	Pesticides
	2-Hydroxy-atrazine	Pesticides	1877	Imidaclopride	Pesticides
1903	Acétochlore	Pesticides	1206	Iprodione	Pesticides
1688	Aclonifen	Pesticides	1207	Isodrine	Pesticides
1101	Alachlore	Pesticides	1208	Isoproturon	Pesticides
1103	Aldrine	Pesticides	1950	Kresoxim méthyl	Pesticides
1105	Aminotriazole	Pesticides	1094	Lambda Cyhalothrine	Pesticides
1907	AMPA	Pesticides	1209	Linuron	Pesticides
1107	Atrazine	Pesticides	1210	Malathion	Pesticides
1109	Atrazine déisopropyl	Pesticides	1214	Mécoprop	Pesticides
	Atrazine desethyl	Pesticides	2987	Métalaxyl m = mefenoxam	Pesticides
1951	Azoxystrobine	Pesticides	1796	Métaldéhyde	Pesticides
1113	Bentazone	Pesticides	1215	Métamitrone	Pesticides
1686	Bromacil	Pesticides	1670	Métazachlore	Pesticides
1125	Bromoxynil	Pesticides	1216	Méthabenzthiazuron	Pesticides
	Bromoxynil octanoate	Pesticides	1227	Monolinuron	Pesticides
1129	Carbendazime	Pesticides	1519	Napropamide	Pesticides
1130	Carbofuran	Pesticides	1882	Nicosulfuron	Pesticides
1464	Chlorfenvinphos	Pesticides	1669	Norflurazon	Pesticides
1134	Chlorméphos	Pesticides	1667	Oxadiazon	Pesticides
1474	Chlorprophame	Pesticides	1666	Oxadixyl	Pesticides
1083	Chlorpyriphos éthyl	Pesticides	1231	Oxydéméton méthyl	Pesticides
1540	Chlorpyriphos méthyl	Pesticides	1234	Pendiméthaline	Pesticides
1136	Chlortoluron	Pesticides	1665	Phoxime	Pesticides
2017	Clomazone	Pesticides	1664	Procymidone	Pesticides
1680	Cyproconazole	Pesticides	1414	Propyzamide	Pesticides
1359	Cyprodinil	Pesticides	1432	Pyriméthanil	Pesticides
	DDD-o,p'	Pesticides	1892	Rimsulfuron	Pesticides
	DDD-p,p'	Pesticides	1263	Simazine	Pesticides
	DDE-o,p'	Pesticides	1662	Sulcotrione	Pesticides
1146	DDE-p,p'	Pesticides	1694	Tébuconazole	Pesticides
1147	DDT-o,p'	Pesticides	1661	Tébutame	Pesticides
1148	DDT-p,p'	Pesticides	1268	Terbuthylazine	Pesticides
1830	Déisopropyl-déséthyl-atrazine	Pesticides	2045	Terbuthylazine déséthyl	Pesticides
	Deltaméthrine	Pesticides	1954	Terbuthylazine hydroxy	Pesticides
	Dicamba	Pesticides	1269	Terbutryne	Pesticides
	Dichlorprop	Pesticides	1660	Tétraconazole	Pesticides
	Dichlorvos	Pesticides	1288	Trichlopyr	Pesticides
1173	Dieldrine	Pesticides	1289	Trifluraline	Pesticides
1814	Diflufénicanil	Pesticides	1636	Chlorométhylphénol-4,3	Phénois et chlorophénois
	Diméthénamide	Pesticides	1471	Chlorophénol-2	Phénois et chlorophénois
	Diméthomorphe	Pesticides	1651	Chlorophénol-3	Phénols et chlorophénols
1177	Diuron	Pesticides	1650	Chlorophénol-4	Phénols et chlorophénols
1178	Endosulfan alpha	Pesticides	1486	Dichlorophénol-2,4	Phénols et chlorophénols
1179	Endosulfan beta	Pesticides	1235	Pentachlorophénol	Phénols et chlorophénols
1742	Endosulfan sulfate	Pesticides	1548	Trichlorophénol-2,4,5	Phénols et chlorophénols
1742		B 0.11		Trichlorophénol-2,4,6	
	Endosulfan Total	Pesticides	1549	Themorophenor-2,4,6	Phénols et chlorophénols
1743	Endosulfan Total Endrine				
1743		Pesticides Pesticides Pesticides	1549 1584 1461	Biphényle DEPH	Semi volatils organiques diver Semi volatils organiques diver

2. LISTE DES MICROPOLLUANTS ANALYSES SUR SEDIMENTS

de_SANDRE	l ihel naram	Famille_composés	Code_SANDR	F I ihel naram	Famille_composés
5474	4-n-nonylphénol	Alkylphénols	1652	Hexachlorobutadiène	OHV
1957	Nonylphénols	Alkylphénols	1770	Dibutylétain (oxyde)	Organostanneux complets
1920	p-(n-octyl)phénols	Alkylphénols	1936	Tétrabutylétain	Organostanneux complets
1958	Para-nonylphénols ramifiés	Alkylphénols	2879	Tributylétain-cation	Organostanneux complets
1959	Para-tert-octylphénol	Alkylphénols	1779	Triphénylétain	Organostanneux complets
1602	Chlorotoluène-2	BTEX	1242	PCB 101	PCB
1601	Chlorotoluène-3	BTEX	1243	PCB 118	PCB
1600	Chlorotoluène-4	BTEX	1244	PCB 138	PCB
1497	Ethylbenzène	BTEX	1245	PCB 153	PCB
1633	Isopropylbenzène	BTEX	1090	PCB 169	PCB
5431	Xylène (ortho+meta+para)	BTEX	1246	PCB 180	PCB
1292		BTEX	1239		PCB
	Xylène-ortho			PCB 28	
1955	Chloroalcanes C10-C13	Chloroalacanes	1240	PCB 35	PCB
1165	Dichlorobenzène-1,2	Chlorobenzènes	1241	PCB 52	PCB
1164	Dichlorobenzène-1,3	Chlorobenzènes	1091	PCB 77	PCB
1166	Dichlorobenzène-1,4	Chlorobenzènes	1903	Acétochlore	Pesticides
1199	Hexachlorobenzène	Chlorobenzènes	1688	Aclonifen	Pesticides
1888	Pentachlorobenzène	Chlorobenzènes	1103	Aldrine	Pesticides
1631	Tétrachlorobenzène-1,2,4,5	Chlorobenzènes	1125	Bromoxynil	Pesticides
1630	Trichlorobenzène-1,2,3	Chlorobenzènes	1941	Bromoxynil octanoate	Pesticides
1283	Trichlorobenzène-1,2,4	Chlorobenzènes	1464	Chlorfenvinphos	Pesticides
1629	Trichlorobenzène-1,3,5	Chlorobenzènes	1134	Chlorméphos	Pesticides
1774	Trichlorobenzènes	Chlorobenzènes	1474	Chlorprophame	Pesticides
1617	Dichloronitrobenzène-2,3	Chloronitrobenzènes	1083	Chlorpyriphos éthyl	Pesticides
1615	Dichloronitrobenzène-2,5	Chloronitrobenzènes	1540	Chlorpyriphos méthyl	Pesticides
1614	Dichloronitrobenzène-3,4	Chloronitrobenzènes	1359	Cyprodinil	Pesticides
2915	BDE100	Diphényléthers bromés	1143	DDD-o,p'	Pesticides
2912	BDE153		1143		Pesticides
2912		Diphényléthers bromés	1144	DDD-p,p'	Pesticides
	BDE154	Diphényléthers bromés		DDE-o,p'	
2920	BDE28	Diphényléthers bromés	1146	DDE-p,p'	Pesticides
2919	BDE47	Diphényléthers bromés	1147	DDT-o,p'	Pesticides
2916	BDE99	Diphényléthers bromés	1148	DDT-p,p'	Pesticides
1815	Décabromodiphényléther	Diphényléthers bromés	1149	Deltaméthrine	Pesticides
2609	Octabromodiphénylether	Diphényléthers bromés	1169	Dichlorprop	Pesticides
1921	Pentabromodiphényléther	Diphényléthers bromés	1173	Dieldrine	Pesticides
1453	Acénaphtène	HAP	1814	Diflufénicanil	Pesticides
1622	Acénaphtylène	HAP	1178	Endosulfan alpha	Pesticides
1458	Anthracène	HAP	1179	Endosulfan beta	Pesticides
1082	Benzo (a) Anthracène	HAP	1742	Endosulfan sulfate	Pesticides
1115	Benzo (a) Pyrène	HAP	1743	Endosulfan Total	Pesticides
1116	Benzo (b) Fluoranthène	HAP	1181	Endrine	Pesticides
1118	Benzo (ghi) Pérylène	HAP	1744	Epoxiconazole	Pesticides
1117	Benzo (k) Fluoranthène	HAP	1187	Fénitrothion	Pesticides
1476	Chrysène	HAP	1967	Fénoxycarbe	Pesticides
1621	Dibenzo (ah) Anthracène	HAP	2022	Fludioxonil	Pesticides
1191	Fluoranthène	HAP	2547	Fluroxypyr-meptyl	Pesticides
1623	Fluorène	HAP	1194	Flusilazole	Pesticides
1204	Indéno (123c) Pyrène	HAP	1200	HCH alpha	Pesticides
1619	Méthyl-2-Fluoranthène	HAP	1201	HCH beta	Pesticides
1618	Méthyl-2-naphtalène	HAP	1202	HCH delta	Pesticides
1517	Naphtalène	HAP	2046	HCH epsilon	Pesticides
1524	Phénanthrène	HAP	1203	HCH gamma	Pesticides
1537	Pyrène	HAP	1405	Hexaconazole	Pesticides
1370	Aluminium	Métaux	1206	Iprodione	Pesticides
1376	Antimoine	Métaux	1207	Isodrine	Pesticides
1368	Argent	Métaux	1950	Kresoxim méthyl	Pesticides
1369	Arsenic	Métaux	1094	Lambda Cyhalothrine	Pesticides
1396	Baryum	Métaux	1209	Linuron	Pesticides
1377	Beryllium	Métaux	1519	Napropamide	Pesticides
1362	Bore	Métaux	1667	Oxadiazon	Pesticides
1388	Cadmium	Métaux	1234	Pendiméthaline	Pesticides
1389	Chrome	Métaux	1664	Procymidone	Pesticides
1379	Cobalt	Métaux	1414	Propyzamide	Pesticides
1392	Cuivre	Métaux	1694	Tébuconazole	Pesticides
1380	Etain	Métaux	1661	Tébutame	Pesticides
1393	Fer	Métaux	1268	Terbuthylazine	Pesticides
1394	Manganèse	Métaux	1269	Terbutryne	Pesticides
1387	Mercure	Métaux	1660	Tétraconazole	Pesticides
1395	Molybdène	Métaux	1289	Trifluraline	Pesticides
1386	Nickel	Métaux	1636	Chlorométhylphénol-4,3	Phénols et chlorophénols
1382	Plomb	Métaux	1486	Dichlorophénol-2,4	Phénols et chlorophénols
1385	Sélénium	Métaux	1235	Pentachlorophénol	Phénols et chlorophénols
2559	Tellurium	Métaux	1548	Trichlorophénol-2,4,5	Phénols et chlorophénols
2555	Thallium	Métaux	1549	Trichlorophénol-2,4,6	Phénols et chlorophénols
1373	Titane	Métaux	1584	Biphényle	Semi volatils organiques dive
1361	Uranium	Métaux	1461	DEPH	Semi volatils organiques dive
	1				
1384	Vanadium	Métaux	1847	Tributylphosphate	Semi volatils organiques dive

Agend	ce d	le l'Eau Rhône - Etude des plans	- Méditerranée d'eau du prog	e & Corse ramme d	e le surveillance des b	assins	Rhône-Méditerranée et C	Corse – Retenue de Puyvalador	r (66)
ć	3.	COMPTES				DE	PRELEVEMENTS	PHYSICOCHIMIQUES	ET
		PHYTOPLA	NCTONIQUI	ES SUR	L'ANNEE 2010				

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES GENERALES PLAN D'EAU - STATION

Plan d'eau : Puyvalador (retenue de) Date : 11/05/2010
Type (naturel, artificiel,...) : artificiel Code lac : Y1005163

Organisme / opérateur : S.T.E. : H.Coppin et N.Gibon Campagne 1 page 1/5
Organisme demandeur Agence de l'eau RM&C marché n° 08M082

LOCALISATION PLAN D'EAU

Commune: Puyvalador

Lac marnant : oui Type : A1

Temps de séjour 38 jours

Superficie du plan d'eau : 91 retenues de hautes montagnes, profondes

Profondeur maximale: 17 m

Carte: (extrait SCAN25, IGN 1/25 000)

*

localisation du point de prélèvements

angle de prise de vue de la photographie

STATION

Photo du site:

	hysico-chimi MPAGNE	que en plan d'e	аи				
Plan d'eau :	Puyvalador (retenue de)			Date:	11/05/20	10
Type (naturel, artificiel,):	artificiel	recentae de)			Code lac:		
Organisme / opérateurs :	S.T.E.:	H.Coppin et	N.G	ihon	Campagne		
Organisme demandeur	Agence de l'e		14.01	ibbii	marché n°		2/3
STATION	Agence de l'e	au Kivi&C			marche n	U01V1U02	
Coordonnées de la station	relevées sur	. CDC					
				V. (172277		-lk - 1410	
Lambert 93		X: 628149		Y: 6172277		alt.: 1412	m
WGS 84 (système international)		X:		Y:		alt.:	m
Profondeur :		16,0 m					
	vent : météo :	faible soleil					
Conditions d'observation :	Surface de l'e	eau:	faiblement	agitée			
	Hauteur des	vagues :	0,05 m	P atm stand	lard: 85	51 hF	$\mathbf{p}_{\mathbf{a}}$
	Bloom algal	•	0,05	Pression atı		49 hF	
Marnage:			Ham	teur de la band		5 m	
Warnage .	our		1144	tear ae la bana	· .	, III	
Campagne : PRELEVEMENTS	_	agne de fin d'hiv rité biologique	ver : homoth	ermie du plan	d'eau avant	démarrage	e de
	11.50		TT 1 C"	. 1 1 /	10.20		
Heure de début du relevé :	11:50		Heure de fi	in du relevé :	12:30		
Prélèvements pour analyses :		ophylle plancton	matériel en	nployé :	pompe		
Gestion:	EDF GEH A	ude Arriège					
Gestion : Contact préalable :		•	sanada@edf	f.fr			
		nada vincent.ja	sanada@edf	f.fr			
	Vincent Jasa	nada vincent.ja	sanada@edf	f.fr			
Contact préalable :	Vincent Jasa 05.34.09.87.	nada vincent.ja 69			n du faible		
	Vincent Jasa 05.34.09.87. La réalisation	nada vincent.ja 69 n de cette campa	agne a été re	etardée en raiso			
Contact préalable :	Vincent Jasa 05.34.09.87. La réalisation remplissage	nada vincent.ja 69 n de cette campa de la retenue : si	agne a été re uivi des cote	etardée en raiso es d'eau tout le	mois d'avril		
Contact préalable :	Vincent Jasa 05.34.09.87. La réalisation remplissage 1406 m NGI	nada vincent.ja 69 n de cette campa de la retenue : sa F fin avril / cote	agne a été re uivi des cote intervention	etardée en raisc es d'eau tout le n : 1412,09 m N	mois d'avril		
Contact préalable :	Vincent Jasa 05.34.09.87. La réalisation remplissage 1406 m NGI cote moyenn	nada vincent.ja 69 n de cette campa de la retenue : su F fin avril / cote e d'exploitation	agne a été re uivi des cote intervention : 1418 m No	etardée en raisc es d'eau tout le n : 1412,09 m I GF	mois d'avril		
Contact préalable :	Vincent Jasa 05.34.09.87. La réalisation remplissage 1406 m NGF cote moyenn Les eaux du	nada vincent.ja 69 n de cette campa de la retenue : su F fin avril / cote e d'exploitation lac sont très rég	agne a été re uivi des cote intervention : 1418 m No ulièrement r	etardée en raisc es d'eau tout le n : 1412,09 m l' GF renouvelées.	mois d'avril NGF (16 m)		
Contact préalable :	Vincent Jasa 05.34.09.87. La réalisation remplissage 1406 m NGF cote moyenn Les eaux du Le plan d'eau	nada vincent.ja 69 n de cette campa de la retenue : su fin avril / cote e d'exploitation lac sont très rég n est sous influe	agne a été re uivi des cote intervention : 1418 m No ulièrement r nce directe d	etardée en raisc es d'eau tout le n : 1412,09 m N GF renouvelées. de la retenue de	mois d'avril NGF (16 m) • Matemale,	située	
Contact préalable :	Vincent Jasa 05.34.09.87. La réalisation remplissage 1406 m NGF cote moyenn Les eaux du Le plan d'eau 6,5 km à l'an	nada vincent.ja 69 n de cette campa de la retenue : su F fin avril / cote e d'exploitation lac sont très rég	agne a été re uivi des cote intervention : 1418 m No ulièrement r nce directe d entrainant u	etardée en raisce es d'eau tout le n : 1412,09 m M GF renouvelées. de la retenue de une régulation d	mois d'avril NGF (16 m) Matemale, des entrants	située	

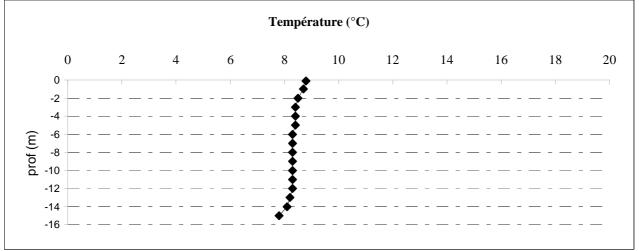
Relevé phytoplanctonique et p	•	imique en p	lan d'eau				
DONNEES PHYSICO-CHIMI							
Plan d'eau :	Puyvalado	or (retenue o	de)			Date:	11/05/2010
Type (naturel, artificiel,):	artificiel					Code lac:	Y1005163
Organisme / opérateur :	S.T.E. :	H.Coppin	et	N.Gibon		Campagne	1 page 3/5
Organisme demandeur	Agence de	e l'eau RM&				marché n°	08M082
TRANSPARENCE	18						
Secchi en m :	2,0		Zone euphot	ique (2,5 x Sec	echi):	5,0	m
PROFIL VERTICAL							
Moyen de mesure utilisé :		in-situ à ch	aque prof.		X	en surface da	ns un récipient
Walama majlavý (an lituas)	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
Volume prélevé (en litres) :	(m)	(°C)		(μS/cm 25°)	(mg/l)	(%)	
prélèvement intégré (2 L)	-0,1	8,8	8,29	83	10,9	112%	11:50
prélèvement intégré (2 L)	-1,0	8,7	8,42	83	10,8	111%	
prélèvement intégré (2 L)	-2,0	8,5	8,40	85	10,5	108%	
prélèvement intégré (2 L)	-3,0	8,4	8,45	85	10,0	102%	
prélèvement intégré (2 L)	-4,0	8,4	8,48	86	9,9	101%	
prélèvement intégré (2 L)	-5,0	8,4	8,47	85	9,9	101%	12:10
	-6,0	8,3	8,28	86	10,0	101%	
	-7,0	8,3	8,20	87	10,0	102%	
	-8,0	8,3	8,19	86	9,8	100%	
	-9,0	8,3	8,15	87	9,9	100%	
	-10,0	8,3	8,10	86	9,9	100%	
	-11,0	8,3	8,10	86	9,9	100%	
	-12,0	8,3	8,10	86	9,9	100%	
	-13,0	8,2	8,07	86	9,9	100%	
	-14,0	8,1	8,03	85	9,9	100%	
prélèvement de fond	-15,0	7,8	7,85	84	10,0	100%	12:30
			<u> </u>				

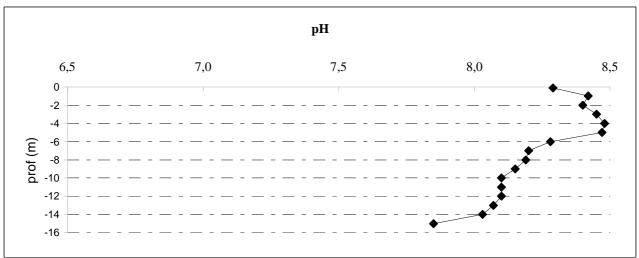
Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES

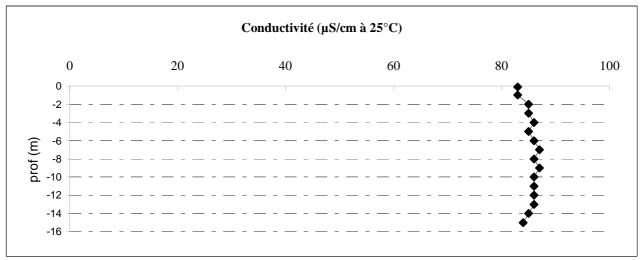
Plan d'eau: Type (naturel, artificiel,...): Organisme / opérateur :

Puyvalador (retenue de)

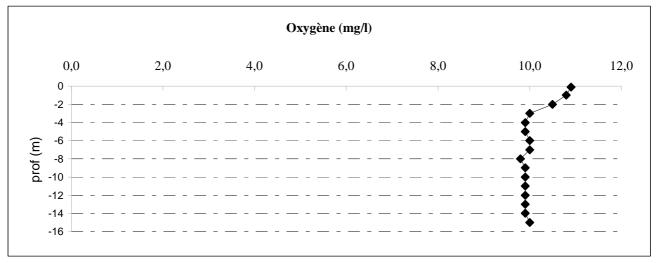
artificiel S.T.E.:

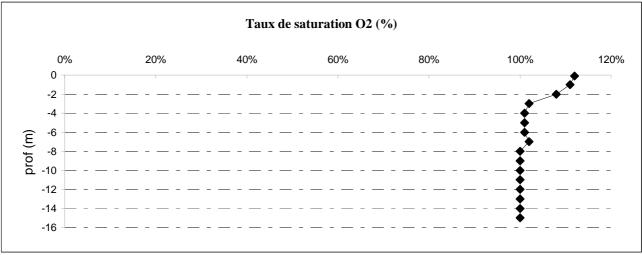

Code lac: Y1005163 H.Coppin et N.Gibon


Organisme demandeur


Agence de l'eau RM&C

Campagne 1 page 4/5 marché n° 08M082


Date: 11/05/2010



Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Plan d'eau: Puyvalador (retenue de) Type (naturel, artificiel,...): Organisme / opérateur: Organisme demandeur Date: 11/05/2010 Code lac: Y1005163 S.T.E.: H.Coppin et N.Gibon Campagne 1 page 5/5 Agence de l'eau RM&C marché n° 08M082

Distance au fond:	1,0 m soit à $Zf =$	-15,0 m		
Remarques et observations :				
Remise des échantillons :				
Echantillons pour analyses phys	sicochimiques (Laboratoire	e LDA26)		
échantillon intégré n°	1552470	Bon transport intégré :		
échantillon de fond n°	1551178	Bon transport fond:		
remise par S.T.E.:	en chambre froide	le 11/05/10	à	19h 30
Au transporteur:		le	à	
_	arrivée au laboratoire LDA	A 26 en mi-journée du : 12/05/1	.0	

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES GENERALES PLAN D'EAU - STATION

Plan d'eau : Puyvalador (retenue de) Date : 16/06/2010

Type (naturel, artificiel,...): artificiel Code lac: Y1005163

Organisme / opérateur: B. Valdenaire et H.Coppin Campagne 2 page 1/5

Organisme demandeur Agence de l'eau RM&C marché n° 08M082

LOCALISATION PLAN D'EAU

Commune: Puyvalador

Lac marnant : oui Type : A1

Superficie du bassin-versant : 38 jours retenues de hautes montagnes, profondes

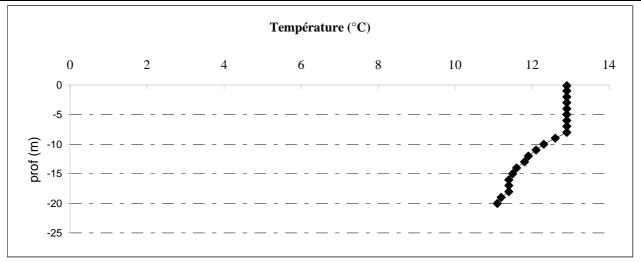
Superficie du plan d'eau : 91 ha Profondeur maximale : 17 m

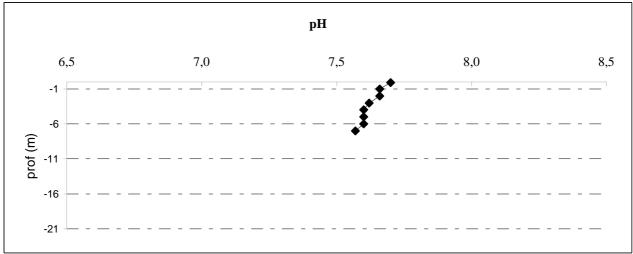
Carte: (extrait SCAN25, IGN 1/25 000)

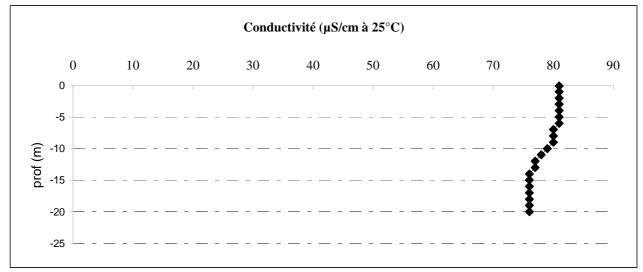
| localisation du point de prélèvements

angle de prise de vue de la photographie

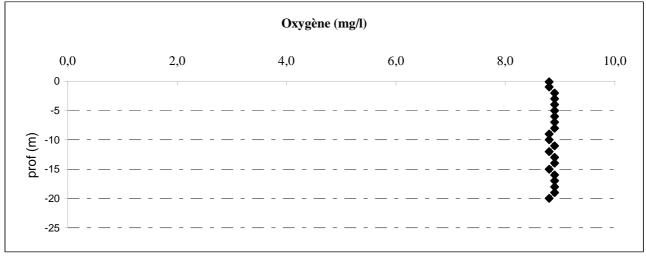
STATION

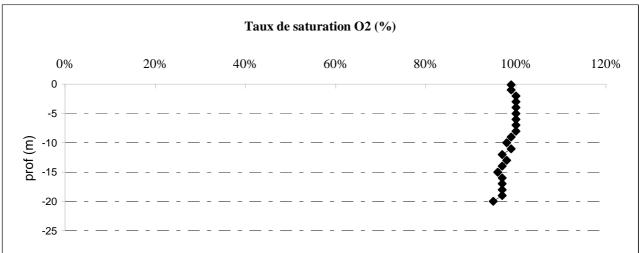

Photo du site:




Relevé phytoplanctonique et p DONNEES GENERALES CA				
Plan d'eau:	Puyvalador (retenue de)		Date:	16/06/2010
Type (naturel, artificiel,):	artificiel		Code lac:	Y1005163
Organisme / opérateurs :	S.T.E.: B. Valdenaire et	H.Coppin	Campagne 2	page 2/5
Organisme demandeur	Agence de l'eau RM&C	**	marché n° 0	
STATION				
Coordonnées de la station	relevées sur : GPS			
Lambert 93	X: 628140	Y: 6172279	al	t.: 1417 m
WGS 84 (système international)	GPS (en dms) X:	Y:	al	t.: m
Profondeur:	21,0 m			
	vent: moyen			
	météo : soleil			
	metes: Solen			
Conditions d'observation :	Surface de l'eau : agitée			
Conditions a observation.	agree			
	Hauteur des vagues : 0,3 m	P atm stand	lard · 850	hPa
	Bloom algal: non	Pression atı		hPa
Marnage:	oui	Hauteur de la band		m
Warnage .	our	Tidatear de la band		
Campagne : PRELEVEMENTS	2 campagne printanière de cro thermocline	issance du phytoplar	ncton : mise er	ı place de la
Heure de début du relevé :	10.10	de fin du relevé :	11:20	
Heure de debut du reieve :	10:10 Heure	de im du reieve :	11:20	
Prélèvements réalisés :	eau chlorophylle matéri phytoplancton	iel employé : 1	pompe	
Gestion:	EDF GEH Aude Arriège			
Contact préalable :	Vincent Jasanada vincent.jasana	ada@edf.fr		
	05.34.09.87.69			
Remarques, observations:	Le plan d'eau est proche de sa con Problème d'appareillage pHmètrinvalidées pour cause de dérive de Les eaux du lac sont très réguliè Le plan d'eau est sous influence située 6,5 km à l'amont sur l'Au	re, les données en de du pHmètre. rement renouvelées. directe de la retenue	de Matemale,	

	oto : 16/06/2010							
	ata · 16/06/2010							
	Puyvalador (retenue de) Date : 16/06/2010							
Type (naturel, artificiel,): artificiel Code	lac: Y1005163							
1 ** :	agne 2 page 3/5							
1								
	é n° 08M082							
TRANSPARENCE								
	12,3 m							
PROFIL VERTICAL								
Moyen de mesure utilisé : in-situ à chaque prof. X en surfa	ace dans un récipient							
Volume prélevé (en litres) : $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Heure							
(m) (°C) (μS/cm 25°) (mg/l) (%) prélèvement intégré (1 L) -0,1 12,9 7,70 81 8,8 99%	10:10							
prélèvement intégré (1 L) -1,0 12,9 7,66 81 8,8 99%								
prélèvement intégré (1 L) -2,0 12,9 7,66 81 8,9 100%								
prélèvement intégré (1 L) -3,0 12,9 7,62 81 8,9 100%								
prélèvement intégré (1 L) -4,0 12,9 7,60 81 8,9 100%								
prélèvement intégré (1 L) -5,0 12,9 7,60 81 8,9 100%								
prélèvement intégré (1 L) -6,0 12,9 7,60 81 8,9 100%	,							
prélèvement intégré (1 L) -7,0 12,9 7,57 80 8,9 100%	,							
prélèvement intégré (1 L) -8,0 12,9 80 8,9 100%	,							
prélèvement intégré (1 L) -9,0 12,6 80 8,8 99%								
prélèvement intégré (1 L) -10,0 12,3 79 8,8 98%								
prélèvement intégré (1 L) -11,0 12,1 78 8,9 99%								
prélèvement intégré (1 L) -12,0 11,9 77 8,8 97%	11:00							
-13,0 11,8 77 8,9 98%								
-14,0 11,6 76 8,9 97%								
-15,0 11,5 76 8,8 96%								
-16,0 11,4 76 8,9 97% -17,0 11,4 76 8,9 97%								
-17,0 11,4 76 8,9 97% -18,0 11,4 76 8,9 97%								
-19,0 11,4 76 8,9 97% -19,0 11,2 76 8,9 97%								
prélèvement de fond -20,0 11,1 76 8,8 95%	11:20							
20,0 11,1 70 0,0 7570	11.20							


Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Date: 16/06/2010 Plan d'eau: Puyvalador (retenue de) artificiel Code lac: Y1005163 Type (naturel, artificiel,...): S.T.E. : Campagne 2 page 4/5 Organisme / opérateur : B. Valdenaire et H.Coppin marché n° 08M082 Organisme demandeur Agence de l'eau RM&C



Relevé phytoplanctonique et physico-chimique en plan d'eau						
DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES						
Plan d'eau:	Puyvalador (retenue de)	Date: 16/06/2010				
Type (naturel, artificiel,):	artificiel	Code lac: Y1005163				
Organisme / opérateur :	S.T.E.: B. Valdenaire et H.Coppin	Campagne 2 page 5/5				
Organisme demandeur	Agence de l'eau RM&C	marché n° 08M082				

Distance au fond:	1,0 m	soit à Zf =	-20,0 m		
Remarques et observations :					
emise des échantillons :					
chantillons pour analyses phy	sicochimiques	(Laboratoire LI	DA26)		
échantillon intégré n°	1552512		Bon transport intégré :	338858074	
échantillon de fond n°	1551199		Bon transport fond:	338858009	
remise par S.T.E.:			le	à	
Au transporteur :	Chronopost		le 16/06/10	à	17h 30
_	arrivée au lab	oratoire LDA 26	6 en mi-journée du :	17/06/10	

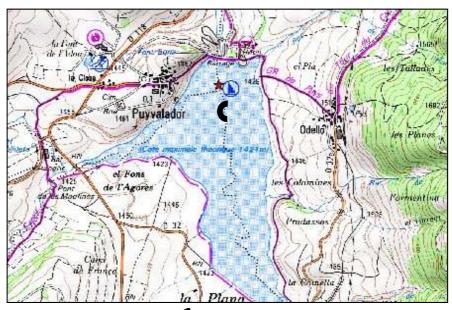
Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES GENERALES PLAN D'EAU - STATION

Plan d'eau: Puyvalador (retenue de) Date: 22/07/2010 Type (naturel, artificiel,...): Code lac: Y1005163 artificiel **S.T.E.** : Organisme / opérateur : S.Meistermann et H.Coppin Campagne 3 page 1/5 Organisme demandeur Agence de l'eau RM&C marché n° 08M082

LOCALISATION PLAN D'EAU

Commune : Puyvalador


Type: A1 Lac marnant : oui

Temps de séjour 38 jours

retenues de hautes montagnes, profondes Superficie du plan d'eau: 91 ha

Profondeur maximale:

Carte: (extrait SCAN25, IGN 1/25 000)

★ localisation du point de prélèvements
STATION

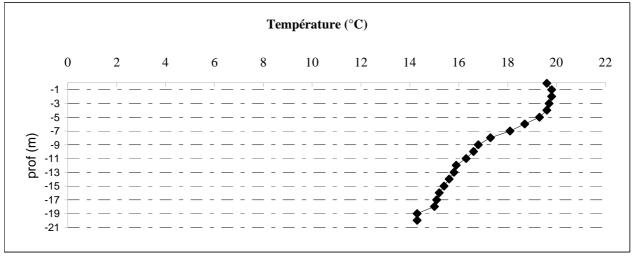
angle de prise de vue de la photographie

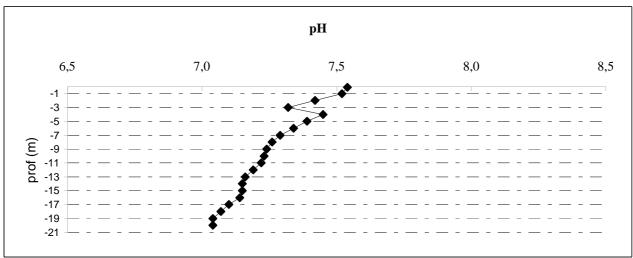
Photo du site:

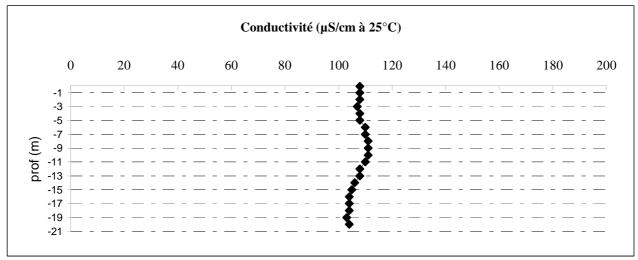
Relevé phytoplanctonique et p DONNEES GENERALES CA	physico-chimique en plan d'ea. AMPAGNE	и	
Plan d'eau :	Puyvalador (retenue de)		Date: 22/07/2010
Type (naturel, artificiel,):	artificiel		Code lac: Y1005163
Organisme / opérateurs :	S.T.E.: S.Meistermann et	H.Coppin	Campagne 3 page 2/5
Organisme demandeur	Agence de l'eau RM&C	11. Соррии	marché n° 08M082
STATION STATION	rigence de read reviece		marche ii 001v1002
Coordonnées de la station	relevées sur : GPS		
Lambert 93		Y: 6172279	alt.: 1416 m
WGS 84 (système international)		Y:	alt.: m
Profondeur:	Ť	1.	art III
1 Tolondeul .			
	,		
	météo: très nuageux		
Conditions d'observation :	Surface de l'eau : faib	lement agitée	
	Hautaur das versuss : 0.1	m P atm stand	lard: 850 hPa
	Hauteur des vagues : 0,1		
	Bloom algal: non	Pression at	
Marnage:	oui	Hauteur de la band	le: -2 m
Campagne : PRELEVEMENTS Heure de début du relevé :	3 campagne estivale : thermophytoplancton 10:20 Heu	re de fin du relevé :	11:20
Prélèvements réalisés :	eau chlorophylle mate phytoplancton macrophytes	ériel employé :	pompe
Gestion :	EDF GEH Aude Arriège		
	EDF GEH Aude Arriège Vincent Jasanada vincent.jasa	anada@edf.fr	
	EDF GEH Aude Arriège Vincent Jasanada vincent.jasa 05.34.09.87.69	anada@edf.fr	
	Vincent Jasanada vincent.jasa	anada@edf.fr	
	Vincent Jasanada vincent.jasa	anada@edf.fr	
	Vincent Jasanada vincent.jasa	anada@edf.fr	
Contact préalable :	Vincent Jasanada vincent.jasa 05.34.09.87.69		ormique Lec
Contact préalable :	Vincent Jasanada vincent.jasa 05.34.09.87.69 La retenue ne présente pas de	réelle stratification the	ermique. Les
Contact préalable :	Vincent Jasanada vincent.jasa 05.34.09.87.69	réelle stratification the	ermique. Les
Contact préalable :	Vincent Jasanada vincent.jasa 05.34.09.87.69 La retenue ne présente pas de couches profondes sont légère	réelle stratification the ement désoxygénées.	
Contact préalable :	Vincent Jasanada vincent.jasa 05.34.09.87.69 La retenue ne présente pas de couches profondes sont légère Les eaux du lac sont très régui	réelle stratification the ement désoxygénées. lièrement renouvelées.	
Contact préalable :	Vincent Jasanada vincent.jasa 05.34.09.87.69 La retenue ne présente pas de couches profondes sont légère	réelle stratification the ement désoxygénées. lièrement renouvelées. ce directe de la retenue	de Matemale,

Relevé phytoplanctonique et physico-chimique en plan d'eau								
DONNEES PHYSICO-CHIMIQUES								
Plan d'eau:	Puyvalador (retenue de)	Date: 22/07/2010						
Type (naturel, artificiel,):	artificiel	Code lac: Y1005163						
Organisme / opérateur :	S.T.E.: S.Meistermann et H.Coppin	Campagne 3 page 3/5						
Organisme demandeur	Agence de l'eau RM&C	marché n° 08M082						

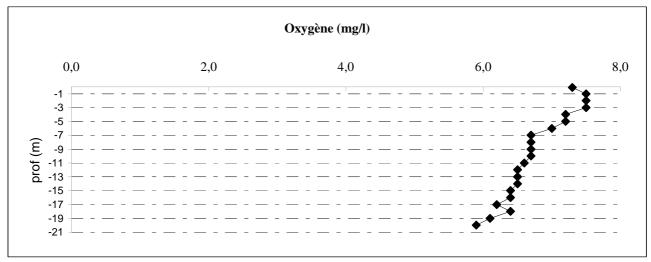
TRANSPARENCE

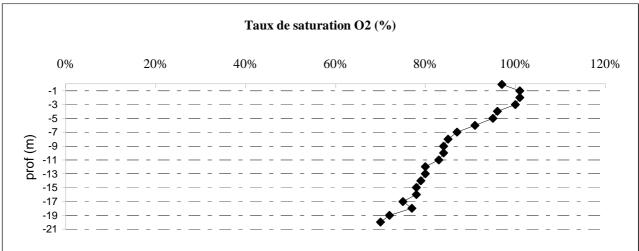

<u>ΓRANSPARENCE</u> Secchi en m :	4,4		Zone eunho	tique (2,5 x Sec	chi) ·	11,0	m
PROFIL VERTICAL	.,.		Zone cupno	tique (2,5 x 500	ciii) .	11,0	
Moyen de mesure utilisé :		in-situ à ch	aque prof.	Ī	X	en surface d	ans un récipies
	Prof.	Temp.	рН	Cond	Cond. O ₂	O_2	Heure
Volume prélevé (en litres) :	(m)	(°C)	P	(μS/cm 25°)	(mg/l)	(%)	110010
prélèvement intégré (1 L)	-0,1	19,6	7,54	108	7,3	97%	10:20
prélèvement intégré (1 L)	-1,0	19,8	7,52	108	7,5	101%	
prélèvement intégré (1 L)	-2,0	19,8	7,42	108	7,5	101%	
prélèvement intégré (1 L)	-3,0	19,7	7,32	107	7,5	100%	
prélèvement intégré (1 L)	-4,0	19,6	7,45	108	7,2	96%	
prélèvement intégré (1 L)	-5,0	19,3	7,39	108	7,2	95%	
prélèvement intégré (1 L)	-6,0	18,7	7,34	110	7,0	91%	
prélèvement intégré (1 L)	-7,0	18,1	7,29	110	6,7	87%	
prélèvement intégré (1 L)	-8,0	17,3	7,26	111	6,7	85%	
prélèvement intégré (1 L)	-9,0	16,8	7,24	111	6,7	84%	
prélèvement intégré (1 L)	-10,0	16,6	7,23	111	6,7	84%	
prélèvement intégré (1 L)	-11,0	16,3	7,22	110	6,6	83%	11:00
	-12,0	15,9	7,19	108	6,5	80%	
	-13,0	15,8	7,16	108	6,5	80%	
	-14,0	15,6	7,15	106	6,5	79%	
	-15,0	15,4	7,15	105	6,4	78%	
	-16,0	15,2	7,14	104	6,4	78%	
	-17,0	15,1	7,10	104	6,2	75%	
	-18,0	15,0	7,07	104	6,4	77%	
	-19,0	14,3	7,04	103	6,1	72%	
prélèvement de fond	-20,0	14,3	7,04	104	5,9	70%	11:20
		1					
				+			


Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES


Plan d'eau : Puyvalador (retenue de)
Type (naturel, artificiel,...) : artificiel
Organisme / opérateur : S.T.E. : S.Meisterman

Organisme demandeur


S.T.E.: S.Meistermann et H.Coppin Agence de l'eau RM&C Date: 22/07/2010 Code lac: Y1005163 Campagne 3 page 4/5 marché n° 08M082



Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Plan d'eau : Puyvalador (retenue de) Date : 22/07/2010 Type (naturel, artificiel,...) : artificiel Code lac : Y1005163 Organisme / opérateur : S.T.E. : S.Meistermann et H.Coppin Campagne 3 page 5/5 Organisme demandeur Agence de l'eau RM&C marché n° 08M082

échantillon de fond n° 1551220 E	Bon transport intégré :	
Echantillons pour analyses physicochimiques (Laboratoire LDA2 échantillon intégré n° 1552545 E échantillon de fond n° 1551220 E	Bon transport intégré :	
échantillon intégré n° 1552545 B échantillon de fond n° 1551220 B	Bon transport intégré :	
échantillon de fond n° 1551220 E	•	
	Bon transport fond:	
remise par S.T.E.: Au LDA 26	le 23/07/10	à 11h
Au transporteur :	le	à
'		

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES GENERALES PLAN D'EAU - STATION

Plan d'eau : Puyvalador (retenue de) Date : 18/08/2010
Type (naturel, artificiel,...) : artificiel Code lac : Y1005163

Organisme / opérateur : S.T.E. : E.Bertrand et A.Péricat Campagne 4 page 1/6
Organisme demandeur Agence de l'eau RM&C marché n° 08M082

LOCALISATION PLAN D'EAU

Commune : Puyvalador

Lac marnant : oui Type : A1

Temps de séjour 38 jours retenues de hautes montagnes, profondes

Superficie du plan d'eau : 91 ha

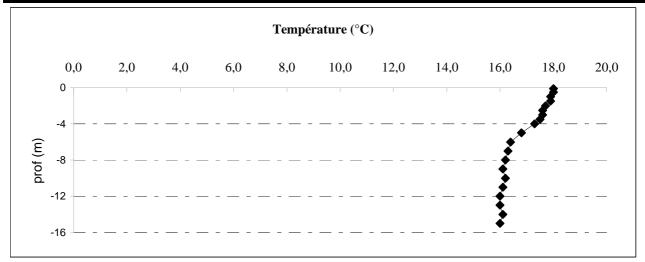
Profondeur maximale: 17 m

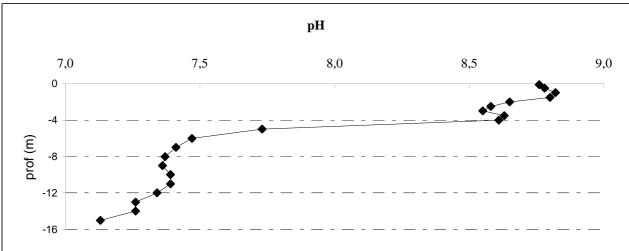
Carte: (extrait SCAN25, IGN 1/25 000)

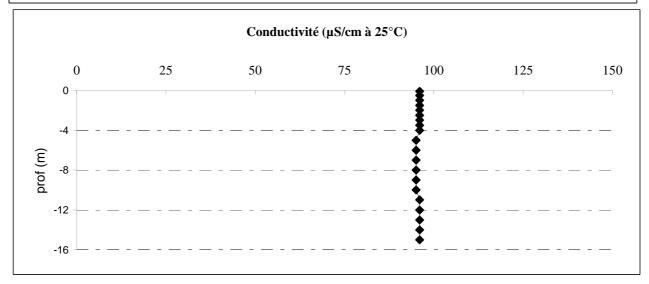
localisation du point de prélèvements

angle de prise de vue de la photographie

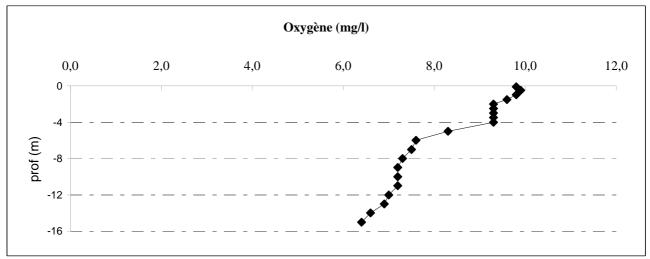
STATION

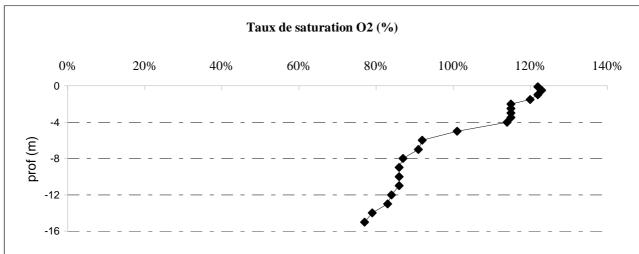

Photo du site:




Relevé phytoplanctonique et pa DONNEES GENERALES CA	hysico-chimique en plan d	d'eau				
Plan d'eau:	Puyvalador (retenue de)				Date:	18/08/2010
Type (naturel, artificiel,):	artificiel				Code lac:	Y1005163
Organisme / opérateurs :	S.T.E.: <i>E.Bertrand et</i>		A.Périco	v+		4 page 2/6
Organisme demandeur			A.Ferica	ii	marché n°	
	Agence de l'eau RM&C				marche n	U81VIU82
STATION Consideration de la station	malandan ann a CDC					
Coordonnées de la station	relevées sur : GPS			7. <i>(</i> 170070		-14. 1.415
Lambert 93				7: 6172279		alt.: 1415 m
WGS 84 (système international)			<u> </u>	7:		alt.: m
Profondeur :	16,0 m					
	vent: moyen					
	météo: très nuageux					
Conditions d'observation :	Surface de l'eau :	faible	ment agité	ée		
	Hauteur des vagues :	0,05	m F	atm stanc	lard: 850	0 hPa
	Bloom algal: oui	0,00		Pression at		hPa
Marnage:	oui			de la band		m
Tviamage .	oui		Hauteur	de la balla	ic. 3	111
Campagne:	4 campagne de fin d'été température	i : fin d	e stratifica	ation estiva	ale, avant ba	isse de la
PRELEVEMENTS						
Heure de début du relevé :	13h 40	Heure	de fin du	relevé :	14h 50	
Prélèvements réalisés :	eau chlorophylle phytoplancton sédiments	matér	iel employ		pompe benne Ekma	nn
Gestion ·	EDF GEH Aude Arriège					
	EDF GEH Aude Arriège Vincent Jasanada vincen	t iasan	ada@edf t	fr		
	Vincent Jasanada vincen	t.jasan	ada@edf.i	fr		
		t.jasan	ada@edf.i	fr		
	Vincent Jasanada vincen 05.34.09.87.69 Des travaux sur l'ouvrage EDF fait baisser le plan d 1399 m NGF Cette 4ème campagne a c aux objectifs de la métho	e sont p l'eau su lonc éte dologie	orévus en s ur ce mois é avancée e.	septembre d'aout pou pour corre	r atteindre la espondre	
Contact préalable :	Vincent Jasanada vincen 05.34.09.87.69 Des travaux sur l'ouvrage EDF fait baisser le plan d 1399 m NGF Cette 4ème campagne a d aux objectifs de la métho Développement massif de	e sont p l'eau su lonc été dologie e cyanc	orévus en s ir ce mois é avancée e. obactéries	septembre d'aout pou pour corre sur le plan	r atteindre la espondre a d'eau : flocs	S
Contact préalable :	Vincent Jasanada vincen 05.34.09.87.69 Des travaux sur l'ouvrage EDF fait baisser le plan d 1399 m NGF Cette 4ème campagne a c aux objectifs de la métho	e sont p l'eau su lonc ét dologie e cyano niers m	orévus en s ir ce mois é avancée e. obactéries	septembre d'aout pou pour corre sur le plan	r atteindre la espondre a d'eau : flocs	S

DONNEES PHYSICO-CHIMI	QUES						
Plan d'eau :	Puyvalado	or (retenue		Date:	18/08/2010		
Гуре (naturel, artificiel,):	artificiel			Code lac: Y1005163			
Organisme / opérateur :	S.T.E.: E.Bertrand et A.Péricat					Campagne 4 page 3/6	
Organisme demandeur	Agence de l'eau RM&C					marché n° 08M082	
ΓRANSPARENCE	8						
Secchi en m :	1,4		Zone eupho	tique (2,5 x Sec	echi):	3,5	m
PROFIL VERTICAL	2,1		Zone cupno		, .	5,5	
Moyen de mesure utilisé :		in-situ à ch	ague prof		X	en surface d	ans un récipies
Woyen de mesure dimse .	Prof.		1	Cond.			
Volume prélevé (en litres) :	Prol.	Temp.	pН	Cond. (μS/cm 25°)	O ₂ (mg/l)	O ₂ (%)	Heure
prélèvement intégré (1,5 L)	-0,1	18,0	8,76	96	9,8	122%	14:20
prélèvement intégré (1,5 L)	-0,5	18,0	8,78	96	9,9	123%	11.20
prélèvement intégré (1,5 L)	-1,0	17,9	8,82	96	9,8	122%	
prélèvement intégré (1,5 L)	-1,5	17,9	8,80	96	9,6	120%	
prélèvement intégré (1,5 L)	-2,0	17,7	8,65	96	9,3	115%	
prélèvement intégré (1,5 L)	-2,5	17,6	8,58	96	9,3	115%	
prélèvement intégré (1,5 L)	-3,0	17,6	8,55	96	9,3	115%	
prélèvement intégré (1,5 L)	-3,5	17,5	8,63	96	9,3	115%	
	-4,0	17,3	8,61	96	9,3	114%	
	-5,0	16,8	7,73	95	8,3	101%	
	-6,0	16,4	7,47	95	7,6	92%	
	-7,0	16,3	7,41	95	7,5	91%	
	-8,0	16,2	7,37	95	7,3	87%	
	-9,0	16,1	7,36	95	7,2	86%	
	-10,0	16,2	7,39	95	7,2	86%	
	-11,0 -12,0	16,1 16,0	7,39 7,34	96 96	7,2 7,0	86% 84%	
	-12,0	16,0	7,34	96	6,9	83%	
	-14,0	16,1	7,26	96	6,6	79%	
prélèvement de fond	-15,0	16,0	7,13	96	6,4	77%	13:50
prote ventent de fond	13,0	10,0	7,13	70	0,1	7 7 70	13.30
	I	1	1	ī			1


Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Date: 18/08/2010 Plan d'eau: Puyvalador (retenue de) artificiel Code lac: Y1005163 Type (naturel, artificiel,...): S.T.E. : Campagne 4 page 4/6 Organisme / opérateur : E.Bertrand et A.Péricat marché n° 08M082 Organisme demandeur Agence de l'eau RM&C



Relevé phytoplanctonique et physico-chimique en plan d'eau								
DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES								
Plan d'eau:	Puyvalador (retenue de)	Date: 18/08/2010						
Type (naturel, artificiel,):	artificiel	Code lac: Y1005163						
Organisme / opérateur :	S.T.E.: E.Bertrand et A.Périca	ct Campagne 4 page 5/6						
Organisme demandeur	Agence de l'eau RM&C	marché n° 08M082						

Distance au fond: 1,0	m soit à Zf =	-15,0 m		
Remarques et observations :				
Remise des échantillons :				
Echantillons pour analyses physico	ochimiques (Laboratoire L	DA26)		
échantillon intégré n° 1:	552589	Bon transpor	rt intégré :	
échantillon de fond n° 1:	551241	Bon transpor	rt fond:	
remise par S.T.E.: au	LDA26	le	19/08/10	à 13h
Au transporteur:		le		à

Prélèvements de sédiments po DONNEES GENERALES PL	* * *	•		/ENITS		
Plan d'eau :	AN DEAU - PI Puyvalador	XELE VEIVIEI	AT DE SEDIN	IEN15	Date : 18/0	08/2010
	artificiel				Code lac: Y10	
Type (naturel, artificiel,):		E.Bertrand e	+	A.Péricat		
Organisme / opérateur :			ι		heu marché n° 08N	
Organisme demandeur :	Agence de l'eau	RM&C				
Conditions de milieu					pag	e 6/6
		c 11 \		1.4	1 60	
chaud, ensoleillé	période estimée				oits des affluen	ts
couvert X	mort et sédimen			X	-	1 1
pluie, neige	sédimentation d	e MES de tou	ite nature	>>	turbidité afflu	uents non
Vent					Secchi (m)	1,4
Matériel						
	nalla à main		hanna V	niàgo		ottion
drague fond plat	pelle à main		benne X	piège	caro	ottier
Localisation générale de la z	one de prélèvei	nents (en pai	rticulier, X Y	Lambert 9	3)	
_	_	_				
Point de plus grande profonder	ir (ci campagne	4) A:	628140	1 :	6172279	
	ı		_		_	
Prélèvements		1	2	3	4	5
profondeur (en m)		16,6	16,0	16,5		
épaisseur échantillonnée						
récents (<2cm)		X	X	X		
anciens (>2cm)						
indéterminé						
épaisseur, en cm	:	2	2	2		
granulométrie dominante						
graviers						
sables						
limons						
vases		X	X	X		
argile						
aspect du sédiment						
homogène						
hétérogène		X	X	X		
couleur			gris marron			
odeur		non	non	non		
présence de débris végétx	non décomp	oui	oui	non	1	
présence d'hydrocarbures		non	non	non	<u> </u>	
présence d'autres débris		non	non	non		
D //:						
Remarques générales :						
Sédiments vaseux d'aspect "flo	ocs" gris avec de	s trainées noir	es.			
-						
Remise des échantillons :		T 1	D.100			
Echantillons pour analyses phy				, 1°	, 15500	200
	ns n° eau intersti T.E. : au LDA26		661562 19/08/2010	sédime à 131		JZ0
remise par S.1	jau LDA20	ie	17/00/2010	a 131	1	

le

à

Au transporteur: