

Agence de l'Eau Rhône Méditerranée Corse

ÉTUDE DES PLANS D'EAU DU PROGRAMME DE SURVEILLANCE DES BASSINS RHONE-MEDITERRANEE ET CORSE – LOT N°3 SUD RAPPORT DE DONNEES BRUTES ET **INTERPRETATION** RETENUE DE PUYVALADOR

SUIVI ANNUEL 2019

Rapport n° 16-707C - Puyvalador – août 2020

Sciences et Techniques de l'Environnement – B.P. 90374 17, Allée du Lac d'Aiguebelette - Savoie Technolac 73372 Le Bourget du Lac cedex tél.: 04 79 25 08 06; tcp: 04 79 62 13 22

SOMMAIRE

1	CAL	ORE DU PROGRAMME DE SUIVI	<u> 7</u>
<u>2</u>	DEF	COULEMENT DES INVESTIGATIONS	9
	2.1	PRESENTATION DU PLAN D'EAU ET LOCALISATION	
	2.2	CONTENU DU SUIVI 2019	10
	2.3	PLANNING DE REALISATION	11
	2.4	ETAPES DE LA VIE LACUSTRE	11
	2.5	BILAN CLIMATIQUE DE L'ANNEE 2019	13
<u>3</u>	RAF	PEL METHODOLOGIQUE	14
_	3.1	INVESTIGATIONS PHYSICOCHIMIQUES	
	3.1.1		
	3.1.2	C	
	3.2	INVESTIGATIONS HYDROBIOLOGIQUES	
	3.2.1		
	3.2.2		
	3.2.3		
4	DES	ULTATS DES INVESTIGATIONS	20
=			
	4.1 4.1.1	INVESTIGATIONS PHYSICOCHIMIQUES Profils verticaux et évolutions saisonnières	
	4.1.1		
	4.1.3		
	4.2	PHYTOPLANCTON	
	4.2.1		
	4.2.2		
	4.2.3	1	
	4.2.4		
	4.2.5	Comparaison avec les inventaires antérieurs	36
<u>5</u>	APP	RECIATION GLOBALE DE LA QUALITE DU PLAN D'EAU	37
	ANNEX	<u>ES</u>	39
A	NNEXE	1. LISTE DES MICROPOLLUANTS ANALYSES SUR EAU	41
Ā	NNEXE		
	NNEXE		
ľ	HYTOP	LANCTONIOUES	53

Liste des illustrations

Figure 1 : moyennes mensuelles de température à la station de Mérens-les-Vals (<i>Info-climat</i>)	13
Figure 2 : cumuls mensuels de précipitations à la station de Mérens-les-Vals (site Info-climat)	14
Figure 3 : Représentation schématique des différentes stratégies de comptage	18
Figure 4 : Seuils des classes d'état définis pour chaque métrique et pour l'IPLAC	
Figure 5 : Profils verticaux de température au point de plus grande profondeur	20
Figure 6 : Profils verticaux de conductivité au point de plus grande profondeur	21
Figure 7 : Profils verticaux de pH au point de plus grande profondeur	21
Figure 8 : Profils verticaux d'oxygène (mg/l) au point de plus grande profondeur	22
Figure 9 : Profils verticaux d'oxygène (% sat.) au point de plus grande profondeur	22
Figure 10 : profils verticaux des matières organiques dissoutes	23
Figure 11 : Evolution de la transparence et de la zone euphotique lors de 4 campagnes	30
Figure 12 : Répartition du phytoplancton sur la retenue de Puyvalador à partir des abondances (cell	
Figure 13 : Evolution saisonnière des biovolumes des principaux groupes algaux de phytopland mm³/l)	cton (en
Tablacu 1 . Cymantiqua cánániqua dos investigations manáes sur una amás de suivi d'un plan d'ass	7
Tableau 1 : Synoptique générique des investigations menées sur une année de suivi d'un plan d'eau Tableau 2 : liste des plans d'eau suivis sur le sud du bassin Rhône-Méditerranée et bassin Corse	
Tableau 3 : Synoptique des interventions de terrain et de laboratoire sur le plan d'eau	
Tableau 4 : Résultats des paramètres de minéralisation	
Tableau 5 : Résultats des paramètres de physico-chimie classique sur eau	
Tableau 6 : Résultats d'analyses de métaux sur eau	
Tableau 7 : Résultats d'analyses de micropolluants organiques présents sur eau	
Tableau 8 : Synthèse granulométrique sur le sédiment du point de plus grande profondeur	
Tableau 9 : Analyse de sédiments	
Tableau 10 : Résultats d'analyses de micropolluants minéraux sur sédiment	
Tableau 11 : Résultats d'analyses de micropolluants organiques présents sur sédiment	
Tableau 12: analyses des pigments chlorophylliens	
Tableau 13 : Liste taxonomique du phytoplancton (en nombre de cellules/ml)	
Tableau 14: Liste taxonomique du phytoplancton (en mm³/l)	32
Tableau 15 : évolution des Indices IPLAC depuis 2010	
Carte 1 : localisation du retenue de Puyvalador (Pyrénées Orientales)	9
Carte 2 : Présentation du point de prélèvement	

FICHE QUALITE DU DOCUMENT

	Agence de l'Eau Rhône Méditerranée Corse (AERMC)
	Direction des Données et Redevances
	2-4, Allée de Lodz
Maître d'ouvrage	69363 Lyon Cedex 07
	Interlocuteur : Mr IMBERT Loïc
	Coordonnées : loic.imbert@eaurmc.fr
Titre du projet	Etude des plans d'eau du programme de surveillance des bassins Rhône- Méditerranée et Corse – Rapport de données brutes et interprétation – Retenue de Puyvalador
Référence du document	Rapport n°16-707C /2019-Rapport Puyvalador 2019
Date	Avril 2020
Auteur(s)	S.T.E. Sciences et Techniques de l'Environnement

Contrôle qualité

Version	Rédigé par	Date	Visé par	Date
V0	Audrey Péricat, Lionel Bochu	21/04/2020	Audrey Péricat	18/05/2020
VF	Audrey Péricat	21/07/2020	Suite aux remarques de courriel L. Imbert du 2/07/2	

Thématique

Mots-clés	Géographiques: Bassin Rhône-Méditerranée – Pyrénées Orientales – Retenue de Puyvalador Thématiques: Réseaux de surveillance – Etat trophique – Plan d'eau				
Résumé	Le rapport rend compte de l'ensemble des données collectées sur la retenue de Puyvalador lors des campagnes de suivi 2019. Une présentation du plan d'eau et du cadre d'intervention est menée puis les résultats des investigations sont développés dans la suite du document.				

Diffusion

Envoyé à :					
Nom	Organisme	Date	Format(s)		Nombre d'exemplaire(s)
Loïc IMBERT	AERMC	21/07/2020	Papier informatique	et	1
pour version définitiv	e à diffuser			·	

l CADRE DU PROGRAMME DE SUIVI

Dans le cadre de la mise en œuvre de la Directive Cadre européenne sur l'Eau (DCE), adoptée le 23 Octobre 2000 et transposée en droit français le 21 avril 2004, un programme de surveillance a été mis en place au niveau national afin de suivre l'état écologique et l'état chimique des eaux douces de surface (cours d'eau et plans d'eau).

L'Agence de l'Eau Rhône Méditerranée Corse a en charge le suivi des plans d'eau faisant partie du programme de surveillance sur les bassins Rhône-Méditerranée et Corse.

Le suivi comprend la réalisation de prélèvements d'eau et de sédiments répartis sur quatre campagnes dans l'année pour analyse des paramètres physico-chimiques et des micropolluants. Différents compartiments biologiques sont étudiés (phytoplancton, macrophytes, diatomées, faune benthique). Le tableau 1 synthétise les différentes mesures qui sont réalisées dans le cadre du suivi type (selon la nature des plans d'eau et les éléments déjà suivis antérieurement, le contenu du suivi n'englobera pas nécessairement l'ensemble des éléments listés dans le Tableau 1). Un suivi du peuplement piscicole doit également être réalisé dans le cadre du programme de surveillance sur certains types de plans d'eau.

Tableau 1 : Synoptique générique des investigations menées sur une année de suivi d'un plan d'eau

			Paramètres	Type de prélèvements/ Mesures		PRINTEMPS	ETE	AUTOMNE
Mesures in situ		Mesures in situ	O2 dis. (mg/l, %sat.), pH, COND (25°C), T°, transparence secchi	Profils verticaux	х	Х	Х	Х
	,		DBO5, PO4, Ptot, NH4, NKJ, NO3, NO2, Corg, MEST, Turbidité, Si	Intégré	Х	Χ	Χ	Χ
	⊇		dissoute	Ponctuel de fond	Х	Х	Χ	Χ
	Sur EAU	Physico-chimie classique et	Micropolluants sur eau*	Intégré	Х	Х	Χ	Х
	Sur	micropolluants	Micropoliuants sur eau	Ponctuel de fond		Х	Х	Х
			Chlorophyllo a . phácniamouto	Intégré	Х	Х	Х	Х
			Chlorophylle a + phéopigments	Ponctuel de fond				
	Paramètres de		Ca ²⁺ , Na ⁺ , Mg ²⁺ , K ⁺ , dureté, TAC,	Intégré	Χ			
		Minéralisation	SO ₄ ^{2,} , Cl ⁻ , HCO ₃	Ponctuel de fond				
s	E	au interst.: Physico-chimie	PO4, Ptot, NH4					
Sur SEDIMENTS			Corg., Ptot, Norg, Granulomètrie, perte au feu	Prélèvement au point de plus grande profondeur				Х
S	ที่ Micropolluants		Micropolluants sur sédiments*					
			Phytoplancton	Intégré - Protocole IRSTEA/Utermöhl	Χ	Χ	Χ	Χ
	Н	YDROBIOLOGIE et	Invertébrés	Protocole en cours de développement		Χ		
	HY	DROMORPHOLOGIE	Diatomées	Protocole IRSTEA			Х	
			Macrophytes	Norme XP T 90-328			Χ	

^{*:} se référer à l'arrêté du 7 août 2015 établissant le programme de surveillance de l'état des eaux

Poissons et hydromorphologie en charge de l'ONEMA (un passage tous les 6 ans)

RCS : un passage par plan de gestion pour le suivi complet (soit une fois tous les six ans / tous les trois ans pour le phytoplacton)

CO: un passage tous les trois ans

Différents réseaux constituent le programme de surveillance. Parmi ceux-ci, deux réseaux sont actuellement mis en œuvre sur les plans d'eau :

- ✓ Le réseau de contrôle de surveillance (RCS) vise à donner une image globale de la qualité des eaux. Tous les plans d'eau naturels de superficie supérieure à 50ha ont été pris en compte sur les bassins Rhône-Méditerranée et Corse. Pour les plans d'eau d'origine anthropique, une sélection a été opérée parmi les plans d'eau de superficie supérieure à 50 ha, afin de couvrir au mieux les différents types présents sur les bassins Rhône-Méditerranée et Corse (grandes retenues, plans d'eau de digue, plans d'eau de creusement).
- ✓ Le contrôle opérationnel (CO) vise à suivre spécifiquement les plans d'eau (naturels ou anthropiques) de superficie supérieure à 50 ha qui risquent de ne pas atteindre leurs objectifs environnementaux (le bon état ou le bon potentiel).

Au total, 79 plans d'eau sont suivis sur les bassins Rhône-Méditerranée et Corse dans le cadre de ces deux réseaux.

La liste des plans d'eau suivis en 2019 sur le sud du bassin Rhône-Méditerranée et le bassin Corse, précisant pour chaque plan d'eau le réseau qui le concerne, est fournie dans le Tableau 2.

Tableau 2 : liste des plans d'eau suivis sur le sud du bassin Rhône-Méditerranée et bassin Corse

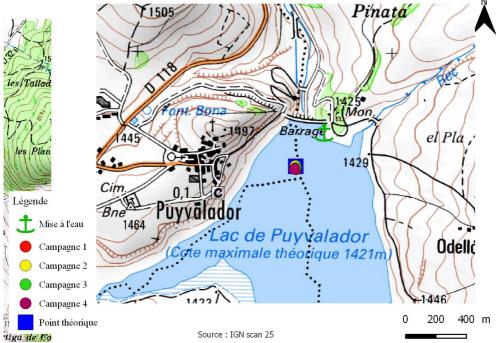
Code_lac	Libellé	Origine	Dept	Code MDO	Type cemagref	Réseaux	Altitude (m)	Type de suivi
X2005023	Allos	Naturel	4	FRDL93	N2	RCS/REF	2232	Classique
Y4305143	Entressen	Naturel	13	FRDL116	N11	RCS/CO	36	Classique
X2625003	Esparron	MEFM	4	FRDL89	А3	RCS	359	Classique
Y0045103	Estany de Lanos	MEFM	66	FRDL124	A1	RCS	2213	Classique
Y5525003	Saint Cassien	MEFM	83	FRDL107	A12	RCS	147	Classique
X23003	Sainte Croix	MEFM	4	FRDL106	А3	RCS	477	Classique
Y2235003	Salagou	MEFM	34	FRDL119	A12	RCS	139	Phytoplancton + séd.
X03003	Serre ponçon	MEFM	5	FRDL95	А3	RCS	779	Classique
Y9205023	Alesani	MEFM	2B	FREL134	A12	RCS	160	Classique
Y8415003	Tolla	MEFM	2A	FREL131	A10	RCS	560	Classique
Y1005163	Puyvalador	MEFM	66	FRDL125	A1	CO	1421	Classique
X0125003	Eychauda	Naturel	5	FRDL96	N2	REF	2513	Classique
X0405063	Neuf couleurs	Naturel	4	FRDL94	N2	REF	2841	Classique

2 DÉROULEMENT DES INVESTIGATIONS

2.1 Presentation du plan d'eau et localisation

La retenue de Puyvalador est située dans le Capcir (le plus haut plateau pyrénéen) dans les Pyrénées Orientales sur les communes de Formiguères et de Puyvalador. La retenue formée atteint 91 ha pour un volume de 10,1 millions de m³ et une profondeur maximale de 24 m à la cote normale d'exploitation (1421 m NGF).

Le lac s'étend sur 2 km de long et reçoit les eaux de l'Aude et du Galbe. Dans son cours supérieur, l'Aude présente un régime nivo-pluvial avec deux pics de débit bien marqués : au printemps lié à la fonte des neiges, et le second en automne lié aux précipitations.


Cette retenue artificielle classée MEFM, est exploitée par EDF (GEH Aude-Ariège) pour l'hydroélectricité (en coordination avec le barrage de Matemale) et sert aussi à l'irrigation de la vallée de l'Aude. La cote du plan d'eau varie de façon saisonnière entre 1408 et 1421 m NGF en fonction des apports et des besoins énergétiques. Les turbinées maximales se font généralement en hiver et au début du printemps lors de la plus forte demande énergétique : le temps de séjour réel est donc plus difficile à définir. Le renouvellement des eaux est important jusqu'en juin-juillet (apports importants associés à un volume réduit dans la retenue) puis faible en été (apports réduits associés à un volume quasi maximal dans la retenue). Le lac est gelé en surface en période hivernale, de décembre à mars environ.

Carte 1 : localisation du retenue de Puyvalador (Pyrénées Orientales)

La pêche et l'observation ornithologique sont des activités pratiquées aux abords du plan d'eau. En revanche, la baignade et les activités nautiques ne sont pas autorisées.

La zone de plus grande profondeur se situe à proximité du barrage. Le point de plus grande profondeur atteint 21,7 m pour cette année 2019 (Carte 2) comme lors des suivis précédents. Le marnage maximal enregistré en 2019 était seulement de 6 m en début et fin de saison.

Carte 2 : Présentation du point de prélèvement

Le lac est dimictique, c'est-à-dire qu'il s'agit d'un plan d'eau qui présente deux phases de stratification annuelle : une stratification thermique normale en période estivale et une stratification inverse en période hivernale (prise en glace superficielle).

2.2 CONTENU DU SUIVI 2019

La retenue de Puyvalador est suivie au titre du Contrôle Opérationnel (CO). Les précédents suivis ont eu lieu en 2016, 2013 et 2010.

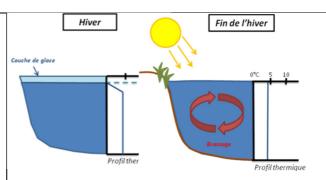
Le plan d'eau présente les pressions suivantes à l'origine du risque de non atteinte des objectifs environnementaux fixés par la DCE :

- ✓ Pollutions diffuses : nutriments ;
- ✓ Hydrologie;
- ✓ Autre : altération de la continuité piscicole.

2.3 PLANNING DE REALISATION

Le tableau ci-dessous indique la répartition des missions aussi bien en phase terrain qu'en phase laboratoire/détermination. S.T.E. a, en outre, eu en charge de coordonner la mission et de collecter l'ensemble des données pour établir les rapports et mener l'exploitation des données.

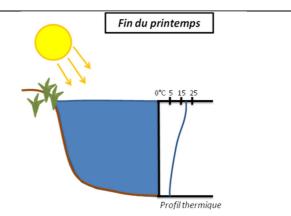
Tableau 3 : Synoptique des interventions de terrain et de laboratoire sur le plan d'eau


Retenue de Puyvalador		Phase to	Laboratoire - détermination		
Campagne	C1	C2 C3		C4	
Date	06/05/2019	12/06/2019	10/07/2019	11/09/2019	automne/hiver 2019/2020
Physicochimie des eaux	S.T.E.	S.T.E.	S.T.E.	S.T.E.	CARSO
Physicochimie des sédiments			S.T.E.		LDA26
Phytoplancton	S.T.E.	S.T.E.	S.T.E.	S.T.E.	LEMNA

2.4 ETAPES DE LA VIE LACUSTRE

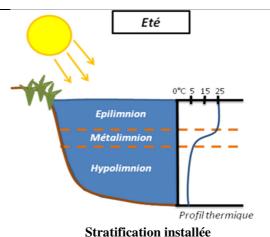
Les investigations physicochimiques ont été réalisées lors de quatre campagnes qui correspondent aux différentes étapes de développement de la vie lacustre.

Campagne 1

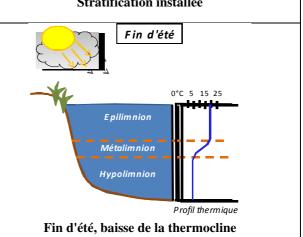

La première campagne correspond à la phase d'homothermie du plan d'eau. La masse d'eau est homogène (en température et en oxygène). Sur les lacs dimictiques, cette phase intervient en fin d'hiver à la suite du dégel. La période varie entre juin et juillet suivant l'altitude du plan d'eau.

Stratification hivernale - Brassage de fin d'hiver

Campagne 2


La seconde campagne correspond à la période de démarrage et de développement de l'activité biologique des lacs. Il s'agit de la période de mise en place de la stratification thermique conditionnée par le réchauffement. Cette phase intervient au printemps et c'est à cette période que l'activité biologique atteint son maximum. La campagne est donc généralement réalisée durant le mois de juillet pour les plans d'eau d'altitude.

Phase de stratification printanière


Campagne 3

La troisième campagne correspond à la période de stratification maximum du plan d'eau avec une thermocline bien installée avec une 2ème phase de croissance du phytoplancton. Cette phase intervient en période estivale. La campagne est donc réalisée au mois d'août, lorsque l'activité biologique est maximale sur les plans d'eau de haute montagne.

Campagne 4

La quatrième campagne correspond à la fin de la stratification estivale du plan d'eau. Elle intervient avant la baisse de la température et la disparition de la thermocline. L'épilimnion présente alors son épaisseur maximale. Cette phase intervient en fin d'été : la campagne est donc réalisée durant le mois de septembre.

2.5 BILAN CLIMATIQUE DE L'ANNEE 2019

Les conditions climatiques de l'année 2019 pour la retenue de Puyvalador sont analysées à partir de la station météorologique de Mérens-les-Vals (Ariège) à 1070 m d'altitude, elle est située à 22 km à l'Ouest du plan d'eau. Cette station dispose d'une faible chronique puisqu'elle a été mise en service en 2015.

L'année 2019 a été globalement stable par rapport aux moyennes de saison (Figure 1)¹ avec une température moyenne de 10.2°C en 2019 contre 10.5°C sur la période 2015-2019. On observe une stabilité des températures pendant toute l'année mais des records ponctuels de températures en juin et juillet 2019 sur les températures moyennes.

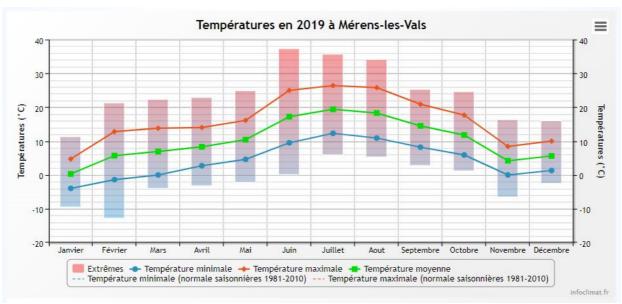


Figure 1 : moyennes mensuelles de température à la station de Mérens-les-Vals (Info-climat)

Le cumul de précipitations en 2019 est légèrement supérieur à la normale (925 mm en 2019 contre 840 mm mesuré en moyenne sur la période 2015-2019), **soit +10% de pluviométrie**. Ces données sont présentées sur la Figure 2.

S.T.E. Sciences et Techniques de l'Environnement - Rapport Puyvalador 2019 - août 2020- page 13

¹ Pour les figures 1 et 2, les moyennes saisonnières n'apparaissent pas sur les graphiques compte-tenu de la faible chronique de la station météorologique.

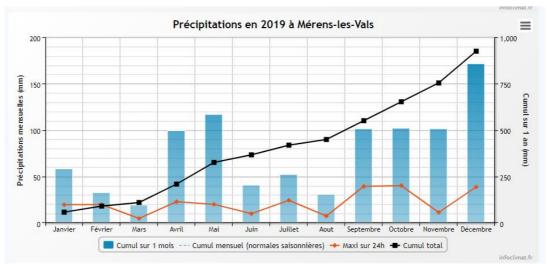


Figure 2: cumuls mensuels de précipitations à la station de Mérens-les-Vals (site Info-climat)

Il ressort les éléments suivants :

- ✓ Déficits pendant l'hiver : -50% de précipitations en février 2019 et -75% en mars 2019 par rapport à la période 2015-2019;
- ✓ Précipitations plus importante en automne +68% en 2019 par rapport à la moyenne des précipitations de la période 2015-219.

L'enneigement de la saison 2018-2019 a été assez chaotique : il a été long à se constituer, avec un sévère manque de neige durant tout le début de saison, jusqu'au 20 janvier. L'enneigement est ensuite très rapidement devenu très bon et nettement excédentaire, grâce à une succession de très fortes chutes de neige, souvent jusqu'à basse altitude, entre le 21 janvier et le 4 février.

Ensuite, plus aucune chute de neige significative ne s'étant produite jusqu'à l'installation du printemps, le manteau neigeux a lentement régressé, aidé, dans les versants ensoleillés, par un soleil généreux et des températures souvent très douces. En avril et mai, au contraire des mois précédents, il y a eu des chutes de neige régulières et tardives jusqu'à basse altitude.

Les conditions climatiques ont permis un bon remplissage de la retenue sur les mois d'avril et de mai permettant le maintien de la cote du plan d'eau sur la période estivale.

3 RAPPEL MÉTHODOLOGIQUE

3.1 INVESTIGATIONS PHYSICOCHIMIQUES

3.1.1 <u>Methodologie</u>

Le contenu des investigations physicochimiques est similaire sur les quatre campagnes, excepté un point : un échantillon de sédiment est prélevé lors de la dernière campagne.

Le profil vertical et les prélèvements sont réalisés dans le secteur de plus grande profondeur que l'on recherche à partir des données collectées au préalable (bathymétrie, étude, communication avec les gestionnaires). Dans le cas des retenues, cette zone se situe en général à proximité du barrage dans le chenal central. Sur le terrain, la recherche du point de plus grande profondeur est menée à l'aide d'un échosondeur.

Au point de plus grande profondeur, on effectue, dans l'ordre :

- a) une mesure de transparence au disque de Secchi, avec lecture côté "ombre" du bateau pour une parfaite acuité visuelle. Chacun des deux opérateurs fait la lecture en aveugle (1^{ère} lecture non indiquée au 2^e lecteur).
- b) un profil vertical de température (°C), conductivité (μS/cm à 25°C), pH (u. pH) et oxygène dissous (% sat. et mg/l). Il est réalisé à l'aide de 2 sondes multiparamètres OTT MS5 qui peuvent effectuer des mesures jusqu'à 200 m de profondeur :
 - les sondes MS1 et MS2 disposant d'une mémoire interne pouvant être programmée pour enregistrer les données à une fréquence de temps définie préalablement (5 secondes).

Les sondes sont équipées d'un capteur de pression permettant d'enregistrer la profondeur de la mesure. Les deux sondes sont descendues en parallèle sur la colonne d'eau pour le recueil du profil vertical.

Un profil vertical du paramètre matières organiques dissoutes *fdom* est également mené lors de toutes les campagnes à l'aide d'une sonde EXO. Cet appareil a également été équipé d'une sonde pH et conductivité en cours d'année 2019.

c) deux prélèvements pour analyses physicochimiques :

- l'échantillon intégré est en général constitué de prélèvements ponctuels tous les mètres² sur la zone euphotique (soit 2,5 fois la transparence) ; ces prélèvements unitaires, de même volume, sont réalisés à l'aide d'une bouteille Kemmerer 1,2 L (téflon) et disposés dans une bonbonne en verre pyrex de 20 litres graduée et équipée d'un robinet verre/téflon pour conditionner les échantillons. Pour les analyses physicochimiques (uniquement micropolluants minéraux et organiques), 10 litres sont nécessaires. Une fois l'échantillon finalisé, le conditionnement est réalisé sur le bateau, en respectant l'ensemble des prescriptions du laboratoire.
- l'échantillon ponctuel de fond est prélevé à environ 1 m du fond, pour éviter la mise en suspension des sédiments. Les prélèvements sont réalisés à l'aide d'une bouteille Niskin X *General Oceanics* téflonnée (5,4 L) et disposés dans une bonbonne en verre pyrex de 20 litres graduée et équipée d'un robinet verre/téflon pour conditionner les échantillons. Pour les analyses physicochimiques (physicochimie classique, micropolluants minéraux et organiques), 15 litres sont nécessaires. Une fois l'échantillon finalisé, le conditionnement est réalisé sur le bateau, en respectant l'ensemble des prescriptions du laboratoire.

Pour chaque échantillon, le laboratoire CARSO fournit une glacière avec les flaconnages préalablement étiquetés adaptés aux analyses demandées par l'Agence de l'Eau RM&C.

Les échantillons sont conservés dans une enceinte isolée au contact de blocs réfrigérants et de glace fondante, puis envoyés par transporteur TNT pour un acheminement au laboratoire CARSO dans un délai de 24h, sauf cas particuliers.

d) un prélèvement intégré destiné à l'analyse du phytoplancton et de la chlorophylle et aux analyses de physico-chimie classique :

Les prélèvements doivent être obligatoirement intégrateurs de la colonne d'eau correspondant à la zone euphotique. Pour l'échantillonnage, 7 litres sont nécessaires. Ainsi, selon la profondeur de la zone euphotique, plusieurs matériels peuvent être utilisés, l'objectif étant de limiter les aliquotes, et donc les manipulations afin que l'échantillon soit le plus homogène possible :

² Compte tenu de la transparence Tr. de certains plans d'eau, exprimable en plusieurs mètres, la règle du Tr. x 2,5 a parfois conduit à une valeur calculée supérieure à la profondeur du plan d'eau. Dans ces cas, le prélèvement a été arrêté à 1 m du fond, pour éviter le prélèvement d'eau de contact avec le sédiment, qui peut, selon les cas, présenter des caractéristiques spécifiques. Inversement, lorsque la transparence est très faible, amenant à une épaisseur de zone euphotique d'à peine quelques mètres, les prélèvements peuvent être resserrés à un pas moindre que 1 m (par exemple : tous les 50 cm).

- ✓ le tuyau intégrateur (système décrit dans le protocole de l'IRSTEA) est adaptable pour toute profondeur, le volume échantillonné dépend du diamètre du tuyau. S.T.E. a mis au point 2 tuyaux :
 - o l'un de 5 ou 9 m de diamètre élevé (Ø18 mm) pour les zones euphotiques réduites,
 - o l'autre de 30 m (Ø14 mm) pour les transparences élevées.

Le choix du matériel respecte l'objectif de ne pas multiplier les prélèvements élémentaires.

La filtration de la chlorophylle est effectuée sur le terrain par le préleveur S.T.E. à l'aide d'un kit de filtration de terrain Nalgène.

Pour l'analyse du phytoplancton, 2 échantillons sont réalisés dans des flacons blancs opaques en PP de 500 et 250 ml dûment étiquetés (nom du lac, date, préleveur, campagne). On y ajoute un volume connu de lugol (3 à 5 ml) pour fixation. Les échantillons sont conservés au réfrigérateur. Un des deux échantillons est ensuite transmis au bureau d'études LEMNA en charge de la détermination et du comptage du phytoplancton. L'autre échantillon est conservé dans les locaux de S.T.E dans le cadre du contrôle qualité.

Pour les analyses de physico-chimie classique, le laboratoire CARSO fournit une glacière avec les flaconnages préalablement étiquetés adaptés aux analyses demandées par l'Agence de l'Eau RM&C. Les échantillons sont conservés dans une enceinte isolée au contact de blocs réfrigérants et de glace fondante, puis envoyés par transporteur TNT pour un acheminement au laboratoire CARSO dans un délai de 24h, sauf cas particuliers.

e) un prélèvement de sédiment :

Ce type de prélèvement n'est réalisé que lors d'une seule campagne, celle de fin d'été (septembre), susceptible de représenter la phase la plus critique pour ce compartiment. Le prélèvement de sédiments est réalisé impérativement **après** les prélèvements d'eau afin d'éviter tout risque de mise en suspension de particules du sédiment lors de son échantillonnage, et donc de contamination du prélèvement d'eau (surtout celui du fond).

Il est réalisé par une série de prélèvements à la benne Ekman. Au vu de sa taille et de la fraction ramenée par ce type de benne (en forme de secteur angulaire), on réalise de 2 à 5 prélèvements pour ramener une surface de l'ordre de 1/10 m². On observe sur chacun de ces échantillons la structure du sédiment dans le double but de :

- description (couleur, odeur, aspect, granulométrie,..);
- sélection de la seule tranche superficielle (environ 2-3 premiers cm) destinée à l'analyse.

Pour chaque échantillon, le laboratoire LDA26 fournit une glacière avec le flaconnage adapté aux analyses demandées par l'Agence de l'Eau RM&C.

Les échantillons sont conservés dans une enceinte isolée au contact de blocs réfrigérants et de glace fondante, puis envoyés par transporteur Chronopost pour un acheminement au Laboratoire de la Drôme (LDA26) dans un délai de 24h, sauf cas particuliers.

3.1.2 PROGRAMME ANALYTIQUE

Concernant les analyses, les paramètres suivants sont mesurés :

- ✓ sur le prélèvement intégré destiné aux analyses de physico-chimie classique et de la chlorophylle :
 - o turbidité, MES, COD, DBO₅, DCO, PO₄³⁻, Ptot, NH₄⁺, NKJ, NO₃⁻, NO₂⁻, silicates;
 - o chlorophylle a et indice phéopigments ;
 - o dureté, TAC, HCO₃, Ca⁺⁺, Mg⁺⁺, Na⁺, K⁺, Cl⁻, SO₄⁻⁻, F⁻;
- ✓ sur le prélèvement intégré destiné aux analyses de micropolluants minéraux et organiques :
 - o micropolluants minéraux et organiques : liste des substances fournie en annexe 1.
- ✓ sur le prélèvement de fond :

- turbidité, MES, COD, DBO₅, DCO, PO₄³⁻, Ptot, NH₄⁺, NKJ, NO₃⁻, NO₂⁻, silicates;
- o micropolluants minéraux et organiques : liste des substances fournie en annexe 1.

Les paramètres analysés sur les **sédiments** prélevés lors de la 4^{ème} campagne sont les suivants :

- \checkmark sur la phase solide (fraction < 2 mm):
 - o granulométrie;
 - o matières sèches minérales, perte au feu, matières sèches totales ;
 - o carbone organique;
 - o phosphore total;
 - o azote Kjeldahl;
 - o ammonium;
 - o micropolluants minéraux et organiques : liste des substances fournie en annexe 2.
- ✓ Sur l'eau interstitielle :
 - o orthophosphates;
 - o phosphore total;
 - o ammonium.

3.2 Investigations hydrobiologiques

Les investigations hydrobiologiques menées en 2019 sur la retenue de Puyvalador comprennent uniquement :

✓ l'étude des peuplements phytoplanctoniques à partir de la norme XP T 90-719, « Échantillonnage du phytoplancton dans les eaux intérieures » pour la phase d'échantillonnage et pour la partie détermination à la Norme guide pour le dénombrement du phytoplancton par microscopie inversée (norme NF EN 15204, décembre 2006), correspondant à la méthode d'Utermöhl et suivant les spécifications particulières décrites au chapitre 5 du «Protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan pour la mise en œuvre de la DCE, Version 3.3.1, septembre 2009.

Les prélèvements ont été effectués par S.T.E. lors des campagnes de prélèvements pour analyses physicochimiques. La détermination a été réalisée par Sonia Baillot du bureau d'études LEMNA, spécialiste en systématique et écologie des algues d'eau douce.

3.2.1 Prelevement des echantillons

Les prélèvements ont été réalisés selon la méthodologie présentée au point d) du §3.1.1 « Méthodologie » du chapitre « Rappel méthodologique ».

3.2.2 DETERMINATION DES TAXONS

La détermination est faite au microscope inversé, à l'espèce dans la mesure du possible.

A noter : la systématique du phytoplancton est en perpétuelle évolution, les références bibliographiques se confortent ou se complètent, mais s'opposent quelques fois. Il est donc important de rappeler qu'il vaut mieux une bonne détermination à un niveau taxonomique moindre qu'une mauvaise à un niveau supérieure (Laplace-Treyture et al., 2009).

L'analyse quantitative implique l'identification et le dénombrement des taxons observés dans une surface connue de la chambre de comptage. Selon la concentration en algues décroissante, le comptage peut être réalisé de trois manières différentes (Figure 3).

Figure 3 : Représentation schématique des différentes stratégies de comptage

Le comptage est réalisé en balayant des champs strictement aléatoires, ou des transects, ou la chambre entière jusqu'à atteindre 400 individus algaux. La stratégie de comptage utilisée est fonction de la concentration des algues.

Différentes règles de comptage sont appliquées, en respect des échanges inter-opérateur issus des réunions d'harmonisation phytoplancton INRA 2015-2016. Il est entendu que :

- ✓ Tout filament, colonie, ou cœnobe, compte pour un individu algal à X cellules. Le nombre de cellules présentes dans le champ et par individu est dénombré (cellules/individus algaux).
- ✓ Seules les cellules contenant un plaste (exceptés pour les cyanobactéries et chrysophycées à logettes) sont comptées. Les cellules vides des colonies, des cœnobes, des filaments ou des diatomées ne sont pas dénombrées.
- ✓ Les logettes des chrysophycées (ex : *Dinobryon, Kephyrion,...*) sont dénombrées même si elles sont vides, les cellules de flagellés isolés ne sont pas dénombrés.
- ✓ Pour les diatomées, en cas de difficulté d'identification et de fortes abondances (supérieur à 20% de l'abondance totale), une préparation entre lame et lamelle selon le mode préparatoire décrit par la norme NF T 90-354 (AFNOR) est effectuée.

3.2.3 Traitement des données

Les résultats sont exprimés en nombre de cellules par millilitre. Ils sont également exprimés en biovolume (mm³/l), ce qui reflète l'occupation des différentes espèces. En effet, les espèces de petite taille n'occupent pas un même volume que les espèces de grandes tailles. Les biovolumes sont obtenus de trois manières :

- 1. Grâce aux données proposées par le logiciel Phytobs (version 3.1.3), d'aide au dénombrement,
- 2. si les données sont absentes, les mesures sur 30 individus lors de l'observation au microscope sont employées pour calculer un biovolume robuste,
- 3. si l'ensemble des dimensions utiles au calcul n'est pas observé, les données complémentaires issues de la bibliographie sont employées.

Le comptage terminé, la liste bancarisée dans l'outil de comptage PHYTOBS est exporté au format .xls ou .csv. Cet outil permet de présenter des résultats complets.

Le calcul de l'indice Phytoplancton lacustre ou IPLAC est réalisé à l'aide à l'aide du Système d'Evaluation de l'Etat des Eaux (SEEE). Il s'appuie sur 2 métriques :

- ✓ La Métrique de biomasse algale ou MBA est basée sur la concentration moyenne de la chlorophylle a sur la période de végétation.
- ✓ La Métrique de Composition Spécifique ou MCS exprime une note en fonction de la présence (exprimée en biovolume) de taxons indicateurs, figurant dans une liste de référence de 165 taxons (SEEE 1.1.0). A chaque taxon correspond une cote spécifique et une note de sténoécie, représentant l'amplitude écologique du taxon. La note finale est obtenue en mesurant l'écart avec la valeur prédite en condition de référence.

La note IPLAC résulte de l'agréation par somme pondérée de ces deux métriques:

Valeurs de limite	Classe
[1-0.8]	Très bon
]0.8 - 0.6]	Bon
]0.6 - 0.4]	Moyen
]0.4 - 0.2]	Médiocre
]0.2 - 0]	Mauvais

Figure 4 : Seuils des classes d'état définis pour chaque métrique et pour l'IPLAC

L'interprétation des caractéristiques écologiques du peuplement permet d'établir si une dégradation de la note indicielle peut être expliquée par la présence de taxons polluotolérants ou favorisés par une abondance de nutriments liée à l'eutrophisation du milieu ou être lié au fonctionnement du milieu (stratification, anoxie,...).

L'utilisation de la bibliographie et des groupes morpho-fonctionnels permet d'affiner notre analyse et d'évaluer la robustesse de la note IPLAC obtenue.

4 RÉSULTATS DES INVESTIGATIONS

4.1 INVESTIGATIONS PHYSICOCHIMIQUES

Les comptes rendus des campagnes de prélèvements physicochimiques et phytoplanctoniques sont présentés en annexe 3.

4.1.1 Profils verticaux et evolutions saisonnières

Le suivi prévoit la réalisation de profils verticaux sur la colonne d'eau à chaque campagne. Quatre paramètres sont mesurés : la température, la conductivité, l'oxygène (en concentration et en % saturation) et le pH. Les graphiques regroupant ces résultats pour chaque paramètre lors des 4 campagnes sont affichés dans ce chapitre.

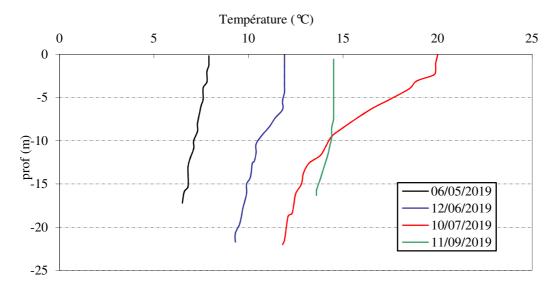


Figure 5 : Profils verticaux de température au point de plus grande profondeur

La température est quasi homogène sur la colonne d'eau à la sortie de l'hiver, elle reste froide avec 6.5°C au fond et 7.9°C en surface. Les eaux commencent à se réchauffer au printemps. Un gradient de température se met en place entre la surface et le fond sans que l'on observe de stratification bien visible. L'épilimnion de (0-8m) est à 11.5°C tandis que les eaux du fond restent à 9,3°C.

La campagne du 10 juillet correspond à la période de réchauffement maximal des eaux. L'épilimnion est à plus de 20°C mais il correspond seulement aux trois premiers mètres. Les eaux du fond se maintiennent à 12°C environ.

En fin d'été, le déstockage des eaux (-5 m) a entrainé un brassage de la masse d'eau. La température de l'eau se maintient entre 13,6 et 14,5°C.

Le renouvellement fréquent des eaux au printemps et le déstockage des eaux en fin d'été ne permettent pas l'instauration d'une stratification thermique durable dans la retenue de Puyvalador.

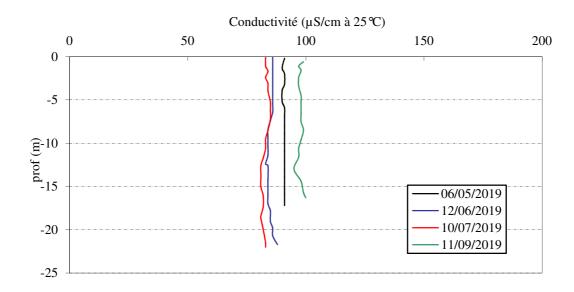


Figure 6 : Profils verticaux de conductivité au point de plus grande profondeur

La conductivité est faible et homogène à $\approx 90~\mu S/cm$ à $25^{\circ}C$ lors des quatre campagnes en cohérence avec la géologie (roches cristallines). On note une légère variation lors des campagnes de juillet avec une baisse de la minéralisation à $83~\mu S/cm$ à $25^{\circ}C$ en juillet. Une augmentation de la conductivité est mise en évidence en septembre ($\approx 100~\mu S/cm$ à $25^{\circ}C$) à relier au brassage de la masse d'eau.

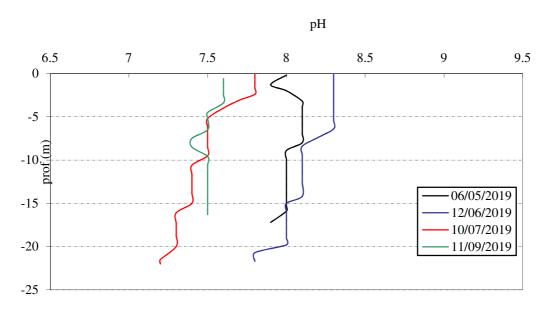


Figure 7: Profils verticaux de pH au point de plus grande profondeur

Le pH est alcalin dans la retenue de Puyvalador. Il est homogène sur toute la colonne d'eau en fin d'hiver (8.0 -8.1). Au printemps, on observe une augmentation du pH dans la zone euphotique correspondant à l'activité photosynthétique de la zone euphotique et à une stratification assez marquée. Il est compris entre 8,3 en surface et 7,8 au fond. Puis lors de la campagne 3, une diminution régulière du pH est enregistré en surface (7,8) jusqu'à 7.2 au fond. Cette baisse est à mettre en relation avec la baisse de la productivité algale en zone euphotique et les processus de respiration en profondeur.

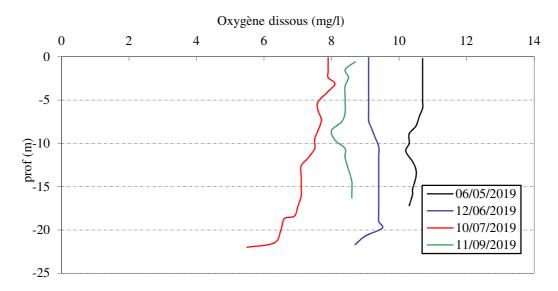


Figure 8 : Profils verticaux d'oxygène (mg/l) au point de plus grande profondeur

La saturation en oxygène dissous est optimale et homogène sur toute la colonne d'eau lors des $1^{\text{ère}}$ et $2^{\text{ème}}$ campagnes d'investigations ($\approx 100\%$).

En été, la couche de surface reste bien oxygénée > 100% de 0 à - 4 m tandis que la consommation en oxygène dissous augmente à partir de - 5 m : 86% mesuré à -10 m, et seulement 60% au fond du plan d'eau. En fin d'été, le brassage hivernal permet une ré-oxygénation complète du plan d'eau (90 à 100 % sat).

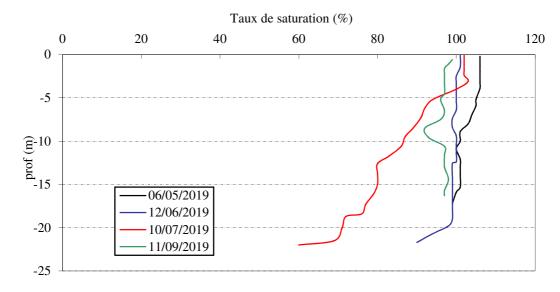


Figure 9 : Profils verticaux d'oxygène (% sat.) au point de plus grande profondeur

Les matières organiques dissoutes sont étudiées à l'aide d'une sonde EXO équipée d'un capteur fdom qui mesure les matières organiques dissoutes (MOD) en ppb QSU sulfate de quinine. Les profils pour les 4 campagnes sont présentés sur la Figure 10.

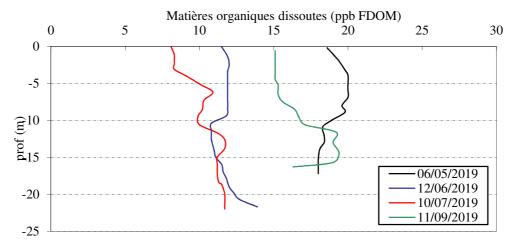


Figure 10 : profils verticaux des matières organiques dissoutes

Les teneurs en matières organiques dissoutes sont importantes dans la retenue de Puyvalador (entre 8 et 20 ppb QSU). En fin d'hiver, on enregistre les valeurs maximales : 18 à 20 ppb QSU. Les MOD diminuent lors de la C2 (≈ 12 ppb QSU). Même type de profil relevé en C3 avec une baisse des MOD en surface (8.1 ppb QSU) tandis que la couche profonde reste à environ à 12 ppb QSU). Lors de la C4, la zone euphotique est à 15 ppb QSU tandis que l'on retrouve les valeurs de la 1ère campagne en période de brassage (19 ppb QSU).

4.1.2 Analyses physico-chimiques sur eau

4.1.2.1 Paramètres de constitution et typologie du lac

N.B. pour tous les tableaux suivants : LQ = limite de quantification.

Les résultats des paramètres de minéralisation des quatre campagnes sont présentés dans le Tableau 4.

Rete	enue de Puyvalador	Unitá	Unité Code sandre		06/05/2019		12/06/2019		10/07/2019		11/09/2019	
Code 1	plan d'eau: Y1005163	Office	Coae sanare	LQ	intégré	fond	intégré	fond	intégré	fond	intégré	fond
	Bicarbonates	mg(HCO ₃)/L	1327	6.1	46	48	41	40	46	45	45	45
	Calcium	mg(Ca)/L	1374	0.1	13.5	13.2	11.8	11.9	12.1	11.9	12.1	12.4
u n	Chlorures	mg(Cl)/L	1337	0.1	3.8	3.6	2.7	2.4	2.7	2.5	3.9	4.0
Minéralisation	Dureté	°F	1345	0.5	4.3	4.2	3.8	3.8	3.8	3.7	3.8	3.9
ralis	Magnésium	mg(Mg)/L	1372	0.05	2.2	2.2	2.0	1.9	1.9	1.8	1.9	2.0
inéı	Potassium	mg(K)/L	1367	0.1	0.8	0.7	0.6	0.5	0.7	0.6	0.8	1.0
Σ	Sodium	mg(Na)/L	1375	0.2	3.2	3.0	2.4	2.2	2.4	2.2	2.9	3.2
	Sulfates	mg(SO ₄)/L	1338	0.2	4.3	3.9	3.3	3.2	3.6	3.4	4.0	4.0
	TAC	°F	1347	0	3.8	4.0	3.4	3.3	3.8	3.7	3.7	3.7

Tableau 4 : Résultats des paramètres de minéralisation

Les résultats indiquent une eau peu carbonatée, de dureté très faible (\approx 4 °F). La retenue de Puyvalador et son bassin versant se trouvent sur des terrains de roches cristallines, ce qui explique la faible minéralisation des eaux : \approx 12 mg/l de calcium ; \approx 3 mg/l de chlorures, 2 mg/l de Mg, 3 mg/l de sodium, et 4 mg/l de sulfates.

4.1.2.2 Analyses physicochimiques des eaux (hors micropolluants)

Tableau 5 : Résultats des paramètres de physico-chimie classique sur eau

Reten	ue de Puyvalador	Unité	Code	LQ	06/05	/2019	12/06	/2019	10/07	/2019	11/09	/2019
Code pla	n d'eau: Y1005163	Onte	sandre LQ	intégré	fond	intégré	fond	intégré	fond	intégré	fond	
	Ammonium	mg(NH4)/L	1335	0.01	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.05</td><td>0.06</td><td>0.14</td><td>0.03</td><td>0.02</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.05</td><td>0.06</td><td>0.14</td><td>0.03</td><td>0.02</td></lq<></td></lq<>	<lq< td=""><td>0.05</td><td>0.06</td><td>0.14</td><td>0.03</td><td>0.02</td></lq<>	0.05	0.06	0.14	0.03	0.02
	Azote Kjeldahl	mg(N)/L	1319	0.5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Carbone organique	mg(C)/L	1841	0.2	2.6	2.2	1.7	1.6	1.6	1.6	2.3	2.4
	DBO5	mg(O2)/L	1313	0.5	1.6	0.6	0.7	0.5	1	0.5	1.2	1.2
	DCO	mg(O2)/L	1314	20	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
PC eau	MeS	mg/L	1305	1	12	9	1.6	1.7	4	<lq< th=""><th>4.8</th><th>7</th></lq<>	4.8	7
PC eau	Nitrates	mg(NO3)/L	1340	0.5	1	1.2	0.5	1.2	0.5	0.6	1	1.3
	Nitrites	mg(NO2)/L	1339	0.01	0.02	0.02	0.02	0.01	0.02	0.02	0.05	0.05
	Phosphates	mg(PO4)/L	1433	0.01	0.02	0.01	0.02	0.02	0.02	0.05	0.03	0.03
	Phosphore total	mg(P)/L	1350	0.005	0.019	0.019	0.01	<lq< td=""><td><lq< td=""><td>0.017</td><td>0.022</td><td>0.027</td></lq<></td></lq<>	<lq< td=""><td>0.017</td><td>0.022</td><td>0.027</td></lq<>	0.017	0.022	0.027
	Silicates	mg(SiO2)/L	1342	0.05	3.1	3.6	1.8	2.5	3.5	3	3.5	3.6
	Turbidité	NFU	1295	0.1	5	5.5	1.7	2.9	1.1	1.5	6.4	5.2

Les analyses des fractions dissoutes ont été réalisées sur eau filtrée (COD, NH4, NO3, NO2, PO4, Si).

La charge organique est moyenne dans les eaux de Puyvalador : les concentrations en carbone organique dissous sont très homogènes et comprises entre 1.6 et 2.6 mg/l. La DBO₅ est faible (0,5 à 1 ,6 mg/l). La DCO et l'azote Kjeldahl sont sous les seuils de quantification pour tous les échantillons.

Globalement, les matières en suspension sont peu abondantes lors des campagnes du 12 juin et du 10 juillet. En revanche, la turbidité est relativement élevée en C1 et en C4 avec une production algale importante (15 à 16 µg/l de chlorophylle a).

En fin d'hiver, les eaux de la retenue de Puyvalador présentent des teneurs faibles en matières azotées : les nitrates sont mesurés à 1 mg/l. Les phosphates sont présents à faible concentration (0,02 mg/l). Il convient de rappeler que la production algale est déjà très importante lors de cette 1^{ère} campagne, ce qui signifie que les nutriments ont été consommés : les apports en nitrates et phosphates de fin d'hiver sont donc sous-estimés. Ainsi, le rapport N/P³ est élevé (35): le phosphore reste le facteur limitant la croissance des végétaux.

La teneur en nitrates reste homogène et faible toute l'année en zone euphotique (0,5 à 1 mg/l) ou dans le fond (0,6 à 1,3 mg/l). Les phosphates sont présents en faible quantité : entre 0.02 et 0.03 mg/l en zone euphotique jusqu'à 0.05 mg/l dans l'échantillon du fond de la C3.

On constate une augmentation des teneurs en nutriments dans le fond en C3 et C4 : en ammonium C3 (0.14 mg/l), des nitrites dans le fond en C4 et du phosphore total en c3 et C4 (17 à 27 μ g/l). Cela suggère un possible relargage à l'interface eau/sédiment.

La teneur en silicates est moyenne en zone euphotique (3.5 mg/l), elle est plus faible le 12 juin avec une utilisation pour la croissance des diatomées.

4.1.2.3 Micropolluants minéraux

Globalement, les eaux sont peu riches en métaux avec 13 éléments non quantifiés parmi les 26 analysés, dans tous les échantillons.

Parmi les métaux lourds, deux substances sont quantifiées de manière significative :

- ✓ l'arsenic à des concentrations comprises entre 0,79 et 2.03 μg/l, soit une moyenne annuelle de 1,69 μg/l pour l'ensemble des échantillons.
- ✓ le cuivre à des concentrations modérées comprises entre 0,28 à 0,53 μg/l.
- ✓ le lithium à des concentrations comprises entre 0.8 et $1.1 \mu g/l$;
- ✓ le zinc est quantifié en C2 (ZE + fond), C3 ZE), et C4 (fond) entre 1,1 et 4,3 µg/l.

 $^{^3}$ le rapport N/P est calculé à partir de [Nminéral]/ [P-PO₄ 3 -] avec N minéral = [N-NO₃-]+[N-NO₂-]+[N-NH₄+] sur la campagne de fin d'hiver.

06/05/2019 12/06/2019 10/07/2019 11/09/2019 Retenue de Puyvalador Unité Code sandre LQCode plan d'eau: Y1005163 intégré intégré intégré intégré fond fond fond fond 1370 2 11.2 12.2 11.5 7.1 12.7 11.7 Aluminium μg(Al)/L 9.8 9.2 1376 0.5 Antimoine μg(Sb)/L <LO <LO <LO <LO <LO <LO <LO <LO <LQ $\mu g(Ag)/L$ 1368 0.01 <LQ <LQ <LQ <LQ <LQ <LQ <LQ Argent Arsenic μg(As)/L 1369 0.05 0.98 0.92 0.82 0.79 1.4 1.72 2.03 1.6 4.9 0.5 Baryum µg(Ba)/L 1396 5.2 3.9 4.4 4.3 4.2 6.5 5.9 Beryllium μg(Be)/L 1377 0.01 <LO <LO <LO <LO <LO <LQ <LO <LO 10 Bore $\mu g(B)/L$ 1362 <LQ <LQ <LQ <LQ <LQ <LQ <LQ <LQ Cadmium $\mu g(Cd)/L$ 1388 0.01 <LO <LO <LO <LO <LO <LO <LO <LO <LO Chrome $\mu g(Cr)/L$ 0.5 <LO <LO <LO <LO 1389 <LO <LO <LO Cobalt μg(Co)/L 1379 0.05 <LO <LO <LO <LO <LQ 0.06 0.06 <1.0 Cuivre $\mu g(Cu)/L$ 1392 0.1 0.46 0.34 0.29 0.26 0.53 0.28 0.39 0.34 Etain $\mu g(Sn)/L$ 1380 0.5 <1.0 <1.0 <1.0 <LO <1.0 <1.0 <1.0 <1.0 Métaux 1 56.4 55.2 25.9 48.6 Fer μg(Fe)/L 1393 28.8 65.7 147 102 1364 0.5 0.9 0.8 1 Lithium μg(Li)/L 0.8 0.8 0.9 0.8 1.1 Manganèse µg(Mn)/L 1394 0.5 <LQ <LQ <LO 0.7 37.9 <LO <LQ 1387 0.01 <LQ <LQ <LQ <LQ <LQ <LQ <LQ Mercure μg(Hg)/L Molybdène μg(Mo)/L 1395 1 <LQ <LQ <LQ <LQ <LQ <LQ <LQ <LQ Nickel μg(Ni)/L 1386 0.5 <LQ <LQ <LQ <LQ 0.8 <LQ <LQ <LQ Plomb 1382 0.05 <LO <LO <LO <LQ <LO <LO <LO <LO μg(Pb)/L 1385 0.1 <LO <LO Sélénium <LO <LO <LQ <LO <LQ <LO μg(Se)/L Tellure 2559 0.5 <LO <LO <LO <LO <LO <LO <LO <LO μg(Te)/L 0.01 Thallium <LQ <LQ 0.018 <LQ <LQ $\mu g(Tl)/L$ 2555 <LQ <LQ <LQ Titane 0.5 μg(Ti)/L 1373 <LQ <LQ <LQ <LQ <LQ <LQ <LQ <LQ Uranium $\mu g(U)/L$ 0.05 0.18 1361 0.25 0.24 0.19 0.17 0.17 0.17 0.19 Vanadium $\mu g(V)/L$ 1384 0.1 0.18 0.16 0.11 <LQ 0.13 0.12 0.22 0.17 Zinc $\mu g(Zn)/L$ 1383 <LQ <LQ 1.22 4.31 2.49 <LQ <LQ 1.12

Tableau 6 : Résultats d'analyses de métaux sur eau

Les analyses sur les métaux ont été effectuées sur eau filtrée.

Le fer est présent à des concentrations élevées dans les eaux en particulier en fin de saison : 48,6 et 147 μ g/l. Concernant les métaux de constitution, on retrouve du baryum ($\approx 5 \mu$ g/l), de l'uranium (0.2 μ g/l), et du vanadium de 0.11 à 0.22 μ g/l).

L'origine pour la plupart de ces métaux est naturelle. Il a en effet été montré que l'arsenic, le baryum, le chrome, le cuivre, le nickel, le zinc de même que le fer et le manganèse étaient très présents dans les terrains des Pyrénées Orientales (BRGM, 2005)

Les concentrations en fer et en manganèse sont particulièrement élevées dans les eaux du fond le 10 juillet (indice relargage) : 147 µg/l de fer et 37,9 µg/l de Mn.

Ces résultats montrent une contamination en Arsenic qui avait déjà été mise en évidence lors des précédents suivis, à relier vraisemblablement au fond géochimique.

4.1.2.4 Micropolluants organiques

Le Tableau 7 indique les micropolluants organiques qui ont été quantifiés lors des campagnes de prélèvements. La liste de l'ensemble des substances analysées est fournie en annexe 1.

Retenue de Pi	ıyvalador	Unité	Code	10	06/05	/2019	12/06/2019		10/07/2019		11/09/2019	
Code plan d'eau	ı: Y1005163	Unite	sandre	LQ	intégré	fond	intégré	fond	intégré	fond	intégré	fond
divers	Cyanures libres	μg/l	1084	0.2	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.22</td><td>0.21</td><td>0.33</td><td>0.31</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.22</td><td>0.21</td><td>0.33</td><td>0.31</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.22</td><td>0.21</td><td>0.33</td><td>0.31</td></lq<></td></lq<>	<lq< td=""><td>0.22</td><td>0.21</td><td>0.33</td><td>0.31</td></lq<>	0.22	0.21	0.33	0.31
Hydrocarbure aromatique	Toluène	μg/l	1278	0.5	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.72</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.72</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0.72</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0.72	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Hydrocarbure aromatique	Xylènes (m+p)	μg/l	2925	0.1	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.15</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.15</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0.15</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0.15	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Médicament	Gabapentine	μg/l	7602	0.01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.01</td><td><lq< td=""><td>0.017</td><td>0.016</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.01</td><td><lq< td=""><td>0.017</td><td>0.016</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.01</td><td><lq< td=""><td>0.017</td><td>0.016</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0.01</td><td><lq< td=""><td>0.017</td><td>0.016</td></lq<></td></lq<>	0.01	<lq< td=""><td>0.017</td><td>0.016</td></lq<>	0.017	0.016
Médicament	Ibuprofene	μg/l	5350	0.01	0.011	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Médicament	Irbesartan	μg/l	6535	0.005	0.007	0.006	<lq< td=""><td><lq< td=""><td>0.007</td><td><lq< td=""><td>0.009</td><td>0.009</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0.007</td><td><lq< td=""><td>0.009</td><td>0.009</td></lq<></td></lq<>	0.007	<lq< td=""><td>0.009</td><td>0.009</td></lq<>	0.009	0.009
Médicament	Metformine	μg/l	6755	0.005	0.0771	0.0717	0.111	0.0877	0.186	0.132	0.175	0.154
Pesticide	AMPA	μg/l	1907	0.02	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.02</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.02</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.02</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.02</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.02</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>0.02</td><td><lq< td=""></lq<></td></lq<>	0.02	<lq< td=""></lq<>
Pesticide	Glyphosate	μg/l	1506	0.03	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.031</td><td>0.032</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.031</td><td>0.032</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.031</td><td>0.032</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.031</td><td>0.032</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.031</td><td>0.032</td></lq<></td></lq<>	<lq< td=""><td>0.031</td><td>0.032</td></lq<>	0.031	0.032
pesticides	Diméthylphénol-2,4	μg/l	1641	0.02	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.023</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.023</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.023</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0.023</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	0.023	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
plastifiants	n-Butyl Phtalate	μg/l	1462	0.05	0.16	0.1	0.08	0.06	0.06	0.06	0.1	<lq< td=""></lq<>
Sels	Perchlorate	μg/l	6219	0.1	0.17	0.16	0.11	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Semi-volatils divers	DEHP	μg/l	6616	0.4	1.11	<lq< td=""><td>0.49</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.62</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0.49	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.62</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.62</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.62</td></lq<></td></lq<>	<lq< td=""><td>0.62</td></lq<>	0.62
Semi-volatils divers	Formaldéhyde	μg/l	1702	1	1	2	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1</td></lq<></td></lq<>	<lq< td=""><td>1</td></lq<>	1
Solvant	Tributylphosphate	μg/l	1847	0.005	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.006</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.006</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.006</td></lq<></td></lq<>	<lq< td=""><td>0.006</td></lq<>	0.006
stimulants	Cafeine	μg/l	6519	0.01	0.034	0.032	0.022	0.016	0.033	0.022	0.061	0.054
stimulants	Cotinine	μg/l	6520	0.005	0.005	0.008	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.005</td><td>0.005</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.005</td><td>0.005</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.005</td><td>0.005</td></lq<></td></lq<>	<lq< td=""><td>0.005</td><td>0.005</td></lq<>	0.005	0.005
stimulants	Nicotine	μg/l	5657	0.02	<lq< td=""><td><lq< td=""><td>0.03</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0.03</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0.03	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>

Tableau 7 : Résultats d'analyses de micropolluants organiques présents sur eau

18 micropolluants organiques ont été détectés dans les eaux de la retenue de Puyvalador. Parmi eux, on récence de manière récurrente :

- ✓ le Metformine est mesuré dans tous les échantillons entre 0.007 et $0.186~\mu g/l$. Il s'agit d'une substance médicamenteuse, analysée dans les eaux depuis 2018. C'est un antidiabétique oral appartenant à la famille des biguanides qui a été retrouvé dans de nombreux plans d'eau des bassins RMC :
- ✓ le n-butylPhtalate utilisé dans l'industrie plastique (de 0.06 à 0.16 µg/l);
- ✓ un stimulant d'origine naturelle végétale : la caféine mesurée entre 0,022 et 0,061 μg/l;

Les autres substances retrouvées ponctuellement sont les suivantes :

- ✓ des cyanures libres dans les 2 échantillons des campagnes C3 et C4 ;
- ✓ 2 molécules BTEX : Toluène et Xylène dans l'échantillon du fond de la C3, mettant en évidence une pollution ponctuelle ;
- ✓ 3 médicaments détectés ponctuellement :
 - O Gabapentine : antiépileptique dans l'échantillon intégré de la C3 et les 2 échantillons de la C4 :
 - O Ibuprofène: anti inflammatoire dans l'échantillon intégré de la C1 (0.011 μg/l);
 - o Irbesartan : médicament contre l'hypertension artérielle lors de la C1, C3 et C4 ;
- ✓ 2 pesticides herbicides : Glyphosate et son produit de dégradation AMPA dans les échantillons de C4 :
- ✓ 1 pesticide (bactéricide et fongicide) : Diméthylphénol-2,4 dans l'échantillon intégré de la C3 ;
- ✓ le Di(2-ethylhexyl)phtalate (DEHP) dans les échantillons intégrés de la C1 et C2 et l'échantillon de fond de la C4 ;
- ✓ du formaldéhyde dans les échantillons de la C1 et l'échantillon du fond de la C4 (une origine naturelle est possible, ce composé pouvant être produit naturellement sous certaines conditions physico-chimiques);

- ✓ du Perchlorate : oxydant très utilisé depuis les années 1940 dans des produits tels que airbag, munitions, feux d'artifices,... ainsi que dans l'industrie du cuir ;
- ✓ 2 produits du tabac : la nicotine et la cotinine.

Les eaux du lac de Puyvalador contiennent de nombreuses molécules organiques en très faible quantité.

4.1.3 ANALYSES DES SEDIMENTS

4.1.3.1 Analyses physicochimiques des sédiments (hors micropolluants)

Le Tableau 8 fournit la synthèse de l'analyse granulométrique menée sur les sédiments prélevés.

Tableau 8 : Synthèse granulométrique sur le sédiment du point de plus grande profondeur

Composition granulométrique du sédiment									
Retenue de Puyvalador	Unité	Code sandre	11/09/2019						
Code plan d'eau: Y1005163	Office	Code sanare	11/09/2019						
fraction inférieure à 20 µm	% MS	6228	30.4						
fraction de 20 à 63 µm	% MS	3054	44.2						
fraction de 63 à 150 µm	% MS	7042	21.3						
fraction de 150 à 200 µm	% MS	7043	2.4						
fraction supérieure à 200 µm	% MS	7044	1.7						

Il s'agit de sédiments hétérogènes, de nature limono-vaseuse avec 96% de particules comprises entre de 0 à 150 µm avec présence de débris grossiers.

Les analyses de physico-chimie classique menées sur la fraction solide et sur l'eau interstitielle du sédiment sont rapportées au Tableau 9.

Tableau 9 : Analyse de sédiments

Physico-chimie du sédiment										
Retenue de Puyvalador	Unité	Code	LQ	11/09/2019						
Code plan d'eau: Y1005163	Office	sandre	LQ	11/09/2019						
Matière sèche à 105°C	%	1307		43.6						
Matière Sèche Minérale (M.S.M)	% MS	5539		86						
Perte au feu à 550°C	% MS	6578		14						
Carbone organique	mg(C)/kg MS	1841	1000	56800						
Azote Kjeldahl	mg(N)/kg MS	1319	1000	5520						
Phosphore total	mg(P)/kg MS	1350	2	1470						
Physico-chim	ie du sédiment : F	Eau interstiti	elle							
Ammonium	mg(NH4)/L	1335	0.5	7.8						
Phosphates	mg(PO4)/L	1433	0.015	0.059						
Phosphore total	mg(P)/L	1350	0.01	0.35						

Dans les sédiments, la teneur en matière organique est élevée avec 14 % de perte au feu. La concentration en azote organique est également élevée (5.5 g(N)/kg MS) tout comme la teneur en phosphore (1.47 g/kg MS). Le sédiment forme un stock de matière organique et d'éléments nutritifs.

L'eau interstitielle contient les minéraux facilement mobilisables dans les sédiments. Les concentrations en ammonium et en phosphore total sont moyennes. Elles suggèrent un relargage moyen de ces éléments à l'interface eau/sédiment. A noter que les prélèvements ont été faits après le brassage de la masse d'eau.

Le sédiment de la retenue de Puyvalador est d'une qualité physicochimique médiocre.

4.1.3.2 Micropolluants minéraux

Ils ont été dosés sur la fraction solide du sédiment.

Sédi	ment : micropolluan	ts minéraux		
Retenue de Puyvalador Code plan d'eau: Y1005163	Unité	Code sandre	LQ	11/09/2019
Aluminium	mg(Al)/kg MS	1370	5	87600
Antimoine	mg(Sb)/kg MS	1376	0.2	2.8
Argent	mg(Ag)/kg MS	1368	0.1	0.3
Arsenic	mg(As)/kg MS	1369	0.2	19.8
Baryum	mg(Ba)/kg MS	1396	0.4	480
Beryllium	mg(Be)/kg MS	1377	0.2	2.5
Bore	mg(B)/kg MS	1362	1	53.6
Cadmium	mg(Cd)/kg MS	1388	0.2	0.4
Chrome	mg(Cr)/kg MS	1389	0.2	81
Cobalt	mg(Co)/kg MS	1379	0.2	16.3
Cuivre	mg(Cu)/kg MS	1392	0.2	30.6
Etain	mg(Sn)/kg MS	1380	0.2	4.8
Fer	mg(Fe)/kg MS	1393	5	54300
Lithium	mg(Li)/kg MS	1364	1	71.9
Manganèse	mg(Mn)/kg MS	1394	0.4	566
Mercure	mg(Hg)/kg MS	1387	0.01	0.07
Molybdène	mg(Mo)/kg MS	1395	0.2	0.9
Nickel	mg(Ni)/kg MS	1386	0.2	34.8
Plomb	mg(Pb)/kg MS	1382	0.2	25.6
Sélénium	mg(Se)/kg MS	1385	0.2	2.3
Tellure	mg(Te)/kg MS	2559	0.2	< LQ
Thallium	mg(Th)/kg MS	2555	0.2	0.7
Titane	mg(Ti)/kg MS	1373	1	4400
Uranium	mg(U)/kg MS	1361	0.2	5.3
Vanadium	mg(V)/kg MS	1384	0.2	114
Zinc	mg(Zn)/kg MS	1383	0.4	152

Tableau 10 : Résultats d'analyses de micropolluants minéraux sur sédiment

Les sédiments de la retenue de Puyvalador sont peu riches en métaux. Les éléments aluminium (87.6 g/kg MS), du fer (54.3 g/kg MS) et du titane (4.4g/kg MS) sont à des teneurs assez importantes.

Les concentrations en métaux lourds restent faibles, ils sont largement en dessous des seuils S1⁴ de contamination des sédiments de curage.

⁴ Seuil S1 : seuil édicté par l'Arrêté du 9 août 2006.

4.1.3.3 Micropolluants organiques

Le Tableau 11 indique les micropolluants organiques qui ont été quantifiés dans les sédiments lors de la campagne de prélèvements. La liste de l'ensemble des substances analysées est fournie en annexe 2.

Tableau 11 : Résultats d'analyses de micropolluants organiques présents sur sédiment

Sédiment : micro	opolluants orga	niques mis en	évidence	
Retenue de Puyvalador Code plan d'eau: Y1005163	Unité Code sandre		LQ	11/09/2019
BDE209	μg/ kg MS	1815	5	5
Benzo (a) Anthracène	μg/ kg MS	1082	10	13
Benzo (a) Pyrène	μg/ kg MS	1115	10	14
Benzo (b) Fluoranthène	μg/ kg MS	1116	10	26
Benzo (ghi) Pérylène	μg/ kg MS	1118	10	16
Chrysène	μg/ kg MS	1476	10	15
Crésol-para	μg/ kg MS	1638	50	63
Fluoranthène	μg/ kg MS	1191	10	28
Indéno (123c) Pyrène	μg/ kg MS	1204	10	12
Phénanthrène	μg/ kg MS	1524	10	19
Pyrène	μg/ kg MS	1537	10	25
Toluène	μg/ kg MS	1278	5	8

12 micropolluants organiques ont été détectés dans les sédiments dont 9 appartenant aux Hydrocarbures Aromatiques Polycycliques pour une concentration totale en HAP de 173 μ g/kg MS, valeur faible et inférieure au seuil d'effets.

On trouve également le BDE 209 à une concentration de 5µg/kg MS et du Toluène à 8 µg/kg MS.

Le Crésol- para est également mesuré à 63 µg/kg MS. Le crésol est un composé phénolique d'odeur piquante rappelant le goudron. Les crésols sont très présents dans la nature : ce sont des métabolites de nombreuses espèces de micro-organismes, et on les retrouve également dans l'urine de certains mammifères, dans les goudrons de houille et le goudron de hêtre, et donc dans le créosote.

Les sédiments ne présentent pas de pollution significative en micropolluants.

4.2 PHYTOPLANCTON

4.2.1 Prelevements integres

Les prélèvements intégrés destinés à l'analyse du phytoplancton ont été réalisés en même temps que les prélèvements pour analyses physicochimiques classiques.

Sur la retenue de Puyvalador, la zone euphotique et la transparence mesurées sont représentées par le graphique de la Figure 11.

La transparence est faible à moyenne (1,5) à 4,4 m) témoignant d'une production algale non négligeable. Elle est la plus faible (1,5) m) lors de la campagne de fin d'hiver avec le développement phytoplanctonique assez important (15) μ g/l de chlorophylle a). Elle est plus élevée (3,8) et 4,4 m) lors des campagnes 2 et 3 où le broutage par le zooplancton est important.

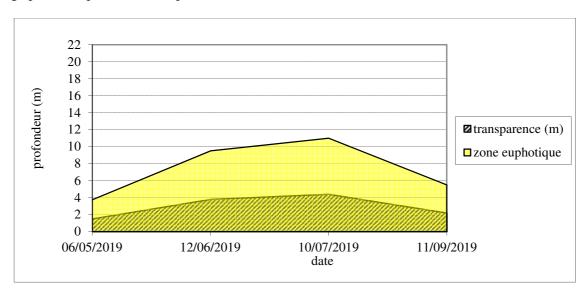


Figure 11: Evolution de la transparence et de la zone euphotique lors de 4 campagnes

Les échantillons destinés à la détermination du phytoplancton et de la chlorophylle *a* sont constitués d'un prélèvement intégré sur la zone euphotique (équivalant à 2,5 fois la transparence lors de la campagne). Les échantillons 2019 concernent une colonne d'eau faible à moyenne comprise entre 3,75 à 11 m. Les concentrations en chlorophylle *a* et en phéopigments sont présentées dans le tableau suivant.

Retenue de	Unité	Code	10	06/05/2019	12/06/2019	10/07/2019	11/09/2019	
Code plan d'eau: Y1005163		sandre		LQ	intégré	intégré	intégré	intégré
indice	Chlorophylle a	μg/L	1439	1	15	1	2	16
chlorophylliens	indice phéopigment	μg/L	1436	1	g	0.5	0.5	0.5

Tableau 12: analyses des pigments chlorophylliens

Si la concentration en chlorophylle ou phéopigments est <LQ, alors la valeur considérée est LQ/2 soit 0,5 μg/l.

Les concentrations en pigments chlorophylliens varient fortement entre les campagnes avec des pics à 15 et $16 \mu g/l$ en C1 et C4 et des teneurs faibles en C2 et C3 (1 à $2 \mu g/l$). Des blooms algaux sont enregistrés en début et fin de saison, tandis que les deux campagnes intermédiaires affichent une production chlorophyllienne réduite. La moyenne des concentrations en chlorophylle a sur les trois campagnes estivales est de $6.3 \mu g/l$.

La concentration en phéopigments est élevée en début de saison (9 μ g/l) puis reste faible le reste de l'année (< LQ)

4.2.2 <u>Listes floristiques</u>

Tableau 13 : Liste taxonomique du phytoplancton (en nombre de cellules/ml)

	N. T. D.	Code	0<10=12010	12/0//2010	40/05/2040	11/00/2010
Embranchement	Nom Taxon Ref	Sandre	06/05/2019	12/06/2019	10/07/2019	11/09/2019
	Achnanthidium	9356		5		
	Asterionella formosa	4860	697	308		
	Aulacoseira	9476			4	
	Aulacoseira ambigua	8554	109			769
	Aulacoseira subarctica	8576	41326	439		544
	Cyclotella radios a	8731	131	67		
	Cymbopleura	9472				4
	Diatomées centriques indét < 10 μm	6598				74
	Diatomées pennées indét < 10 μm	6598	270			4
	Discostella pseudostelligera	8656	370		1	
	Encyonema	9378	22	10	1	
	Encyonema silesiacum	7443	22	10		
	Eucocconeis laevis	12158		2	1	1.1
DACHI ADIODINZEA	Fragilaria	9533		5	1	11
BACILLARIOPHYTA	Fragilaria capucina var. vaucheriae	6722				5 0.4
	Fragilaria crotonensis	6666		116		584
	Gomphonema tergestinum	7731 9365	 	2 2		
	Hantzschia Malasira variana	9365 8719	 		0	
	Melosira varians	8190	22	5	U	
	Navicula tripunctata Neidium	9435	22	J		
	Nitzschia acicularis	8809	22	7		
	Pinnularia	9438	22	/		
	Praestephanos triporus	38646	719	39		
	Puncticulata		719	39	1	318
	Stephanodiscus hantzschii	9509 8746	109	5		310
	Ulnaria	9549	105		0	
	Ulnaria grunowii	44401		62	0	
	Ulnaria ulna	6849	44	12		
BIGYRA	Bicosoeca	20672	87	12		144
CHAROPHYTA	Elakatothrix gelatinosa	5664	87	5	22	
	Ankyra inerme	5595		-	2	
	Chlorella vulgaris	5933	523	12		
	Chlorophycées flagellées indét diam 2 - 5 µm	3332		5		
	Chlorophycées flagellées indét diam 5 - 10 µm	3332	65		5	48
	Chlorophycées indét > 10 μm	3332				7
	Chlorophycées indét 2 - 5 µm	3332	44			
	Chlorophycées indét 5 - 10 µm	3332	22		28	
	Coenocystis subcylindrica	5624			5	
	Desmodesmus	29998		10		
	Desmodesmus armatus	31930				15
CHLOROPHYTA	Desmodesmus armatus var. bicaudatus	44681				30
CHLOROTHIIA	Dichotomococcus curvatus	6231	44			
	Dictyosphaerium	5645	174			
	Didymocystis inconspicua	20628	479	15		
	Eudorina	6033			42	1586
	Lanceola spatulifera	9796			17	
	Monoraphidium contortum	5731	261			
	Monoraphidium minutum	5736				4
	Oocystis parva	5758		7 0	7 0	30
	Pandorina morum	6046	<u> </u>	79	29	133
	Sphaerocystis schroeteri	5880		22	1076	303
	Volvocales indét	6012	 	7	2	
	Cryptomonas	6269	1 22	2	2	
	Cryptomonas curvata	6272	22			7
CRYPTOPHYTA	Cryptomonas marssonii	6273	 	2	10	7
	Cryptomonas ovata	6274 9634	675	700	10 16	26
	Plagioselmis nannoplanctica	24459	0/3	/00	16	20
	Rhodomonas lens	∠ 44 39			1	

Embranchement	Nom Taxon Ref	Code Sandre	06/05/2019	12/06/2019	10/07/2019	11/09/2019
	Aphanizomenon	1103			7	
	Aphanizomenon klebahnii	35569				1916
	Aphanocapsa	6307				337
	Aphanocapsa holsatica	6312				771
CYANOBACTERIA	Dolichos permum cras sum	33644				248
CIANOBACIERIA	Dolichos permum flos-aquae	31958			284	1982
	Dolichospermum lemmermannii	34230			54	
	Dolichospermum mendotae	36075				2448
	Planktothrix	6429			20	
	Pseudanabaena catenata	6456	131	37		
EUGLENOZOA	Trachelomonas	6527		2	1	11
EUGLENOZOA	Trachelomonas rugulosa	6539				11
МОТОЛ	Ceratium hirundinella	6553			0	
MIOZOA	Gymnodinium cnecoides	20338	22			
OCIDODINA	Kephyrion	6150		2		
OCHROPHYTA	Pseudotetraëdriella kamillae	20343	327			
	Nombre de taxons		27	30	25	28
	Nombre de cellules/ml		46552	1990	1629	12364

Tableau 14 : Liste taxonomique du phytoplancton (en mm³/l)

	•	Code	`	,		
Embranchement	Nom Taxon Ref	Sandre	06/05/2019	12/06/2019	10/07/2019	11/09/2019
	Achnanthidium	9356		0.0005		
	Asterionella formosa	4860	0.1812	0.0801		
	Aulacoseira	9476			0.0004	
	Aulacoseira ambigua	8554	0.0553			0.3907
	Aulacoseira subarctica	8576	20.6632	0.2194		0.2718
	Cyclotella radiosa	8731	0.1308	0.0666		
	Cymbopleura	9472				0.0076
	Diatomées centriques indét < 10 µm	6598				0.0081
	Diatomées pennées indét < 10 µm	6598				0.0006
	Discostella pseudostelligera	8656	0.0322			
	Encyonema	9378			0.0004	
	Encyonema silesiacum	7443	0.0179	0.0081		
	Eucocconeis laevis	12158		0.0011		
	Fragilaria	9533			0.0015	0.0269
BACILLARIOPHYTA	Fragilaria capucina var. vaucheriae	6722		0.0009		
	Fragilaria crotonensis	6666		0.0348		0.1753
	Gomphonema tergestinum	7731		0.0015		
	Hantzschia	9365		0.0049		
	Melosira varians	8719			0.0006	
	Navicula tripunctata	8190	0.0281	0.0064		
	Neidium	9435	0.0414			
	Nitzschia acicularis	8809		0.0022		
	Pinnularia	9438	0.2485			
	Praestephanos triporus	38646	0.1019	0.0056		
	Puncticulata	9509			0.0035	0.9067
	Stephanodiscus hantzschii	8746	0.0284	0.0013		
	Ulnaria	9549			0.0006	
[Ulnaria grunowii	44401		0.1356		
	Ulnaria ulna	6849	0.2057	0.0582		
BIGYRA	Bicosoeca	20672	0.0462			0.0764
CHAROPHYTA	Elakatothrix gelatinosa	5664	0.0166	0.0009	0.0042	

		Code				
Embranchement	Nom Taxon Ref	Sandre	06/05/2019	12/06/2019	10/07/2019	11/09/2019
	Ankyra inerme	5595			0.0001	
	Chlorella vulgaris	5933	0.0523	0.0012		
	Chlorophycées flagellées indét diam 2 - 5 µm	3332		0.0002		
	Chlorophycées flagellées indét diam 5 - 10 µm	3332	0.0340		0.0026	0.0250
	Chlorophycées indét > 10 µm	3332				0.0033
	Chlorophycées indét 2 - 5 µm	3332	0.0022			
	Chlorophycées indét 5 - 10 µm	3332	0.0048		0.0062	
	Coenocystis subcylindrica	5624			0.0008	
	Desmodesmus	29998		0.0008		
	Desmodesmus armatus	31930				0.0052
CITI ODODINZEA	Desmodesmus armatus var. bicaudatus	44681				0.0104
CHLOROPHYTA	Dichotomococcus curvatus	6231	0.0029			
	Dictyosphaerium	5645	0.0045			
	Didymocystis inconspicua	20628	0.0139	0.0004		
	Eudorina	6033			0.0230	0.8725
	Lanceola spatulifera	9796			0.0018	
	Monoraphidium contortum	5731	0.0295			
	Monoraphidium minutum	5736				0.0003
	Oocystis parva	5758				0.0019
	Pandorina morum	6046		0.0562	0.0210	0.0949
	Sphaerocystis schroeteri	5880		0.0085	0.4109	0.1158
	Volvocales indét	6012		0.0013		
	Cryptomonas	6269		0.0044	0.0044	
	Cryptomonas curvata	6272	0.0584			
СКУРТОРНУТА	Cryptomonas marssonii	6273				0.0089
CKIFIOFHIIA	Cryptomonas ovata	6274		0.0052	0.0219	
	Plagioselmis nannoplanctica	9634	0.0472	0.0490	0.0011	0.0018
	Rhodomonas lens	24459			0.0003	
	Aphanizomenon	1103			0.0005	
	Aphanizomenon klebahnii	35569				0.1532
	Aphanocapsa	6307				0.0007
	Aphanocapsa holsatica	6312				0.0008
CYANOBACTERIA	Dolichospermum crassum	33644				0.2534
CIANODACIENIA	Dolichos permum flos-aquae	31958			0.0298	0.2081
	Dolichos permum lemmermannii	34230			0.0053	
	Dolichos permum mendotae	36075				0.1616
	Planktothrix	6429			0.0010	
	Pseudanabaena catenata	6456	0.0009	0.0003		
EUGLENOZOA	Trachelomonas	6527		0.0040	0.0010	0.0178
EUGLENUZUA	Trachelomonas rugulosa	6539				0.0538
MIOZOA	Ceratium hirundinella	6553			0.0079	
MICLOA	Gymnodinium cnecoides	20338	0.0496			
OCHROPHYTA	Kephyrion	6150		0.0002		
OCIMOI III IA	Pseudotetraëdriella kamillae	20343	0.0147			
	Nombre de taxons		27	30	25	28
	Biovolume (mm ³ /l)		22.11	0.76	0.55	3.85

4.2.3 EVOLUTIONS SAISONNIERES DES GROUPEMENTS PHYTOPLANCTONIQUES

Les graphiques suivants présentent la répartition du phytoplancton (relative) par groupe algal à partir des résultats exprimés en cellules/ml d'une part et à partir des biovolumes (mm³/l) d'autre part. Sur chacun des graphiques, la courbe représente l'abondance totale par échantillon (Figure 12), et le biovolume de l'échantillon (Figure 13).

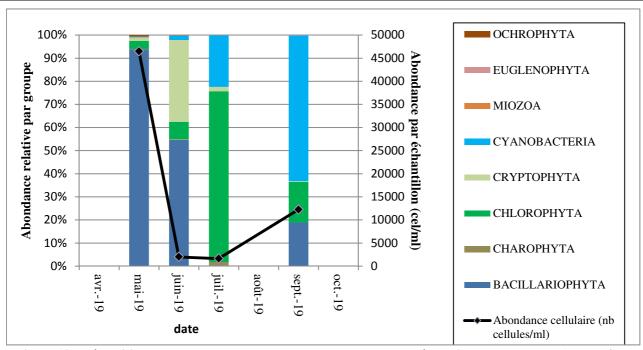


Figure 12 : Répartition du phytoplancton sur la retenue de Puyvalador à partir des abondances (cellules/ml)

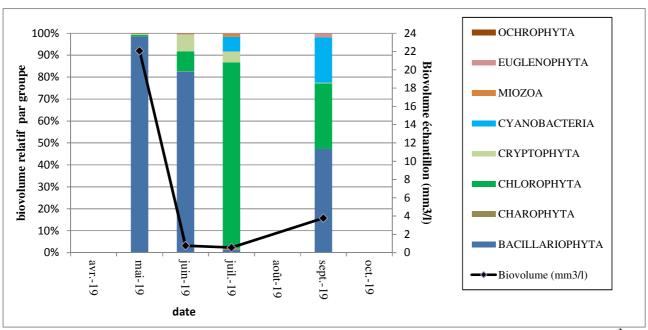


Figure 13: Evolution saisonnière des biovolumes des principaux groupes algaux de phytoplancton (en mm³/l)

La productivité algale est désordonnée sur cette retenue de haute altitude. En effet, la productivité maximale est observée lors de la première campagne de mai avec une abondance cellulaire importante (46 552 cel./ml et $15\mu g/l$ de chlorophylle a, le 06/05/19), puis elle décroit drastiquement en juin et juillet (respectivement 1990 cel./ ml et $1\mu g/l$, puis 1629 cel./ml et $2\mu g/l$ de chla). En fin d'été (11/09/19), le peuplement s'accroit (12364 cel./ml pour $16\mu g/l$ de chl a).

La première campagne présente un pic de printanier de biomasse (22 mm³/l) dominé à 98,5% par les diatomées, quasi exclusivement représentées par *Aulacoseira subartica*. Une espèce mésotrophe typique des milieux brassés non stratifiés.

La seconde campagne est marquée par la très forte diminution de diatomées dans le milieu. Les biovolumes mesurés diminuent à 0,6 mm³/l (pour un biovolume total de 0,75mm3/l). L'épuisement du stock de silice dans le milieu ou/ et la stratification du milieu a probablement limité leur prolifération. Elles dominent cependant toujours le peuplement à plus de 82%. La petite cryptophycée *Plagioselmis nannoplanctica*, persiste dans le milieu avec une abondance de 700 cel./ml.

Lors de la troisième campagne, les chlorophycées sont dominantes. Notamment, la chlorophycée coloniale *Sphaerocystis schroeteri* qui occupe 74% du biovolume algal. Généralement, les chlorophycées sont favorisées par la présence de nitrates dans le milieu.

Lors de la quatrième campagne l'augmentation des teneurs en chlorophylle a semble essentiellement corrélée au développement de cyanobactéries qui représentent 63% de l'abondance cellulaire totale. Le principal genre représenté appartient au *Dolichospermum* (anciennement *Anabaena*). Avec 7700 cel./ml, leur abondance est insuffisante pour présenter des risques sanitaires avérés selon l'Afssa-afsset 2006. Les chlorophycées persistent également, avec la présence d'une autre espèce coloniale appartenant au genre *Eudorina*. Les diatomées connaissent un regain avec le développement d'*Aulacoseira ambigua*, *Aulacoseira subartica*, *Fragilaria crotonensis et Puncticulata*.

4.2.4 Indice Phytoplanctonique IPLAC

L'indice phytoplancton lacustre ou IPLAC est calculé à partir du SEEE (v1.1.0 en date du 07/04/2020). Il s'appuie sur la moyenne pondérée de 2 métriques : l'une basée sur les teneurs en chlorophylle a (µg/l) (MBA ou métrique de biomasse algale totale), et l'autre sur la présence d'espèces indicatrices quantifiée en biovolume (mm³/l) (MCS ou métrique de composition spécifique). Plus la valeur d'une métrique tend vers 1, plus la qualité est proche de la valeur prédite en conditions de référence. Les 5 classes d'état sont fournies sur la Figure 4.

Les classes d'état pour les deux métriques et l'IPLAC sont données pour Puyvalador dans le tableau suivant.

Code Lac	Nom Lac	année	MBA	MCS	IPLAC	Classe IPLAC
Y1005163	Puyvalador	2019	0.448	0.763	0.669	В

L'indice IPLAC est basé sur deux métriques : MBA=0.448 et MCS= 0,763. Ces deux métriques présentent de fortes variabilités lors des 4 campagnes. En effet, d'une part la valeur de l'IPLAC est tirée vers le bas, par les fortes teneurs de chlorophylle mesurée en première et dernière campagnes, ainsi que par la forte représentation d'espèces tolérantes vis-à-vis des nutriments lors des deux dernières campagnes. D'autre part, la valeur IPLAC est tirée vers le haut, par la présence en forte abondance d'espèce de bonne qualité lors des deux premières campagnes. L'IPLAC résultant est de 0,669 soit de bonne qualité, les fortes variabilités mesurées rendent cet indice peu robuste.

L'indice IPLAC de la retenue de Puyvalador obtient la valeur de 0,67, ce qui correspond à une bonne classe d'état pour l'élément de qualité phytoplancton. Cette indice parait un peu surévalué au regard de la forte production algale rencontrée à certaines périodes de l'année.

4.2.5 Comparaison avec les inventaires anterieurs

En 2019, l'évolution saisonnière des peuplements phytoplanctoniques est similaire aux suivis 2016 et 2013, avec une forte croissance des diatomées au printemps (*Aulacoseira subartica*) qui conduit à des pics de production algale. Les diatomées se maintiennent en début de saison estivale puis elles laissent la place au développement des cyanophycées du genre *Dolichospermum* sous forme de blooms algaux. La production algale varie fortement selon les campagnes : 1 à 27 μg/l en 2013, 3 à 44 μg/l en 2016 et 1 à 16 μg/l en 2019. Le suivi 2016 fait état d'une production algale nettement plus importante que les autres années.

L'historique des valeurs IPLAC acquises sur le plan d'eau de Puyvalador est présenté dans le Tableau 15 (valeurs issues du SEEE V1.0.2 base du 07/01/2019).

code_Lac	Nom lac	année	MBA	MCS	IPLAC	Classe IPLAC
Y1005163	Puyvalador	2010	0.457	0.710	0.634	В
Y1005163	Puyvalador	2013	0.391	0.710	0.614	В
Y1005163	Puyvalador	2016	0.044	0.736	0.528	MOY
Y1005163	Puyvalador	2019	0.448	0.763	0.669	В

Tableau 15 : évolution des Indices IPLAC depuis 2010

Les indices IPLAC indiquent un état moyen à bon et sont assez stables depuis 2010 (0,53 à 0,67). Le suivi 2016 affiche une qualité biologique plus dégradée (état moyen) que les autres années (bon état). L'indice MBA est moyen à mauvais depuis 2010 indiquant une forte productivité, tandis que l'indice MCS est très stable depuis 2010 (0,71 à 0,76), indicateur d'une composition équilibrée du peuplement phytoplanctonique avec quelques signes d'eutrophisation.

Ces éléments tendent à indiquer que la retenue de Puyvalador présente un état du compartiment phytoplancton en limite de classe bon/moyen depuis plusieurs années avec une productivité pouvant être importante.

5 APPRECIATION GLOBALE DE LA QUALITE DU PLAN D'EAU

Le suivi physicochimique et biologique 2019 sur la retenue de Puyvalador s'est déroulé conformément aux prescriptions de suivi de l'état écologique et l'état chimique des eaux douces de surface. On rappelle que ce plan d'eau est suivi dans le cadre du contrôle opérationnel (CO) et que les pressions identifiées à l'origine du risque de non atteinte des objectifs environnementaux sur ce plan d'eau sont les pollutions diffuses de type nutriments, l'hydrologie et la continuité piscicole.

L'année 2019 a été globalement bien arrosée, avec des chutes de neiges importantes au printemps ; le remplissage de la retenue a été conforme à la normale.

Les résultats obtenus sont globalement meilleurs que ceux de 2016 notamment pour le phytoplancton ; ils sont synthétisés dans le tableau suivant.

Compartiment	Synthèse de la qualité du plan d'eau ⁵
Profils verticaux	Renouvellement des eaux fréquent : stratification thermique non durable Eaux faiblement minéralisées désoxygénation progressive de l'hypolimnion
Qualité physico- chimique des eaux	Charge organique non négligeable Stock hivernal faible en nitrates (1 mg/l) et phosphates mais nutriments déjà utilisés pour la croissance du phytoplancton Eaux riches en As et en Fe (fond géochimique) Présence de micropolluants organiques (médicaments, indicateurs plastiques et pesticides)
Qualité physico- chimique des sédiments	Charge élevée en matière organique et en nutriments Mise en évidence de relargage de phosphore et d'ammonium Peu de micropolluants
Biologie – chlorophylle <i>a</i>	Production chlorophyllienne faible à très élevée— blooms algaux en C1 et C4 Moyenne estivale : 6,3 µg/l chl.a
Biologie - phytoplancton	Développement massif de diatomées en début de saison puis blooms réguliers de cyanobactéries production algale variable sur l'année IPLAC : bon état

⁵ il s'agit d'une interprétation des valeurs brutes observées (analyses physico-chimiques, peuplements biologiques) mais pas d'une stricte évaluation de l'Etat écologique et chimique selon les arrêtés en vigueur

L'ensemble des suivis physico-chimiques et biologiques 2019 indique un milieu aquatique de qualité moyenne à bonne avec une légère charge organique. La retenue de Puyvalador présente un fonctionnement spécifique lié à son utilisation pour l'hydroélectricité. Le déstockage des eaux au cours de l'été entraîne régulièrement un brassage précoce des eaux (août-septembre) qui perturbe le fonctionnement lacustre et notamment la stratification.

Les analyses physico-chimiques ne montrent pas d'apports excessifs en nutriments dans le milieu aquatique. Cependant, la campagne hivernale réalisée début mai montre déjà des proliférations algales. C'est-à-dire que les nutriments ont déjà été consommés pour la production primaire dans le plan d'eau. Le peuplement algal est dominé successivement par les diatomées, les chlorophycées puis les cyanobactéries (stimulé par l'épuisement de l'azote biodisponible). La production est très variable au fil de la saison, avec des signes de déséquilibres des populations phytoplanctoniques. Les indices chlorophylle (MBA) et IPLAC affichent un état moyen à bon.

Les analyses de sédiments sont peu favorables : un stockage de matière organique et d'éléments nutritifs est mis en évidence avec des teneurs élevées mesurées pour l'azote et le phosphore. Le potentiel de relargage des nutriments depuis les sédiments vers la masse d'eau est considéré comme moyen, mais il semble se produire à certaines périodes avant le brassage de la masse d'eau comme en témoigne les teneurs en fer, manganèse, ammonium dans le fond du plan d'eau en C3.

Ce phénomène apporte potentiellement des éléments phosphorés dans les eaux, qui permettent le développement de cyanobactéries en fin de saison.

L'analyse des micropolluants montre la présence de métaux dans les eaux (Arsenic, Fer) à relier au fond géochimique. Des micropolluants organiques ont également été mis en évidence (en particulier n-Butyl Phtalate, metformine, caféine,...).

Les sédiments présentent peu de micropolluants.

Les résultats du suivi 2019 montrent un milieu aquatique qui peut être qualifié d'eutrophe de par la production primaire.

Étude des plans d'eau du pro	gramme de surveillance des ba	Méditerranée Corse assins Rhône-Méditerranée	et Corse – Puyvalador (66)
	- ANNI	FXFS -	
	<u> </u>		

Annexe 1. LISTE DES MICROPOLLUANTS ANALYSES SUR EAU

SANDRE aramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	ιQ	Uni
1368	Argent	0.01	μg(Ag)/L	6456	Acebutolol	0.005	μg/L	6594	Anilofos	0.005	μg
	-			1453	Acénaphtène	0.01	μg/L	1458	Anthracène	0.01	μg
1370	Aluminium	2	μg(Al)/L	1622	Acénaphtylène	0.01	μg/L	2013	Anthraquinone	0.005	μg
1369	Arsenic	0.05	μg(As)/L	1100	Acéphate	0.005	μg/L	1965	Asulame	0.02	μg
1362	Bore	10	μg(B)/L	1454	Acétaldéhyde	5	μg/L	5361	Atenolol	0.005	μg
1396	Baryum	0.5	μg(Ba)/L	5579	Acetamiprid	0.02		1107	Atrazine	0.005	μg
	·						μg/L	1832	Atrazine 2 hydroxy	0.02	μд
1377	Beryllium	0.01	μg(Be)/L	6856	Acetochlor ESA	0.03	μg/L	1109	Atrazine déisopropyl	0.01	μе
1388	Cadmium	0.01	μg(Cd)/L	6862	Acetochlor OXA	0.03	μg/L	1108	Atrazine déséthyl	0.01	με
1084	Cyanures libres	0.2	μg(CN)/L	1903	Acétochlore	0.005	μg/L	1830	Atrazine déséthyl	0.03	με
1379	Cobalt	0.05	μg(Co)/L	5581	Acibenzolar-S-Methyl	0.02	μg/L	2014	Azaconazole	0.005	με
				6735	Acide acetylsalicylique	0.05	μg/L	2015	Azaméthiphos	0.02	με
1389	Chrome	0.5	μg(Cr)/L	5408	Acide clofibrique	0.005	μg/L	2937	Azimsulfuron	0.02	με
1392	Cuivre	0.1	μg(Cu)/L	5369	Acide fenofibrique	0.005	μg/L	1110	Azimsunurun Azinphos éthyl	0.02	
1393	Fer	1	μg(Fe)/L	6538	Acide mefenamique	0.005	μg/L	1111		0.005	μ
1387	Mercure	0.01	μg(Hg)/L						Azinphos méthyl		μ
			1	1465	Acide	0.2	μg/L	7817	Azithromycine	0.5	μ
1364	Lithium	0.5	μg(Li)/L	1521	Acide nitrilotriacétique	5	μg/L	1951	Azoxystrobine	0.02	μ
1394	Manganèse	0.5	μg(Mn)/L	6549	Acide	0.2	ug/I	6231	BDE 181	0.0005	μ
1395	Molybdène	1	μg(Mo)/L	0349	pentacosafluorotridecan	0.2	μg/L	5986	BDE 203	0.0015	μ
1386	Nickel	0.5	μg(Ni)/L		Acide perfluorodecane			5997	BDE 205	0.0015	μ
				6550	sulfonique (PFDS)	0.005	μg/L	2915	BDE100	0.0002	μ
1382	Plomb	0.05	μg(Pb)/L					2913	BDE138	0.00015	με
1376	Antimoine	0.5	μg(Sb)/L	6509	Acide perfluoro-	0.002	μg/L	2912	BDE153	0.0002	μ
1385	Sélénium	0.1	μg(Se)/L		decanoïque (PFDA)			2911	BDE154	0.0002	μ
			1	6507	Acide perfluoro-	0.02	μg/L	2921	BDE17	0.00015	щ
1380	Etain	0.5	μg(Sn)/L	0307	dodecanoïque (PFDoA)	0.02	r6/ L	2910	BDE17	0.00013	
2559	Tellure	0.5	μg(Te)/L	CF 42	Acide perfluoroheptane	0.001		2910		0.0005	μ
1373	Titane	0.5	μg(Ti)/L	6542	sulfonique	0.001	μg/L		BDE190		μ
2555	Thallium	0.01	μg(TI)/L		Acide			1815	BDE209	0.005	μ
			1	6020		0.002	uc/1	2920	BDE28	0.0002	μ
1361	Uranium	0.05	μg(U)/L	6830	perfluorohexanesulfoni	0.002	μg/L	2919	BDE47	0.0002	μ
1384	Vanadium	0.1	μg(V)/L		que (PFHS)			2918	BDE66	0.00015	μ
1383	Zinc	1	μg(Zn)/L	5980	Acide perfluoro-n-	0.2	μg/L	2917	BDE71	0.00015	μ
			P-8(// -	5077	Acide perfluoro-n-	0.000	/1	7437	BDE77	0.0002	μ
2934	1-(3-chloro-4-	0.02	μg/L	5977	heptanoïque (PFHpA)	0.002	μg/L	2914	BDE85	0.0002	μ
2334	methylphenyl)uree	0.02	µg/ L		Acide perfluoro-n-			2916	BDE99	0.0002	μ
	71 77			5978	hexanoïque (PFHxA)	0.002	μg/L	7522	Beflubutamide	0.01	щ
6751	1,7-Dimethylxanthine	0.1	μg/L					1687	Bénalaxyl	0.005	
7044	14	0.005		6508	Acide perfluoro-n-	0.02	μg/L	7423			με
7041	14-	0.005	μg/L		nonanoïque (PFNA)		1.0		BENALAXYL-M	0.1	μ
5399	17alpha-Estradiol	0.005	μg/L	6510	Acide perfluoro-n-	0.02	μg/L	1329	Bendiocarbe	0.005	μ
7011	1-Hydroxy Ibuprofen	0.01	μg/L	0310	undecanoïque (PFUnA)	0.02	μg/ L	1112	Benfluraline	0.005	μ
1264	245T	0.02	μg/L		Acide			2924	Benfuracarbe	0.05	μ
				6560	perfluorooctanesulfoniq	0.02	μg/L	2074	Benoxacor	0.005	μ
1141	24 D	0.02	μg/L		Acide perfluoro-			5512	Bensulfuron-methyl	0.02	μ
2872	24D isopropyl ester	0.005	μg/L	5347		0.002	μg/L	6595	Bensulide	0.005	μ
2873	2 4 D méthyl ester	0.005	μg/L		octanoïque (PFOA)			1113	Bentazone	0.03	μ
	,			6547	Acide	0.02	μg/L	7460	Benthiavalicarbe-	0.02	με
1142	2 4 DB	0.1	μg/L	0547	Perfluorotetradecanoiqu	0.02	με/ L	1764	Benthiocarbe	0.005	щ
1212	2 4 MCPA	0.02	μg/L	5355	Acide salicylique	0.05	μg/L	1114	Benzène	0.5	μ
1213	2 4 MCPB	0.03	μg/L	1970	Acifluorfen	0.02	μg/L	1082	Benzo (a) Anthracène	0.001	
2011	2 6 Dichlorobenzamide	0.005	μg/L	1688	Aclonifen	0.001	μg/L				μ
2011		0.003	μg/ L					1115	Benzo (a) Pyrène	0.01	μ
	2-(3-			1310	Acrinathrine	0.005	μg/L	1116	Benzo (b) Fluoranthène	0.0005	μ
6870	trifluoromethylphenoxy	0.005	μg/L	6800	Alachlor ESA	0.03	μg/L	1118	Benzo (ghi) Pérylène	0.0005	μ
)nicotinamide		-	6855	Alachlor OXA	0.03	μg/L	1117	Benzo (k) Fluoranthène	0.0005	μ
701F	·	0.05	11.71	1101	Alachlore	0.005	μg/L	1924	Benzyl butyl phtalate	0.05	μ
7815	2,6-di-tert-butyl-4-	0.05	μg/L	6740	Albendazole	0.005	μg/L	3209	Beta cyfluthrine	0.01	μ
6022	2.4+2.5-dichloroanilines	0.05	μg/L	1102	Aldicarbe	0.02	μg/L	6652	beta-	0.05	μ
7012	2-Hydroxy Ibuprofen	0.1	μg/L	1807	Aldicarbe sulfone	0.02	μg/L	6457	Betaxolol	0.005	щ
3159	2-hydroxy-desethyl-	0.02	μg/L					5366	Bezafibrate	0.005	щ
5255		3.52	₩Ð/ L	1806	Aldicarbe sulfoxyde	0.02	μg/L	1119	Bifénox	0.005	щ
5352	2-Naphthaleneacetic	0.1	μg/L	1103	Aldrine	0.001	μg/L	1120	Bifenthrine	0.005	щ
3332	acid, 6-hydroxy-alph	U. 1	PO/ -	1697	Alléthrine	0.03	μg/L		Bioresméthrine	0.005	
2613	2-nitrotoluène	0.02	μg/L	7501	Allyxycarbe	0.005	μg/L	1502			щ
5695	3,4,5-Trimethacarb	0.005	μg/L	6651	alpha-	0.05	μg/L	1584	Biphényle	0.005	μ
				1812	Alphaméthrine	0.005	μg/L	6453	Bisoprolol	0.005	μ
2820	3-Chloro-4	0.05	μg/L	5370	Alprazolam	0.01	μg/L	7594	Bisphenol S	0.02	μ
5367	4-Chlorobenzoic acid	0.1	μg/L					2766	Bisphénol-A	0.02	μ
	4-méthoxycinnamate de			7842	Ametoctradine	0.1	μg/L	1529	Bitertanol	0.005	μ
7816	,	0.65	μg/L	1104	Amétryne	0.02	μg/L	7104	Bithionol	0.1	μ
	2-éthylhexyle			5697	Amidithion	0.005	μg/L	7345	Bixafen	0.02	μ
6536	4-Methylbenzylidene	0.02	μg/L	2012	Amidosulfuron	0.02	μg/L	5526	Boscalid	0.02	με
5474	4-n-nonylphénol	0.1	μg/L	5523	Aminocarbe	0.02	μg/L	1686	Bromacil	0.005	μ
	4-nonylphénols ramifiés	0.1	μg/L	2537	Aminochlorophénol-2,4	0.1	μg/L	1859	Bromadiolone	0.05	щ
	, ,							5371	Bromazepam	0.03	
2610	4-tert-butylphénol	0.02	μg/L	7580	Aminopyralid	0.1	μg/L				μ
	4-tert-octylphénol	0.03	μg/L	1105	Aminotriazole	0.03	μg/L	1121	Bromochlorométhane	0.5	μ
1959			ì	7516	Amiprofos-methyl	0.005	μg/L	1122	Bromoforme	0.5	μ
1959			1	1308	Amitraze	0.005	μg/L	1123	Bromophos éthyl	0.005	μ
1959						0.005	μg/L	1124	Bromophos méthyl	0.005	μ
1959				6967	Amitriptyline	0.005	μ <u>5</u> / L				
1959								1685	Bromopropylate	0.005	μ
1959				6781	Amlodipine	0.05	μg/L				μ
1959								1685	Bromopropylate	0.005	μ <u>ε</u> μ <u>ε</u> μ <u>ε</u>

Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unit
7502	Bufencarbe	0.02	μg/L	1471	Chlorophénol-2	0.05	μg/L	7801	Cyprosulfamide	0.02	μg/
6742	Buflomedil	0.05		1651	Chlorophénol-3	0.05	μg/L	2897	Cyromazine	0.02	μg/
			μg/L	1650	Chlorophénol-4	0.05		7503	Cythioate	0.02	μg/
1861	Bupirimate	0.01	μg/L				μg/L	5930	Daimuron	0.005	μg/
6518	Bupivacaine	0.005	μg/L	2611	Chloroprène	0.5	μg/L	2094	Dalapon	0.02	μg,
1862	Buprofézine	0.005	μg/L	2065	Chloropropène-3	0.5	μg/L	5597	Daminozide	0.03	μg
5710	Butamifos	0.005	μg/L	1473	Chlorothalonil	0.01	μg/L	6677	Danofloxacine	0.1	μg
1126	Butraline	0.005	μg/L	1602	Chlorotoluène-2	0.5	μg/L	1869	Dazomet	0.05	μе
1531	Buturon	0.02	μg/L	1601	Chlorotoluène-3	0.5	μg/L	1020	DCPMU (métabolite du	0.00	
				1600	Chlorotoluène-4	0.5	μg/L	1929	Diuron)	0.02	μg
7038	Butylate	0.03	μg/L	1683	Chloroxuron	0.005	μg/L	4020	DCPU (métabolite	0.05	
1855	Butylbenzène n	0.5	μg/L	1474	Chlorprophame	0.005	μg/L	1930	Diuron)	0.05	με
1610	Butylbenzène sec	0.5	μg/L					1143	DDD-o,p'	0.001	με
1611	Butylbenzène tert	0.5	μg/L	1083	Chlorpyriphos éthyl	0.005	μg/L	1144	DDD-p,p'	0.001	με
1863	Cadusafos	0.02	μg/L	1540	Chlorpyriphos méthyl	0.005	μg/L	1145	DDE-o,p'	0.001	με
6519	Cafeine	0.01	μg/L	1353	Chlorsulfuron	0.02	μg/L	1146	DDE-p,p'	0.001	με
				6743	Chlortetracycline	0.02	μg/L	1147	DDT-o,p'	0.001	με
1127	Captafol	0.01	μg/L	2966	Chlorthal dimethyl	0.005	μg/L	1148	DDT-p,p'	0.001	με
1128	Captane	0.01	μg/L	1813	Chlorthiamide	0.01	μg/L	6616	DEHP	0.4	με
5296	Carbamazepine	0.005	μg/L	5723	Chlorthiophos	0.02	μg/L	1149	Deltaméthrine	0.001	με
6725	Carbamazepine epoxide	0.005	μg/L	1136	Chlortoluron	0.02	μg/L	1153	Déméton S méthyl	0.001	με
1463	Carbaryl	0.02	μg/L		Chlorure de Benzylidène				Déméton S méthyl		
1129	Carbendazime	0.005	μg/L	2715		0.1	μg/L	1154	sulfone	0.01	με
1333	Carbétamide	0.003		2977	CHLORURE DE CHOLINE	0.1	μg/L	1150	Déméton-O	0.01	με
			μg/L	1753	Chlorure de vinyle	0.05	μg/L	1150	Déméton-S	0.01	μį
1130	Carbofuran	0.005	μg/L	1476	Chrysène	0.01	μg/L	2051	Déséthyl-terbuméthon	0.01	
1805	Carbofuran 3 hydroxy	0.02	μg/L	5481	Cinosulfuron	0.005	μg/L	2980			με
1131	Carbophénothion	0.005	μg/L	6540	Ciprofloxacine	0.02	μg/L		Desmediphame	0.02	με
1864	Carbosulfan	0.02	μg/L	6537	Clarithromycine	0.005	μg/L	2738	Desméthylisoproturon	0.02	με
2975	Carboxine	0.02	μg/L	6968	Clenbuterol	0.005	μg/L	1155	Desmétryne	0.02	με
6842	Carboxyibuprofen	0.1	μg/L	2978	Clethodim	0.003		6574	Dexamethasone	0.05	με
							μg/L	1156	Diallate	0.02	με
2976	Carfentrazone-ethyl	0.005	μg/L	6792	Clindamycine	0.005	μg/L	5372	Diazepam	0.005	με
1865	Chinométhionate	0.005	μg/L	2095	Clodinafop-propargyl	0.02	μg/L	1157	Diazinon	0.005	με
7500	Chlorantraniliprole	0.02	μg/L	1868	Clofentézine	0.005	μg/L	1621	Dibenzo (ah) Anthracène	0.01	με
1336	Chlorbufame	0.02	μg/L	2017	Clomazone	0.005	μg/L				- '
7010	Chlordane alpha	0.005	μg/L	1810	Clopyralide	0.02	μg/L	1479	Dibromo-1,2 chloro-	0.5	με
1757	Chlordane beta	0.005	μg/L	2018	Cloquintocet mexyl	0.005	μg/L		3propane		
1758		0.005		6748	Clorsulone	0.01	μg/L	1158	Dibromochlorométhane	0.05	με
	Chlordane gamma		μg/L	6389	Clothianidine	0.03		1498	Dibromoéthane-1,2	0.05	με
5553	Chlorefenizon	0.005	μg/L				μg/L	1513	Dibromométhane	0.5	με
1464	Chlorfenvinphos	0.02	μg/L	5360	Clotrimazole	0.005	μg/L	7074	Dibutyletain cation	0.0025	με
2950	Chlorfluazuron	0.01	μg/L	6520	Cotinine	0.005	μg/L	1480	Dicamba	0.03	με
1133	Chloridazone	0.005	μg/L	2972	Coumafène	0.005	μg/L	1679	Dichlobénil	0.005	με
5522	Chlorimuron-ethyl	0.02	μg/L	1682	Coumaphos	0.02	μg/L	1159	Dichlofenthion	0.005	μ
5405	Chlormadinone	0.01		2019	Coumatétralyl	0.005	μg/L	1360	Dichlofluanide	0.005	με
			μg/L	1640	Crésol-ortho	0.05	μg/L	1160	Dichloréthane-1,1	0.5	με
1134	Chlorméphos	0.005	μg/L	5724	Crotoxyphos	0.005	μg/L	1161	Dichloréthane-1,2	0.5	μ
5554	Chlormequat	0.03	μg/L	5725	Crufomate	0.005	μg/L	1162	Dichloréthylène-1,1	0.5	με
2097	Chlormequat chlorure	0.038	μg/L					1456	Dichloréthylène-1,2 cis	0.05	με
1955	Chloroalcanes C10-C13	0.15	μg/L	6391	Cumyluron	0.03	μg/L	1727	Dichloréthylène-1,2	0.5	
1593	Chloroaniline-2	0.05	μg/L	1137	Cyanazine	0.02	μg/L	1727	trans	0.5	με
1592	Chloroaniline-3	0.05	μg/L	5726	Cyanofenphos	0.1	μg/L	2929	Dichlormide	0.01	με
				5567	Cyazofamid	0.05	μg/L	1586	Dichloroaniline-3,4	0.015	με
1591	Chloroaniline-4	0.05	μg/L	5568	Cycloate	0.02	μg/L	1585	Dichloroaniline-3,5	0.02	με
1467	Chlorobenzène	0.5	μg/L	6733	Cyclophosphamide	0.001	μg/L	1165	Dichlorobenzène-1,2	0.05	με
2016	Chlorobromuron	0.005	μg/L	2729	CYCLOXYDIME	0.02	μg/L	1164	Dichlorobenzène-1,3	0.5	με
1853	Chloroéthane	0.5	μg/L	1696	Cycluron	0.02	μg/L	1166	Dichlorobenzène-1,4	0.05	μ
1135	Chloroforme	0.5	μg/L	7748	cyflufénamide	0.05	μg/L	1167	Dichlorobromométhane	0.05	με
1736	Chlorométhane	0.5	μg/L		-				Dichlorodifluorométhan		
2821	Chlorométhylaniline-4,2	0.02	μg/L	1681	Cyfluthrine	0.005	μg/L	1485	е	0.5	με
				5569	Cyhalofop-butyl	0.05	μg/L	1168	Dichlorométhane	5	με
1636	Chlorométhylphénol-4,3	0.05	μg/L	1138	Cyhalothrine	0.005	μg/L		Dichloronitrobenzène-		
1341	Chloronèbe	0.005	μg/L	1139	Cymoxanil	0.02	μg/L	1617	2,3	0.05	με
1594	Chloronitroaniline-4,2	0.1	μg/L	1140	Cyperméthrine	0.005	μg/L		Dichloronitrobenzène-		
1469	Chloronitrobenzène-1,2	0.02	μg/L	1680	Cyproconazole	0.02	μg/L	1616	2,4	0.05	με
1468	Chloronitrobenzène-1,3	0.02	μg/L	1359	Cyprodinil	0.005	μg/L		Dichloronitrobenzène-		
1470	Chloronitrobenzène-1,4	0.05	μg/L		-16.00	2.000	F-D/ -	1615	2,5	0.05	με
1684	Chlorophacinone	0.03							Dichloronitrobenzène-		
1004	спогорпастопе	0.02	μg/L					1614	3,4 Dichloronitrobenzène-	0.05	με
								1613	3,5 Dichlorophène	0.05	με
								2981			

Code SANDRE	Libellé paramètre	LQ	Unité	Code SANDRE	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Uni
aramètre	5111 17 155			paramètre 6791	Doxycycline	0.005	μg/L	1825	Fluazifop-butyl	0.02	μg/
1645	Dichlorophénol-2,3	0.05	μg/L					1404	Fluazifop-P-butyl	0.1	μд
1647	Dichlorophénol-3,4	0.05	μg/L	7515	DPU (Diphenylurée)	0.01	μg/L	2984	Fluazinam	0.1	μе
1655	Dichloropropane-1,2	0.2	μg/L	6714	Dydrogesterone	0.02	μg/L	2022	Fludioxonil	0.02	μе
1654	Dichloropropane-1,3	0.5	μg/L	5751	Edifenphos	0.005	μg/L	6863	Flufenacet oxalate	0.02	
				1493	EDTA	5	μg/L				μg
2081	Dichloropropane-2,2	0.05	μg/L	8102	Emamectine	0.1	μg/L	6864	Flufenacet sulfonic acid	0.01	με
2082	Dichloropropène-1,1	0.5	μg/L	1178	Endosulfan alpha	0.001	μg/L	1676	Flufénoxuron	0.02	με
1834	Dichloropropylène-1,3	0.05	μg/L	1179	Endosulfan beta	0.001	μg/L	5635	Flumequine	0.02	με
1835	Dichloropropylène-1,3	0.05	μg/L					2023	Flumioxazine	0.005	με
1653	Dichloropropylène-2,3	0.5	μg/L	1742	Endosulfan sulfate	0.001	μg/L	1501	Fluométuron	0.02	με
				1181	Endrine	0.001	μg/L	7499	Fluopicolide	0.02	με
1169	Dichlorprop	0.03	μg/L	2941	Endrine aldehyde	0.005	μg/L	7649	Fluopyram	0.02	με
2544	Dichlorprop-P	0.03	μg/L	6768	Enoxacine	0.02	μg/L	1191	Fluoranthène	0.005	με
1170	Dichlorvos	0.00025	μg/L	6784	Enrofloxacine	0.02	μg/L	1623	Fluorène	0.005	με
5349	Diclofenac	0.01	μg/L	1494	Epichlorohydrine	0.1	μg/L	5373	Fluoxetine	0.005	με
1171	Diclofop méthyl	0.05	μg/L	1873	EPN	0.005		2565	Flupyrsulfuron methyle	0.02	με
							μg/L	2056	Fluquinconazole	0.02	με
1172	Dicofol	0.005	μg/L	1744	Epoxiconazole	0.02	μg/L	1974	Fluridone	0.02	
5525	Dicrotophos	0.005	μg/L	1182	EPTC	0.1	μg/L				με
6696	Dicyclanil	0.01	μg/L	7504	Equilin	0.005	μg/L	1675	Flurochloridone	0.005	με
2847	Didéméthylisoproturon	0.02	μg/L	6522	Erythromycine	0.005	μg/L	1765	Fluroxypyr	0.03	με
				1809	Esfenvalérate	0.005	μg/L	2547	Fluroxypyr-meptyl	0.02	με
1173	Dieldrine	0.001	μg/L	5397	Estradiol	0.005		2024	Flurprimidol	0.005	με
7507	Dienestrol	0.005	μg/L				μg/L	2008	Flurtamone	0.02	με
1402	Diéthofencarbe	0.02	μg/L	6446	Estriol	0.005	μg/L	1194	Flusilazole	0.02	με
1527	Diéthyl phtalate	0.05	μg/L	5396	Estrone	0.01	μg/L	2985	Flutolanil	0.02	με
2826		6		5529	Ethametsulfuron-methyl	0.005	μg/L	1503	Flutriafol	0.02	με
	Diéthylamine		μg/L	2093	Ethephon	0.02	μg/L	6739	Fluvoxamine	0.01	με
2628	Diethylstilbestrol	0.005	μg/L	1763	Ethidimuron	0.02	μg/L	7342	fluxapyroxade	0.01	με
2982	Difenacoum	0.005	μg/L	5528	Ethiofencarbe sulfone	0.005	μg/L	1192	Folpel	0.01	
1905	Difénoconazole	0.02	μg/L						·		με
5524	Difenoxuron	0.005	μg/L	6534	Ethiofencarbe sulfoxyde	0.02	μg/L	2075	Fomesafen	0.05	με
				1183	Ethion	0.02	μg/L	1674	Fonofos	0.005	με
2983	Difethialone	0.02	μg/L	1874	Ethiophencarbe	0.02	μg/L	2806	Foramsulfuron	0.03	με
1488	Diflubenzuron	0.02	μg/L	1184	Ethofumésate	0.005	μg/L	5969	Forchlorfenuron	0.005	με
1814	Diflufénicanil	0.001	μg/L	1495	Ethoprophos	0.02	μg/L	1702	Formaldéhyde	1	με
6647	Dihydrocodeine	0.005		5527	Ethoxysulfuron	0.02	μg/L	1975	Foséthyl aluminium	0.02	με
	i i		μg/L					1816	Fosetyl	0.0185	με
5325	Diisobutyl phthalate	0.4	μg/L	2673	Ethyl tert-butyl ether	0.5	μg/L	2744	Fosthiazate	0.02	με
6729	Diltiazem	0.005	μg/L	1497	Ethylbenzène	0.5	μg/L	1908	Furalaxyl	0.005	με
1870	Diméfuron	0.02	μg/L	5648	EthylèneThioUrée	0.1	μg/L	2567	Furathiocarbe	0.02	με
7142	Dimepiperate	0.005	μg/L	6601	EthylèneUrée	0.1	μg/L	7441	Furilazole	0.1	
				6644	Ethylparaben	0.01	μg/L	5364			με
2546	Dimétachlore	0.005	μg/L	2629	Ethynyl estradiol	0.001	μg/L		Furosemide	0.02	με
5737	Dimethametryn	0.005	μg/L	5625	Etoxazole	0.005	μg/L	7602	Gabapentine	0.01	με
6865	Dimethenamid ESA	0.01	μg/L					6653	gamma-	0.05	με
1678	Diméthénamide	0.005	μg/L	5760	Etrimfos	0.005	μg/L		Hexabromocyclododeca		
7735	Diméthénamide OXA	0.01	μg/L	2020	Famoxadone	0.005	μg/L	5365	Gemfibrozil	0.02	με
				5761	Famphur	0.005	μg/L	1526	Glufosinate	0.02	με
5617	Dimethenamid-P	0.03	μg/L	2057	Fénamidone	0.02	μg/L	1506	Glyphosate	0.03	με
1175	Diméthoate	0.01	μg/L	1185	Fénarimol	0.005	μg/L	5508	Halosulfuron-methyl	0.02	με
1403	Diméthomorphe	0.02	μg/L	2742	Fénazaguin	0.02	μg/L	2047	Haloxyfop	0.05	με
2773	Diméthylamine .	10	μg/L	6482	Fenbendazole	0.005		1833	Haloxyfop-éthoxyéthyl	0.02	με
1641	·	0.02					μg/L	1909	Haloxyfop-R	0.005	με
	Diméthylphénol-2,4		μg/L	1906	Fenbuconazole	0.02	μg/L	1200	HCH alpha	0.003	
6972	Dimethylvinphos	0.005	μg/L	2078	Fenbutatin oxyde	0.0217	μg/L	1200		0.001	με
1698	Dimétilan	0.02	μg/L	7513	Fenchlorazole-ethyl	0.1	μg/L		HCH delta		με
5748	dimoxystrobine	0.02	μg/L	1186	Fenchlorphos	0.005	μg/L	1202	HCH delta	0.001	με
1871	Diniconazole	0.02	μg/L	2743	Fenhexamid	0.005	μg/L	2046	HCH epsilon	0.005	με
				1187	Fénitrothion	0.003	μg/L	1203	HCH gamma	0.001	με
1578	Dinitrotoluène-2,4	0.5	μg/L					1197	Heptachlore	0.005	με
1577	Dinitrotoluène-2,6	0.5	μg/L	5627	Fenizon	0.005	μg/L	1748	Heptachlore époxyde cis	0.005	με
5619	Dinocap	0.05	μg/L	5763	Fenobucarb	0.005	μg/L	1749	Heptachlore époxyde	0.005	με
1491	Dinosèbe	0.02	μg/L	5368	Fenofibrate	0.01	μg/L	1910	Heptenophos	0.005	με
				6970	Fenoprofen	0.05	μg/L	1199	Hexachlorobenzène	0.001	με
1176	Dinoterbe	0.03	μg/L	5970	Fenothiocarbe	0.005	μg/L	1652	Hexachlorobutadiène	0.02	με
7494	Dioctyletain cation	0.0025	μg/L	1973	Fénoxaprop éthyl	0.02	μg/L	1656	Hexachloroéthane	0.3	με
5743	Dioxacarb	0.005	μg/L					2612	Hexachloropentadiène	0.3	με
7495	Diphenyletain cation	0.00046	μg/L	1967	Fénoxycarbe	0.005	μg/L				
				1188	Fenpropathrine	0.005	μg/L	1405	Hexaconazole	0.02	με
1699	Diquat	0.03	μg/L	1700	Fenpropidine	0.01	μg/L	1875	Hexaflumuron	0.005	με
1492	Disulfoton	0.005	μg/L	1189	Fenpropimorphe	0.005	μg/L	1673	Hexazinone	0.02	με
5745	Ditalimfos	0.05	μg/L	1190	Fenthion	0.005	μg/L	1876	Hexythiazox	0.02	με
1966	Dithianon	0.1	μg/L	1500	Fénuron	0.02		5645	Hydrazide maleique	0.5	με
							μg/L	6746	Hydrochlorothiazide	0.005	με
1177	Diuron	0.02	μg/L	1701	Fenvalérate	0.01	μg/L	6730	Hydroxy-metronidazole	0.01	με
1490	DNOC	0.02	μg/L	2021	Ferbam	10000	μg/L	5350	Ibuprofene	0.01	щ
2933	Dodine	0.02	μg/L	2009	Fipronil	0.005	μg/L	6727	Ifosfamide	0.005	
6969	Doxepine	0.005	μg/L	1840	Flamprop-isopropyl	0.005	μg/L				μ
	_ = 0.000.10	2.000	F-0/ -	6539	Flamprop-methyl	0.005	μg/L	1704	Imazalil	0.02	με
								1695	Imazaméthabenz	0.02	με
				1939	Flazasulfuron	0.02	μg/L	1911	Imazaméthabenz méthyl	0.01	με
				6393	Flonicamid	0.005	μg/L	1			
				2810	Florasulam	0.02	μg/L	1			
				6764	Florfenicol	0.1	μg/L	1			
				6545	Fluazifop	0.02	μg/L				

Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Uni
2986	Imazamox	0.02	μg/L	2752	Mecoprop-2-	0.005	μg/L	1881	Myclobutanil	0.02	μg
2090	Imazapyr	0.02	μg/L	2753	Mecoprop-2-ethylhexyl	0.005	μg/L	6380	N-(2,6-dimethylphenyl)-	0.01	μg
				2754		0.005		0380	N-(2-methoxyethyl	0.01	μъ
2860	IMAZAQUINE	0.02	μg/L		Mecoprop-2-octyl ester		μg/L	6443	Nadolol	0.005	μg
7510	Imibenconazole	0.005	μg/L	2755	Mecoprop-methyl ester	0.005	μg/L	1516	Naled	0.005	μg
1877	Imidaclopride	0.02	μg/L	2084	Mécoprop-P	0.1	μg/L	1517	Naphtalène	0.005	μg
6971	Imipramine	0.005	μg/L	1968	Méfenacet	0.005	μg/L	1519	Napropamide	0.005	μg
1204	·	0.0005		2930	Méfenpyr diethyl	0.005	μg/L	5351	Naproxene	0.05	με
	Indéno (123c) Pyrène		μg/L	2568	Mefluidide	0.02	μg/L	1937	Naptalame	0.05	με
6794	Indometacine	0.02	μg/L	2987	Méfonoxam	0.02		1462	n-Butyl Phtalate	0.05	μ
5483	Indoxacarbe	0.02	μg/L				μg/L	1520	Néburon	0.02	
6706	Iobitridol	0.1	μg/L	5533	Mepanipyrim	0.005	μg/L				μ
2741	Iodocarbe	0.02	μg/L	5791	Mephosfolan	0.005	μg/L	1882	Nicosulfuron	0.01	μ
				1969	Mépiquat	0.03	μg/L	5657	Nicotine	0.02	μ
2025	Iodofenphos	0.005	μg/L	2089	Mépiquat chlorure	0.04	μg/L	2614	Nitrobenzène	0.1	μ
2563	Iodosulfuron	0.02	μg/L	6521		0.01		1229	Nitrofène	0.005	μ
5377	Iopromide	0.1	μg/L		Mepivacaine		μg/L	1637	Nitrophénol-2	0.05	μ
1205	loxynil	0.02	μg/L	1878	Mépronil	0.005	μg/L	5400	Norethindrone	0.001	щ
	·			1677	Meptyldinocap	1	μg/L	6761	Norfloxacine	0.1	μ
2871	loxynil methyl ester	0.005	μg/L	1510	Mercaptodiméthur	0.01	μg/L	6772	Norfluoxetine	0.005	щ
1942	loxynil octanoate	0.01	μg/L	1804	Mercaptodiméthur	0.02	μg/L	1669	Norflurazon	0.005	Щ
7508	Ipoconazole	0.02	μg/L		Mesosulfuron methyle			2737	Norflurazon desméthyl	0.005	щ
5777	Iprobenfos	0.005	μg/L	2578		0.02	μg/L				
1206	Iprodione	0.005		2076	Mésotrione	0.03	μg/L	1883	Nuarimol	0.005	μ
	·		μg/L	1706	Métalaxyl	0.02	μg/L	6767	O-Demethyltramadol	0.005	μ
2951	Iprovalicarbe	0.02	μg/L	1796	Métaldéhyde	0.02	μg/L	6533	Ofloxacine	0.02	μ
6535	Irbesartan	0.005	μg/L	1215	Métamitrone	0.02	μg/L	2027	Ofurace	0.005	μ
1935	Irgarol (Cybutryne)	0.0025	μg/L	6894	Metazachlor oxalic acid	0.1	μg/L	1230	Ométhoate	0.0005	μ
1976	Isazofos	0.02	μg/L					1668	Oryzalin	0.1	μ
				6895	Metazachlor sulfonic	0.1	μg/L	2068	Oxadiargyl	0.005	μ
1836	Isobutylbenzène	0.5	μg/L	1670	Métazachlore	0.005	μg/L	1667	Oxadiazon	0.005	μ
1207	Isodrine	0.001	μg/L	1879	Metconazole	0.02	μg/L	1666	Oxadixyl	0.005	μ
1829	Isofenphos	0.005	μg/L	6755	Metformine	0.005	μg/L	1850	Oxamyl	0.02	μ
5781	Isoprocarb	0.005	μg/L	1216	Méthabenzthiazuron	0.005	μg/L	5510	Oxasulfuron	0.005	
								5375	Oxazepam	0.005	μ
1633	Isopropylbenzène	0.5	μg/L	5792	Methacrifos	0.02	μg/L				μ
2681	Isopropyltoluène o	0.5	μg/L	1671	Méthamidophos	0.02	μg/L	7107	Oxyclozanide	0.005	μ
1856	Isopropyltoluène p	0.5	μg/L	1217	Méthidathion	0.02	μg/L	6682	Oxycodone	0.01	μ
1208	Isoproturon	0.02	μg/L	1218	Méthomyl	0.02	μg/L	1231	Oxydéméton méthyl	0.02	μ
6643	Isoquinoline	0.01		6793	Methotrexate	0.005	μg/L	1952	Oxyfluorfène	0.002	μ
	·		μg/L					6532	Oxytetracycline	0.005	μ
2722	Isothiocyanate de	0.05	μg/L	1511	Méthoxychlore	0.005	μg/L	1920	p-(n-octyl)phénol	0.03	μ
1672	Isoxaben	0.02	μg/L	5511	Methoxyfenoside	0.1	μg/L	2545	Paclobutrazole	0.02	μ
2807	Isoxadifen-éthyle	0.005	μg/L	1619	Méthyl-2-Fluoranthène	0.001	μg/L	5354	Paracetamol	0.025	μ
1945	Isoxaflutol	0.02	μg/L	1618	Méthyl-2-Naphtalène	0.005	μg/L	5806	Paraoxon	0.005	μ
5784	Isoxathion	0.005		6695	Methylparaben	0.01	μg/L	1232	Parathion éthyl	0.01	щ
			μg/L	2067	Metiram	0.03	μg/L	1233	Parathion méthyl	0.005	щ
7505	Karbutilate	0.005	μg/L					6753	Parconazole	0.1	щ
5353	Ketoprofene	0.01	μg/L	1515	Métobromuron	0.02	μg/L				
7669	Ketorolac	0.01	μg/L	6854	Metolachlor ESA	0.02	μg/L	1242	PCB 101	0.0012	μ
1950	Kresoxim méthyl	0.02	μg/L	6853	Metolachlor OXA	0.02	μg/L	1627	PCB 105	0.0003	μ
	-			1221	Métolachlore	0.005	μg/L	5433	PCB 114	0.00003	μ
1094	Lambda Cyhalothrine	0.00006	μg/L	5796	Metolcarb	0.005	μg/L	1243	PCB 118	0.0012	μ
1406	Lénacile	0.005	μg/L					5434	PCB 123	0.00003	μ
6711	Levamisole	0.005	μg/L	5362	Metoprolol	0.005	μg/L	2943	PCB 125	0.005	μ
6770	Levonorgestrel	0.02	μg/L	1912	Métosulame	0.005	μg/L	1089	PCB 126	0.000006	μ
7843	Lincomycine	0.005	μg/L	1222	Métoxuron	0.02	μg/L	1884	PCB 128	0.0012	μ
				5654	Metrafenone	0.005	μg/L	1244	PCB 138	0.0012	щ
1209	Linuron	0.02	μg/L	1225	Métribuzine	0.02	μg/L	1885	PCB 149	0.0012	щ
5374	Lorazepam	0.005	μg/L	6731	Metronidazole	0.005	μg/L	1245	PCB 153	0.0012	щ
1210	Malathion	0.005	μg/L		Metsulfuron méthyl			2032	PCB 156	0.00012	щ
5787	Malathion-o-analog	0.005	μg/L	1797		0.02	μg/L	5435	PCB 157	0.00012	
				1226	Mévinphos	0.005	μg/L				μ
1211	Mancozèbe	0.03	μg/L	7143	Mexacarbate	0.005	μg/L	5436	PCB 167	0.00003	μ
6399	Mandipropamid	0.02	μg/L	1707	Molinate	0.005	μg/L	1090	PCB 169	0.000006	μ
1705	Manèbe	0.03	μg/L	2542	Monobutyletain cation	0.0025	μg/L	1626	PCB 170	0.0012	μ
6700	Marbofloxacine	0.1	μg/L	1880	Monocrotophos	0.02		1246	PCB 180	0.0012	μ
2745	MCPA-1-butyl ester	0.005	μg/L		·		μg/L	5437	PCB 189	0.000012	μ
	·			1227	Monolinuron	0.02	μg/L	1625	PCB 194	0.0012	μ
2746	MCPA-2-ethylhexyl	0.005	μg/L	7496	Monooctyletain cation	0.001	μg/L	1624	PCB 209	0.005	μ
2747	MCPA-butoxyethyl ester	0.005	μg/L	7497	Monophenyletain cation	0.001	μg/L	1239	PCB 28	0.0012	μ
2748	MCPA-ethyl-ester	0.01	μg/L	1228	Monuron	0.02	μg/L	1886	PCB 31	0.005	щ
2749	MCPA-methyl-ester	0.005			Morphine	0.02		1240	PCB 35	0.005	Щ
	·		μg/L	6671	·		μg/L	2031	PCB 37	0.005	
5789	Mecarbam	0.005	μg/L	7475	Morpholine	2	μg/L				μ
1214	Mécoprop	0.02	μg/L	1512	MTBE	0.5	μg/L	1628	PCB 44	0.0012	μ
2870	Mecoprop n isobutyl	0.005	μg/L	6342	Musc xylène	0.1	μg/L	1241	PCB 52	0.0012	μ
2750	Mecoprop-1-octyl ester	0.005		1	,,		1.01 -	2048	PCB 54	0.0012	μ
2/30		0.005	μg/L					5803	PCB 66	0.005	μ
2751	Mecoprop-2,4,4-	0.005	μg/L					1091	PCB 77	0.00006	μ
	trimethylphenyl ester	0.005	µ5/ L	1				5432	PCB 81	0.000006	μ

Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité
1762	Penconazole	0.02	μg/L	1092	Prosulfocarbe	0.03	μg/L	2085	Sulfosufuron	0.02	μg/L
1887	Pencycuron	0.02	μg/L	2534	Prosulfuron	0.02	μg/L	1894	Sulfotep	0.005	μg/L
1234	Pendiméthaline	0.005	μg/L	5603	Prothioconazole	0.05	μg/L	5831	Sulprofos	0.02	μg/L
	Penoxsulam			7442	Proximpham	0.005	μg/L	1193	Taufluvalinate	0.005	μg/L
6394		0.02	μg/L	5416	Pymétrozine	0.02	μg/L	1694	Tébuconazole	0.02	μg/L
1888	Pentachlorobenzène	0.001	μg/L	6611	Pyraclofos	0.005		1895	Tébufénozide	0.02	μg/L
1235	Pentachlorophénol	0.03	μg/L				μg/L	1896	Tébufenpyrad	0.005	μg/L
7670	Pentoxifylline	0.005	μg/L	2576	Pyraclostrobine	0.02	μg/L	7511	Tébupirimfos	0.02	μg/L
6219	Perchlorate	0.1	μg/L	5509	Pyraflufen-ethyl	0.1	μg/L	1661	Tébutame	0.005	μg/L
	Perfluorooctanesulfona			1258	Pyrazophos	0.02	μg/L	1542	Tébuthiuron	0.005	μg/L
6548	mide (PFOSA)	0.02	μg/L	6386	Pyrazosulfuron-ethyl	0.005	μg/L	5413	Tecnazène	0.01	μg/L
1523	Perméthrine	0.01	μg/L	6530	Pyrazoxyfen	0.005	μg/L	1897	Téflubenzuron	0.005	μg/L
				1537	Pyrène	0.005	μg/L	1953	Téfluthrine	0.005	μg/L
7519	Pethoxamide	0.02	μg/L	5826	Pyributicarb	0.005	μg/L	7086	Tembotrione	0.05	μg/L
1499	Phénamiphos	0.005	μg/L	1890	Pyridabène	0.005	μg/L	1898	Téméphos	0.02	μg/L
1524	Phénanthrène	0.005	μg/L	5606	Pyridaphenthion	0.005	μg/L	1659	Terbacile	0.005	μg/L
5420	Phénazone	0.005	μg/L					1266	Terbuméton	0.02	μg/L
1236	Phenmédiphame	0.02	μg/L	1259	Pyridate	0.01	μg/L	1267	Terbuphos	0.005	μg/L
5813	Phenthoate	0.005	μg/L	1663	Pyrifénox	0.01	μg/L	6963	Terbutaline	0.02	μg/L
				1432	Pyriméthanil	0.005	μg/L	1268	Terbuthylazine	0.02	μg/L
7708	Phenytoin	0.05	μg/L	1260	Pyrimiphos éthyl	0.02	μg/L	2045	Terbuthylazine déséthyl	0.005	μg/L
1525	Phorate	0.005	μg/L	1261	Pyrimiphos méthyl	0.005	μg/L		Terbuthylazine desethyl-	0.00	
1237	Phosalone	0.005	μg/L	5499	Pyriproxyfène	0.005	μg/L	7150	2-hydroxy	0.02	μg/L
1971	Phosmet	0.02	μg/L	7340	Pyroxsulam	0.05	μg/L	1954	Terbuthylazine hydroxy	0.02	μg/L
1238	Phosphamidon	0.005	μg/L	1891	Quinalphos	0.03		1269	Terbutryne	0.02	μg/L
1665	Phoxime	0.005	μg/L		i i		μg/L	5384	Testosterone	0.005	μg/L
1489		0.003		2087	Quinmerac	0.02	μg/L	1936	Tetrabutyletain	0.00058	μg/L μg/L
	Phtalate de diméthyle		μg/L	2028	Quinoxyfen	0.005	μg/L	1270	Tétrachloréthane-1,1,1,2	0.5	μg/L
1708	Piclorame	0.03	μg/L	1538	Quintozène	0.01	μg/L	1271	Tétrachloréthane-1,1,2,2	0.02	μg/L
5665	Picolinafen	0.005	μg/L	2069	Quizalofop	0.02	μg/L	1272	Tétrachloréthylène	0.02	
2669	Picoxystrobine	0.02	μg/L	2070	Quizalofop éthyl	0.1	μg/L				μg/L
7057	Pinoxaden	0.05	μg/L	6529	Ranitidine	0.005	μg/L	2735	Tétrachlorobenzène	0.02	μg/L
1709	Piperonil butoxide	0.005	μg/L	1892	Rimsulfuron	0.005	μg/L	2010	Tétrachlorobenzène-	0.02	μg/L
	·							1276	Tétrachlorure de C	0.5	μg/L
5819	Piperophos	0.005	μg/L	2029	Roténone	0.005	μg/L	1277	Tétrachlorvinphos	0.005	μg/L
1528	Pirimicarbe	0.02	μg/L	5423	Roxythromycine	0.05	μg/L	1660	Tétraconazole	0.02	μg/L
5531	Pirimicarbe Desmethyl	0.02	μg/L	7049	RS-Iopamidol	0.1	μg/L	6750	Tetracycline	0.1	μg/L
	Pirimicarbe Formamido		,,	2974	S Métolachlore	0.1	μg/L	1900	Tétradifon	0.005	μg/L
5532	Desmethyl	0.005	μg/L	6527	Salbutamol	0.005	μg/L	5249	Tétraphénylétain	0.005	μg/L
7668	Piroxicam	0.02	μg/L	1923	Sébuthylazine	0.02	μg/L	5837	Tetrasul	0.01	μg/L
5821				6101	Sebuthylazine 2-hydroxy	0.005	μg/L	1713	Thiabendazole	0.02	μg/L
	p-Nitrotoluene	0.15	μg/L	5981	Sebutylazine desethyl	0.005	μg/L	5671	Thiacloprid	0.05	μg/L
6771	Pravastatine	0.02	μg/L					1940	Thiafluamide	0.02	μg/L
6734	Prednisolone	0.02	μg/L	1262	Secbumeton	0.02	μg/L	6390	Thiamethoxam	0.02	μg/L
1949	Pretilachlore	0.005	μg/L	7724	Sedaxane	0.02	μg/L	1714	Thiazasulfuron	0.05	μg/L
6531	Prilocaine	0.005	μg/L	6769	Sertraline	0.005	μg/L	5934	Thidiazuron	0.02	μg/L
6847	Pristinamycine IIA	0.02	μg/L	1808	Séthoxydime	0.02	μg/L	7517	Thiencarbazone-methyl	0.03	μg/L
	·			1893	Siduron	0.005	μg/L	1913	Thifensulfuron méthyl	0.02	μg/L
1253	Prochloraze	0.001	μg/L	5609	Silthiopham	0.02	μg/L	7512	Thiocyclam hydrogen	0.01	μg/L
1664	Procymidone	0.005	μg/L	1539	Silvex	0.02	μg/L	1093	Thiodicarbe	0.02	μg/L
1889	Profénofos	0.005	μg/L	1263	Simazine	0.02		1715	Thiofanox	0.05	μg/L
5402	Progesterone	0.02	μg/L				μg/L	5476	Thiofanox sulfone	0.02	μg/L
1710	Promécarbe	0.005	μg/L	1831	Simazine hydroxy	0.02	μg/L	5475	Thiofanox sulfoxyde	0.02	μg/L
1711	Prométon	0.005	μg/L	5477	Simétryne	0.005	μg/L	2071	Thiométon	0.005	μg/L
1254	Prométryne	0.003		5855	somme de	0.05	μg/L	5838	Thionazin	0.05	μg/L
	·		μg/L	3633	Méthylphénol-3 et de	0.05	₩8/ L	7514	Thiophanate-ethyl	0.05	μg/L
1712	Propachlore	0.01	μg/L		Somme du 1,2,3,5			1717	Thiophanate-méthyl	0.05	μg/L
6398	Propamocarb	0.02	μg/L	6326	tetrachlorobenzene et1,	0.02	μg/L	1718	Thirame	0.1	μg/L
1532	Propanil	0.005	μg/L		Somme du			6524	Ticlopidine	0.01	μg/L
6964	Propaphos	0.005	μg/L	3336		0.02	μg/L	7965	Timolol	0.005	μg/L μg/L
1972	Propaguizafop	0.02	μg/L	1	Dichlorophenol-2,4 et du	0.55-		5922	Tiocarbazil	0.005	μg/L μg/L
				5424	Sotalol	0.005	μg/L		Tolclofos-methyl		
1255	Propargite	0.005	μg/L	5610	Spinosad	0.01	μg/L	5675		0.005	μg/L
1256	Propazine	0.02	μg/L	7506	Spirotetramat	0.02	μg/L	1278	Toluène	0.5	μg/L
5968	Propazine 2-hydroxy	0.02	μg/L	2664	Spiroxamine	0.02	μg/L	1719	Tolylfluanide	0.005	μg/L
1533	Propétamphos	0.005	μg/L		s-Triazin-2-ol, 4-amino-6-			6720	Tramadol	0.005	μg/L
1534	Prophame	0.02	μg/L	3160	(ethylamino)-	0.05	μg/L	1544	Triadiméfon	0.005	μg/L
1257	Propiconazole	0.005		4544		0.5	11~/1	1280	Triadiménol	0.02	μg/L
	·		μg/L	1541	Styrène	0.5	μg/L				
1535	Propoxur	0.02	μg/L	1662	Sulcotrione	0.03	μg/L				
5602	Propoxycarbazone-	0.02	μg/L	6525	Sulfamethazine	0.005	μg/L				
5363	Propranolol	0.005	μg/L	6795	Sulfamethizole	0.005	μg/L				
1837	Propylbenzène	0.5	μg/L	5356	Sulfamethoxazole	0.005	μg/L				
6214	Propylene thiouree	0.5	μg/L	6575	Sulfaquinoxaline	0.05	μg/L				
				6572	Sulfathiazole	0.005					
6693	Propylparaben	0.01	μg/L				μg/L				
5421	Propyphénazone	0.005	μg/L	5507	Sulfomethuron-methyl	0.005	μg/L				
1414	Propyzamide	0.005	μg/L	CEC1	Sulfonate de	0.03	a/1				
7422	Proquinazid	0.02	μg/L	6561	perfluorooctane	0.02	μg/L				

Code SANDRE paramètre	Libellé paramètre	ιQ	Unité
1281	Triallate	0.02	μg/L
1914	Triasulfuron	0.02	μg/L
1901	Triazamate	0.005	μg/L
1657	Triazophos	0.005	μg/L
2064	Tribenuron-Methyle	0.02	μg/L
5840	Tributyl phosphorotrithioite	0.02	μg/L
2879	Tributyletain cation	0.0002	μg/L
1847	Tributylphosphate	0.005	μg/L
1288	Trichlopyr	0.02	μg/L
1284	Trichloréthane-1,1,1	0.05	μg/L
1285	Trichloréthane-1,1,2	0.25	μg/L
1286	Trichloréthylène	0.23	μg/L μg/L
1630	Trichlorobenzène-1,2,3	0.05	μg/L μg/L
1283	Trichlorobenzène-1,2,4	0.05	μg/L μg/L
1629			
	Trichlorobenzène-1,3,5	0.05	μg/L
1195	Trichlorofluorométhane	0.05	μg/L
1548	Trichlorophénol-2,4,5	0.05	μg/L
1549	Trichlorophénol-2,4,6	0.05	μg/L
1854	Trichloropropane-1,2,3	0.5	μg/L
1196	Trichlorotrifluoroéthane-1,1,2	0.5	μg/L
6989	Triclocarban	0.005	μg/L
5430	Triclosan	0.05	μg/L
2898	Tricyclazole	0.02	μg/L
2885	Tricyclohexyletain cation	0.0005	μg/L
5842	Trietazine	0.005	μg/L
6102	Trietazine 2-hydroxy	0.005	μg/L
5971	Trietazine desethyl	0.005	μg/L
2678	Trifloxystrobine	0.02	μg/L
1902	Triflumuron	0.02	μg/L
1289	Trifluraline	0.005	μg/L
2991	Triflusulfuron-methyl	0.005	μg/L μg/L
1802	Triforine	0.005	μg/L μg/L
6732 5357	Trimetazidine Trimethoprime	0.005	μg/L
		0.005	μg/L
1857	Triméthylbenzène-1,2,3	1	μg/L
1609	Triméthylbenzène-1,2,4	1	μg/L
1509	Triméthylbenzène-1,3,5	1	μg/L
2096	Trinexapac-ethyl	0.02	μg/L
2886	Trioctyletain cation	0.0005	μg/L
6372	Triphenyletain cation	0.00059	μg/L
2992	Triticonazole	0.02	μg/L
7482	Uniconazole	0.005	μg/L
1290	Vamidothion	0.005	μg/L
1291	Vinclozoline	0.005	μg/L
1293	Xylène-meta	0.5	μg/L
1292	Xylène-ortho	0.5	μg/L
1294	Xylène-para	1	μg/L
1722	Zirame	100	μg/L
5376	Zolpidem	0.005	μg/L
2858	Zoxamide	0.02	μg/L

Annexe 2. LISTE DES MICROPOLLUANTS ANALYSES SUR SEDIMENT

Code SANDRE	Paramètre	LQ	Unité
1370	Aluminium	5	mg/(kg MS
1376	Antimoine	0.2	mg/(kg MS
1368	Argent	0.1	mg/(kg MS
1369	Arsenic	0.2	mg/(kg MS
1396	Baryum	0.4	mg/(kg MS
1377	Beryllium	0.2	mg/(kg MS
1362	Bore	1	mg/(kg MS
1388	Cadmium	0.1	mg/(kg MS
1389	Chrome	0.2	mg/(kg MS
1379	Cobalt	0.2	mg/(kg MS
1392	Cuivre	0.2	mg/(kg MS
1380	Etain	0.2	mg/(kg MS
1393	Fer	5	mg/(kg MS
1364	Lithium	0.2	mg/(kg MS
1394	Manganèse	0.4	mg/(kg MS
1387	Mercure	0.01	mg/(kg MS
1395	Molybdène	0.2	mg/(kg MS
1386	Nickel	0.2	mg/(kg MS
1382	Plomb	0.2	mg/(kg MS
1385	Sélénium	0.2	mg/(kg MS
2559	Tellure	0.2	mg/(kg MS
2555	Thallium	0.2	mg/(kg MS
1373	Titane	1	mg/(kg MS
1361	Uranium	0.2	mg/(kg MS
1384	Vanadium	0.2	mg/(kg MS
1383	Zinc	0.4	mg/(kg MS
6536	4-Methylbenzylidene camphor	10	μg/(kg MS
5474	4-n-nonylphénol	40	μg/(kg MS
6369	4-nonylphenol diethoxylate (mélange d'is	15	μg/(kg MS
1958	4-nonylphénols ramifiés	40	μg/(kg MS
7101	4-sec-Butyl-2,6-di-tert-butylphenol	20	μg/(kg MS
2610	4-tert-butylphénol	40	μg/(kg MS
1959	4-tert-octylphénol	40	μg/(kg MS
1453	Acénaphtène	10	μg/(kg MS
1622	Acénaphtylène	10	μg/(kg MS
1903	Acétochlore	4	μg/(kg MS
6509	Acide perfluoro-decanoïque (PFDA)	50	μg/(kg MS
6830	Acide perfluorohexanesulfonique (PFHS)	50	μg/(kg MS
5978	Acide perfluoro-n-hexanoïque (PFHxA)	50	μg/(kg MS
6560	Acide perfluorooctanesulfonique (PFOS)	5	μg/(kg MS
5347	Acide perfluoro-octanoïque (PFOA)	50	μg/(kg MS
1688	Aclonifen	20	μg/(kg MS
1103	Aldrine	20	μg/(kg MS
6651	alpha-Hexabromocyclododecane	10	μg/(kg MS
1812	Alphaméthrine	4	μg/(kg MS
7102	Anthanthrene	10	μg/(kg MS
1458	Anthracène	10	μg/(kg MS
2013	Anthraquinone	4	μg/(kg MS
1951	Azoxystrobine	10	μg/(kg MS
5989	BDE 196	10	μg/(kg MS
5990	BDE 197	10	μg/(kg MS
5991	BDE 198	10	μg/(kg MS
5986	BDE 203	10	μg/(kg MS
5996	BDE 204	10	μg/(kg MS
5997	BDE 205	10	μg/(kg MS
2915	BDE100	10	μg/(kg MS
2913	BDE138	10	μg/(kg MS
2912	BDE153	10	μg/(kg MS
2911	BDE154	10	μg/(kg MS
2910	BDE183	10	μg/(kg MS
1815	BDE209	5	μg/(kg MS
2920	BDE28	10	μg/(kg MS
2919	BDE47	10	μg/(kg MS

Code SANDRE	Paramètre	LQ	Unit
2916	BDE99	10	μg/(kg
1114	Benzène	5	μg/(kg
1607	Benzidine	100	μg/(kg
1082	Benzo (a) Anthracène	10	μg/(kg
1115	Benzo (a) Pyrène	10	μg/(kg
1116	Benzo (b) Fluoranthène	10	μg/(kg
1118	Benzo (ghi) Pérylène	10	μg/(kg
1117	Benzo (k) Fluoranthène	10	μg/(kg
1924	Benzyl butyl phtalate	100	μg/(kg
6652	beta-Hexabromocyclododecane	10	μg/(kg
1119 1584	Bifénox	50 20	μg/(kg μg/(kg
1122	Biphényle	5	μg/(kg μg/(kg
1464	Bromoforme Chlorfenvinphos	20	μg/(kg
1134	Chlorméphos	10	μg/(kg
1955	Chloroalcanes C10-C13	2000	μg/(kg
1593	Chloroaniline-2	50	μg/(kg
1467	Chlorobenzène	10	μg/(kg
1135	Chloroforme (Trichlorométhane)	5	μg/(kg
1635	Chlorométhylphénol-2,5	50	μg/(kg
1636	Chlorométhylphénol-4,3	50	μg/(kg
1469	Chloronitrobenzène-1,2	20	μg/(kg
1468	Chloronitrobenzène-1,3	20	μg/(kg
1470	Chloronitrobenzène-1,4	20	μg/(kg
1471	Chlorophénol-2	50	μg/(kg
1651	Chlorophénol-3	50	μg/(kg
1650	Chlorophénol-4	50	μg/(kg
2611	Chloroprène	20	μg/(kg
2065	Chloropropène-3	5	μg/(kg
1602	Chlorotoluène-2	5	μg/(kg
1601	Chlorotoluène-3	5	μg/(kg
1600	Chlorotoluène-4	5	μg/(kg
1474	Chlorprophame	4	μg/(kg
1083	Chlorpyriphos éthyl	10	μg/(kg
1540	Chlorpyriphos méthyl	20	μg/(kg
1476	Chrysène	10	μg/(kg
2017	Clomazone	4	μg/(kg
5360	Clotrimazole	100	μg/(kg
1639	Crésol-méta	50	μg/(kg
1640	Crésol-ortho	50	μg/(kg
1638	Crésol-para	50	μg/(kg
1140	Cyperméthrine	20	μg/(kg
1680	Cyproconazole	10	μg/(kg
1359	Cyprodinil	2	μg/(kg
1143 1144	DDD-o,p'	5	μg/(kg μg/(kg
1144	DDD-p,p' DDE-o,p'	5	μg/(kg μg/(kg
1145	DDE-0,p DDE-p,p'	5	μg/(kg
1147	DDE-p,p DDT-o,p'	5	μg/(kg
1147	DDT-0,p DDT-p,p'	5	μg/(kg
6616	DEHP	100	μg/(kg
1149	Deltaméthrine	2	μg/(kg
1157	Diazinon	25	μg/(kg
1621	Dibenzo (ah) Anthracène	10	μg/(kg
1158	Dibromochlorométhane	5	μg/(kg
1498	Dibromoéthane-1,2	5	μg/(kg
7074	Dibutyletain cation	10	μg/(kg
1160	Dichloréthane-1,1	10	μg/(kg
1161	Dichloréthane-1,2	10	μg/(kg
1162	Dichloréthylène-1,1	10	μg/(kg
1456	Dichloréthylène-1,2 cis	10	μg/(kg
1727	Dichloréthylène-1,2 trans	10	μg/(kg
1589	Dichloroaniline-2,4	50	μg/(kg
1588	Dichloroaniline-2,5	50	μg/(kg
1165	Dichlorobenzène-1,2	10	μg/(kg
1164	Dichlorobenzène-1,3	10	μg/(kg
1166	Dichlorobenzène-1,4	10	μg/(kg

Code SANDRE	Paramètre	LQ	Unité
1167	Dichlorobromométhane	5	μg/(kg MS
1168	Dichlorométhane	10	μg/(kg MS
1617	Dichloronitrobenzène-2,3	50	μg/(kg MS
1616	Dichloronitrobenzène-2,4	50	μg/(kg MS
1615	Dichloronitrobenzène-2,5	50	μg/(kg MS
1614	Dichloronitrobenzène-3,4	50	μg/(kg MS
1613 1645	Dichloronitrobenzène-3,5	50 50	μg/(kg MS
1486	Dichlorophénol-2,3 Dichlorophénol-2,4	50	μg/(kg MS μg/(kg MS
1649	Dichlorophénol-2,5	50	μg/(kg MS
1648	Dichlorophénol-2,6	50	μg/(kg MS
1647	Dichlorophénol-3,4	50	μg/(kg MS
1646	Dichlorophénol-3,5	50	μg/(kg MS
1655	Dichloropropane-1,2	10	μg/(kg MS
1654	Dichloropropane-1,3	10	μg/(kg MS
2081	Dichloropropane-2,2	10	μg/(kg MS
2082	Dichloropropène-1,1	10	μg/(kg MS
1834	Dichloropropylène-1,3 Cis	10	μg/(kg MS
1835	Dichloropropylène-1,3 Trans	10	μg/(kg MS
1653	Dichloropropylène-2,3	10	μg/(kg MS
1170	Dichlorvos	30	μg/(kg MS
1172	Dicofol	20	μg/(kg MS
1173	Dieldrine	20	μg/(kg MS
1814	Diflufénicanil	10	μg/(kg MS
5325	Diisobutyl phthalate	100	μg/(kg MS
6658	Diisodecyl phthalate	10000	μg/(kg MS
6215	Diisononyl phtalate	5000	μg/(kg MS
1403	Diméthomorphe	10	μg/(kg MS
1641	Diméthylphénol-2,4	50	μg/(kg MS
1578	Dinitrotoluène-2,4	50	μg/(kg MS
1577	Dinitrotoluène-2,6	50	μg/(kg MS
7494	Dioctyletain cation	102	μg/(kg MS
7495	Diphenyletain cation	11.5	μg/(kg MS
1178	Endosulfan alpha	20	μg/(kg MS
1179	Endosulfan beta	20	μg/(kg MS
1742	Endosulfan sulfate	20	μg/(kg MS
1181	Endrine	20	μg/(kg MS
1744	Epoxiconazole	10	μg/(kg MS
5397	Estradiol	20	μg/(kg MS
1497	Ethylbenzène	5	μg/(kg MS
2629	Ethynyl estradiol	20	μg/(kg MS
1187	Fénitrothion	10	μg/(kg MS
2022	Fludioxonil	4	μg/(kg MS
1191	Fluoranthène	10	μg/(kg MS
1623	Fluorène	10	μg/(kg MS
2547	Fluroxypyr-meptyl	20	μg/(kg MS
1194	Flusilazole	20	μg/(kg MS
6618	Galaxolide	100	μg/(kg MS
6653	gamma-Hexabromocyclododecane	10	μg/(kg MS
1200	HCH alpha	10	μg/(kg MS
1201 1202	HCH beta	10	μg/(kg MS
2046	HCH delta	10 10	μg/(kg MS μg/(kg MS
	HCH epsilon		μg/(kg MS
1203 1197	HCH gamma Heptachlore	10 10	μg/(kg lvis
1748	Heptachlore époxyde cis	10	μg/(kg MS
1749	Heptachlore époxyde trans	10	μg/(kg MS
1199	Hexachlorobenzène	10	μg/(kg MS
1652	Hexachlorobutadiène	10	μg/(kg MS
1656	Hexachloroéthane	1	μg/(kg MS
1405	Hexaconazole	10	μg/(kg MS
1204	Indéno (123c) Pyrène	10	μg/(kg MS
1206	Iprodione	10	μg/(kg MS
7129	Irganox 1076	20	μg/(kg MS
1935	Irgarol (Cybutryne)	10	μg/(kg MS
1207	Isodrine	4	μg/(kg MS
1633	Isopropylbenzène	5	μg/(kg MS
			1.0/1.0

Knone-me	allerrance et Corse – Luyvalador (o	0)	
Code SANDRE	Paramètre	LQ	Unité
1094	Lambda Cyhalothrine	10	μg/(kg MS)
6664	Methyl triclosan	20	μg/(kg MS)
1619	Méthyl-2-Fluoranthène	10	μg/(kg MS)
1618	Méthyl-2-Naphtalène	10	μg/(kg MS)
2542	Monobutyletain cation	75	μg/(kg MS)
7496	Monooctyletain cation	40	μg/(kg MS)
7497	Monophenyletain cation	41.5	μg/(kg MS)
1517	Naphtalène	25	μg/(kg MS)
1519	Napropamide	10	μg/(kg MS)
1462	n-Butyl Phtalate	100	μg/(kg MS)
1637	Nitrophénol-2	50	μg/(kg MS)
6598	Nonylphénols linéaire ou ramifiés	40	μg/(kg MS)
1669	Norflurazon	4	μg/(kg MS)
2609	Octabromodiphénylether	10	μg/(kg MS)
6686	Octocrylene	100	μg/(kg MS)
1667	Oxadiazon	10	μg/(kg MS)
1952	Oxyfluorfène	10	μg/(kg MS)
1920	p-(n-octyl)phénol	40	μg/(kg MS)
1232	Parathion éthyl	20	μg/(kg MS)
1242	PCB 101	1	μg/(kg MS)
1627	PCB 105	1	μg/(kg MS)
5433	PCB 114	1	μg/(kg MS)
1243	PCB 118	1	μg/(kg MS)
5434	PCB 123	1	μg/(kg MS)
1089	PCB 126	1	μg/(kg MS)
1244	PCB 138	1	μg/(kg MS)
1885	PCB 149	1	μg/(kg MS)
1245	PCB 153	1	μg/(kg MS)
2032	PCB 156	1	μg/(kg MS)
5435	PCB 157	1	μg/(kg MS)
5436	PCB 167	1	μg/(kg MS)
1090	PCB 169	1	μg/(kg MS)
1626	PCB 170	1	μg/(kg MS)
1246	PCB 180	1	μg/(kg MS)
5437	PCB 189	1	μg/(kg MS)
1625	PCB 194	1	μg/(kg MS)
1624	PCB 209	1	μg/(kg MS)
1239	PCB 28	1	μg/(kg MS)
1886	PCB 31	1	μg/(kg MS)
1240	PCB 35	1	μg/(kg MS)
1628	PCB 44	1	μg/(kg MS)
1241	PCB 52	1	μg/(kg MS)
1091	PCB 77	1	μg/(kg MS)
5432	PCB 81	1	μg/(kg MS)
1234	Pendiméthaline	10	μg/(kg MS)
1888	Pentachlorobenzène	5	μg/(kg MS)
1235	Pentachlorophénol	50	μg/(kg MS)
1523	Perméthrine	5	μg/(kg MS)
1524	Phénanthrène	10	μg/(kg MS)
1664	Procymidone	10	μg/(kg MS)
1414	Propyzamide	10	μg/(kg MS)
1537	Pyrène	10	μg/(kg MS)
2028	Quinoxyfen	10	μg/(kg MS)
7128	Somme de 3 Hexabromocyclododecanes	10	μg/(kg MS)
1662	Sulcotrione	10	μg/(kg MS)
6561	Sulfonate de perfluorooctane	5	μg/(kg MS)
1694	Tébuconazole	10	μg/(kg MS)
1661	Tébutame	4	μg/(kg MS)
1268	Terbuthylazine	10	μg/(kg MS)
1269	Terbutryne	4	μg/(kg MS)
1936	Tetrablaséthas a 1.1.1.2	15	μg/(kg MS)
1270	Tétrachloréthane-1,1,1,2	5	μg/(kg MS)
1271	Tétrachloréthane-1,1,2,2	10	μg/(kg MS)
1272	Tétrachloréthylène	5	μg/(kg MS)

Code	Paramètre	LQ	Unité
SANDRE	raiainette	LŲ	Office
2010	Tétrachlorobenzène-1,2,3,4	10	μg/(kg MS)
2536	Tétrachlorobenzène-1,2,3,5	10	μg/(kg MS)
1631	Tétrachlorobenzène-1,2,4,5	10	μg/(kg MS)
1273	Tétrachlorophénol-2,3,4,5	50	μg/(kg MS)
1274	Tétrachlorophénol-2,3,4,6	50	μg/(kg MS)
1275	Tétrachlorophénol-2,3,5,6	50	μg/(kg MS)
1276	Tétrachlorure de C	5	μg/(kg MS)
1660	Tétraconazole	10	μg/(kg MS)
5921	Tetramethrin	40	μg/(kg MS)
1278	Toluène	5	μg/(kg MS)
2879	Tributyletain cation	25	μg/(kg MS)
1847	Tributylphosphate	4	μg/(kg MS)
1288	Trichlopyr	10	μg/(kg MS)
1284	Trichloréthane-1,1,1	5	μg/(kg MS)
1285	Trichloréthane-1,1,2	5	μg/(kg MS)
1286	Trichloréthylène	5	μg/(kg MS)
2732	Trichloroaniline-2,4,5	50	μg/(kg MS)
1595	Trichloroaniline-2,4,6	50	μg/(kg MS)
1630	Trichlorobenzène-1,2,3	10	μg/(kg MS)
1283	Trichlorobenzène-1,2,4	10	μg/(kg MS)
1629	Trichlorobenzène-1,3,5	10	μg/(kg MS)
1195	Trichlorofluorométhane	1	μg/(kg MS)
1644	Trichlorophénol-2,3,4	50	μg/(kg MS)
1643	Trichlorophénol-2,3,5	50	μg/(kg MS)
1642	Trichlorophénol-2,3,6	50	μg/(kg MS)
1548	Trichlorophénol-2,4,5	50	μg/(kg MS)
1549	Trichlorophénol-2,4,6	50	μg/(kg MS)
1723	Trichlorophénol-3,4,5	50	μg/(kg MS)
6506	Trichlorotrifluoroethane	5	μg/(kg MS)
6989	Triclocarban	20	μg/(kg MS)
2885	Tricyclohexyletain cation	15	μg/(kg MS)
1289	Trifluraline	10	μg/(kg MS)
2886	Trioctyletain cation	100	μg/(kg MS)
6372	Triphenyletain cation	15	μg/(kg MS)
1293	Xylène-meta	2	μg/(kg MS)
1292	Xylène-ortho	2	μg/(kg MS)
1294	Xylène-para	2	μg/(kg MS)
1780	Xylènes (o,m,p)	2	μg/(kg MS)

Annexe 3. COMPTES RENDUS DES CAMPAGNES PHYSICO-CHIMIQUES ET PHYTOPLANCTONIQUES

DONNEES GENERALES PLAN D'EAU

 Plan d'eau :
 Puyvalador
 Date :
 06/05/2019

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 Y1005163

 Organisme / opérateur :
 STE : Lionel Bochu & Aurélien Morin
 Campagne : 1

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

Page 1/6

LOCALISATION PLAN D'EAU

Commune: Formiguères Type: A1

Lac marnant: oui retenues de hautes montagnes, profondes

Temps de séjour: 38 jours

Superficie du plan d'eau: 91 ha

Profondeur maximale: 17 m

Carte (extrait SCAN 25 IGN 1/25 000)

de l'Ads

| Solution |

Angle de prise de vue

1:10 000

STATION

Photo du site :

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES GENERALI			D
Plan d'eau :	Puyvalador Artificiel		Date: 06/05/19
Types (naturel, artificiel) : Organisme / opérateur :	Artificiel STE : Lionel Bochu &	Aurélien Morin	Code lac: Y1005163 Campagne: 1
Organisme / operateur : Organisme demandeur :	Agence de l'Eau RMC	Aurelien Morin	Marché n°: 160000037
Organisme demandeur .	Agence de l'Eau Rivie		Page 2/6
	STATIO	N	
Coordonnée de la station :		e Géolocalisation Portable	☐ Carte IGN
Lambert 93 :	X: 6281	41 Y: 617226	9 alt.: 1421 m
WGS 84 (syst.internationnal Gl	,		
· · · · · · · · · · · · · · · · · · ·			
Profondeur: 1'	7.5 m		
Météo:	ps sec ensoleillé	2- faiblement nuageux	3- temps humide
☐ 4- plu:	e fine	5- orage-pluie forte	6- neige
☐ 7- gel		8- fortement nuageux	
P atm. : 8	60 hPa		
Vent : 0- nul	✓ 1- faible	3- fort	
vent.	- 1 moven		
Conditions d'observation :			
Surface de l'eau : 1- liss	e 2- faiblement agitée	□ 3- agitèe □ 4- trés agitè	e
Hauteur de vagues :).05 m		
Bloom algal : No	DN :		
Marnage: O	UI Hauteur de bande :	6 m Co	te échelle : 1414.95 m
Campagne 1 car	npagne de fin d'hiver : homotl	nermie du plan d'eau avant	démarrage de l'activité
Campagne		biologique	
	REMARQUES ET OB	SERVATIONS	
G	•		
Contact préalable : EDF C	3U Aude		
Observation			
Observation:			
D	a. Dente en mark () 1 ()	4	
Remarques : Mise à l'eau diffic	ue. Portage materiel et embar	cauon	

DONNEES GENERALES PLAN D'EAU

Plan d'eau : Types (naturel, artificie Organisme / opérateur : Organisme demandeur	l): Artificiel : STE : Lionel Bochu & Aurélien Morin	Code lac : <mark>Campagne</mark> Marché n° :	
	PRELEVEMENTS ZONE EUPHOTIQUE		
Prélèvement pour ana	alyses physico-chimiques et phytoplancton		
Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	18:00 0 à 3.8 m 10 L Nbre de prélèvements : 9 5 m tuyau intégrateur		
Chlorophylle:	OUI Volume filtré sur place : 750 ml		
Phytoplancton:	OUI Ajout de lugol : 5 ml		
Prélèvement pour ana	alyses micropolluants		OUI
Heure de relevé : Profondeur : Prélèvement : Volume prélevé :	17:40 0 à 3.8 m 1 pvlt tous les 0.5m 10 L Bouteille téflon 1.2L		
Matériel employé :	boutefile terion 1,2L		
Matériel employé :	PRELEVEMENTS DE FOND		OUI
			OUI
	PRELEVEMENTS DE FOND alyses physico-chimiques		
Prélèvement pour ana	PRELEVEMENTS DE FOND alyses physico-chimiques		OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Volume prélevé :	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants 17:10 16 m 16 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L		OUI
Prélèvement pour ans Prélèvement pour ans Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants 17:10 16 m 16 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L		OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Volume prélevé : Matériel employé : Remarques prélèvement :	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants 17:10 16 m 16 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L REMISE DES ECHANTILLONS		OUI
Prélèvement pour ans Prélèvement pour ans Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants 17:10 16 m 16 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L REMISE DES ECHANTILLONS uphotique: 624481 Bon de transport :		OUI OUI

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES PHYSICO-CHIMIQUES

Plan d'eau :PuyvaladorDate :06/05/19Types (naturel, artificiel ...) :ArtificielCode lac :Y1005163

Organisme / opérateur : STE : Lionel Bochu & Aurélien Morin Campagne : 1

Organisme demandeur : Agence de l'Eau RMC Marché n° : 160000037
Page 4/6

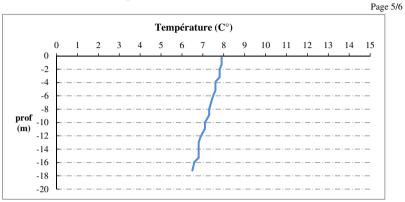
TRANSPARENCE

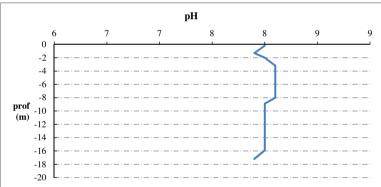
Disque Secchi = 1.5 m Zone euphotique (x 2,5 secchi) = 3.75 m

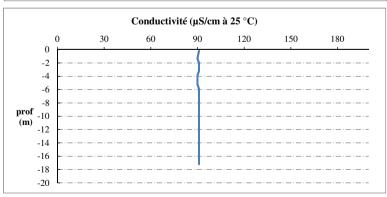
PROFIL VERTICAL

Moyen de mesure utilisé : ☑ in situ à chaque profondeur ☐ en surface dans un récipient

Type de pvlt	Prof.	Temp	pН	Cond.	O2	02	Matières organiques dissoutes	Heure
	(m)	(° C)		(µS/cm 25°)	(%)	(mg/l)	ppb	
5.00	-0.2	7.9	8.0	91	106	10.7	18.6	18:00
Prélèvement de la zone	-1.3	7.9	7.9	90	106	10.7	19.1	
euphotique	-2.0	7.8	8.0	91	106	10.7	19.4	
cupilotique	-3.2	7.8	8.1	91	106	10.7	19.8	
	-3.9	7.6	8.1	90	106	10.7	20.0	
	-5.2	7.6	8.1	90	105	10.7	20.0	
	-5.9	7.5	8.1	91	105	10.7	20.0	
	-6.9	7.4	8.1	91	104	10.6	20.0	
	-8.0	7.3	8.1	91	103	10.5	19.6	
	-8.9	7.3	8.0	91	101	10.3	19.8	
	-10.0	7.1	8.0	91	101	10.3	18.9	
	-10.9	7.1	8.0	91	100	10.2	18.3	
	-12.1	6.9	8.0	91	101	10.4	18.4	
	-13.0	6.8	8.0	91 91	101	10.5	18.4	
	-13.9	6.8	8.0	91	101	10.5	18.1	
	-15.3	6.8	8.0	91	101	10.4	18.0	
Pvlt de fond	-15.9	6.6	8.0	91	100	10.4	18.0	17:10
	-17.2	6.5	7.9	91	99	10.3	18.0	
						<u>;</u>		
						<u> </u>		
						: :		
						{ ;		
						<u> </u> 		
						 !		
						(
						<u> </u>		


DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE


 Plan d'eau :
 Puyvalador
 Date :
 06/05/19

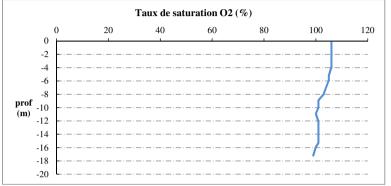

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 Y1005163

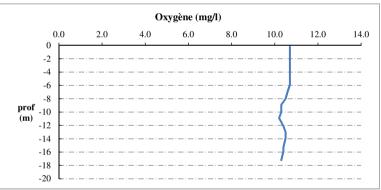
 Organisme / opérateur :
 STE : Lionel Bochu & Aurélien Morin
 Campagne : 1

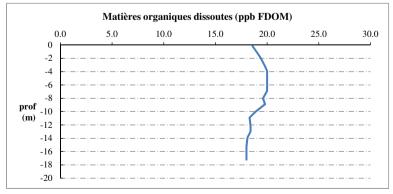
 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE


 Plan d'eau :
 Puyvalador
 Date :
 06/05/19


 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 Y1005163


 Organisme / opérateur :
 STE : Lionel Bochu & Aurélien Morin
 Campagne : 1

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

Page 6/6

DONNEES GENERALES PLAN D'EAU

 Plan d'eau :
 Puyvalador
 Date :
 12/06/2019

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 Y1005163

 Organisme / opérateur :
 STE : Aurélien Morin & Adrien Bonnefoy
 Campagne : 2

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

Page 1/6

LOCALISATION PLAN D'EAU

	LOCALDIDATIO	SITTEMITE EITE
Commune :	Formiguères	Type: A1
Lac marnant :	oui	retenues de hautes montagnes, profondes
Temps de séjour :	38 jours	
Superficie du plan d'eau :	91 ha	
Profondeur maximale :	17 m	

∢

Angle de prise de vue

STATION

Photo du site :

Relevé phytoplanctonique et physico-chimique en plan d'eau

Dlan diagna	Duyyolodor	Doto . 10/06/10
Plan d'eau : Types (naturel, artificiel	Puyvalador): Artificiel	Date: 12/06/19 Code lac: Y1005163
Organisme / opérateur :	STE : Aurélien Morin & Adrien Bonnefoy	Campagne: 2
Organisme demandeur :	Agence de l'Eau RMC	Marché n°: 160000037
organisme demandeur .	rigence de l'Edd Rivie	Page 2/6
	STATION	
Coordonnée de la station	: Système de Géolocalisation Portable	Carte IGN
Lambert 93 :	X: 628139 Y: 61722	81 alt.: 1421 m
WGS 84 (syst.internation		
Profondeur :	21.7 m	
rioionueui .	21.7 III;	
Météo:	1- temps sec ensoleillé 2- faiblement nuageux	3- temps humide
	4- pluie fine 5- orage-pluie forte	6- neige
	7- gel	
P atm. :	854 hPa	
Vent :	0- nul	
Conditions d'observation		
Surface de l'eau :	1- lisse 🗌 2- faiblement agitée 💆 3- agitée 🔲 4- très agit	ée
Hauteur de vagues :	0.2 m	
Bloom algal:	NON	
Marnage:	OUI Hauteur de bande : 1.2 m	ôte échelle : 1419.8 m
G	componenta minto milas do casissomos da mbato alcastom e mis	on alone de la thomasoline
Campagne 2	campagne printanière de croissance du phytoplancton : mise	en piace de la thermocline
	REMARQUES ET OBSERVATIONS	
	REMIRQUES ET OBSERVITTORS	
Contact préalable :	EDF GU Aude	
Observation:		
Remarques :	Masse d'eau homogène. Réchauffement minime.	

DONNEES GENE	CRALES PLAN D'EAU	
Plan d'eau :	Puyvalador	Date: 12/06/19
Types (naturel, artificie		Code lac: Y1005163
Organisme / opérateur :	· · · · · · · · · · · · · · · · · · ·	Campagne: 2
Organisme demandeur	: Agence de l'Eau RMC	Marché n°: 160000037
	PRELEVEMENTS ZONE EUPHOTIQUE	Page 3/6
	TREEE VENERALS ZOINE EUTHOTIQUE	
Prélèvement pour ana	alyses physico-chimiques et phytoplancton	
Heure de relevé :	11:00	
Profondeur:	0 à 9.5 m	
Volume prélevé :	8 L Nbre de prélèvements : 5	
Matériel employé :	14 m tuyau integrateur	
Chlorophylle:	OUI Volume filtré sur place : 1000 ml	
Phytoplancton:	OUI Ajout de lugol : 5 ml	
Prélèvement neur en	nlyses missenallyants arganiques	OIII
1 relevement pour ana	alyses micropolluants organiques	OUI
Heure de relevé :	10:30	
Profondeur:	0 à 9.5 m	
Prélèvement :	2 plvt tous les 1,20 m	
Volume prélevé :	19 L Nbre de prélèvements: 16	
36 (() 1)	D . 11 ./C 1.01	
Matériel employé :	Bouteille téflon 1,2L	
Matériel employé :	Bouteille téflon 1,2L PRELEVEMENTS DE FOND	OUI
		OUI
Prélèvement pour ana	PRELEVEMENTS DE FOND	
Prélèvement pour ana	PRELEVEMENTS DE FOND alyses physico-chimiques	OUI
Prélèvement pour ana	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants organiques	OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Volume prélevé :	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants organiques 10:00 20 m 21 L Nbre de prélèvements : 4	OUI
Prélèvement pour ans Prélèvement pour ans Heure de relevé : Profondeur :	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants organiques 10:00 20 m	OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Volume prélevé :	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants organiques 10:00 20 m 21 L Bouteille téflon 5,3 L	OUI
Prélèvement pour ans Prélèvement pour ans Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants organiques 10:00 20 m 21 L Bouteille téflon 5,3 L	OUI
Prélèvement pour ans Prélèvement pour ans Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants organiques 10:00 20 m 21 L Bouteille téflon 5,3 L	OUI
Prélèvement pour ans Prélèvement pour ans Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants organiques 10:00 20 m 21 L Bouteille téflon 5,3 L	OUI
Prélèvement pour ans Prélèvement pour ans Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants organiques 10:00 20 m 21 L Bouteille téflon 5,3 L	OUI
Prélèvement pour ans Prélèvement pour ans Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants organiques 10:00 20 m 21 L Bouteille téflon 5,3 L	OUI
Prélèvement pour ans Prélèvement pour ans Heure de relevé : Profondeur : Volume prélevé : Matériel employé : Remarques prélèvement :	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants organiques 10:00 20 m 21 L Nbre de prélèvements : 4 Bouteille téflon 5,3 L	OUI OUI
Prélèvement pour ans Prélèvement pour ans Heure de relevé : Profondeur : Volume prélevé : Matériel employé : Remarques prélèvement :	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants organiques 10:00 20 m 21 L Nbre de prélèvements : 4 Bouteille téflon 5,3 L REMISE DES ECHANTILLONS suphotique: 624482 Bon de transport : XY	OUI OUI (406364530EE
Prélèvement pour ans Prélèvement pour ans Heure de relevé : Profondeur : Volume prélevé : Matériel employé : Remarques prélèvement :	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants organiques 10:00 20 m 21 L Nbre de prélèvements : 4 Bouteille téflon 5,3 L REMISE DES ECHANTILLONS suphotique: 624482 Bon de transport : XY	OUI OUI
Prélèvement pour ans Prélèvement pour ans Heure de relevé : Profondeur : Volume prélevé : Matériel employé : Remarques prélèvement :	PRELEVEMENTS DE FOND alyses physico-chimiques alyses micropolluants organiques 10:00 20 m 21 L Nbre de prélèvements : 4 Bouteille téflon 5,3 L REMISE DES ECHANTILLONS suphotique: 624482 Bon de transport : XY	OUI OUI (406364530EE
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Volume prélevé : Matériel employé : Remarques prélèvement : Code prélèvement zone e Code prélèvement de fon	PRELEVEMENTS DE FOND alyses physico-chimiques 10:00 20 m 21 L Bouteille téflon 5,3 L REMISE DES ECHANTILLONS uphotique: 624482 Bon de transport: XY d: 624534 Bon de transport: XY Chrono CARSO Ville: Rivesaltes	OUI OUI (406364530EE

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES PHYSICO-CHIMIQUES

 Plan d'eau :
 Puyvalador
 Date :
 12/06/19

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 Y1005163

 Organisme / opérateur :
 STE : Aurélien Morin & Adrien Bonnefoy
 Campagne : 2

Organisme demandeur : Agence de l'Eau RMC Marché n° : 160000037

Page 4/6

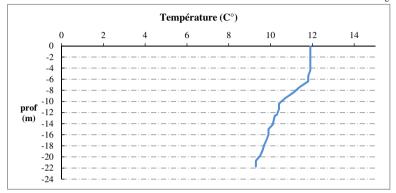
TRANSPARENCE

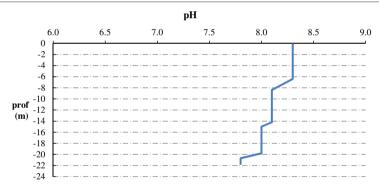
Disque Secchi = 3.8 m Zone euphotique (x 2,5 secchi) = 9.5 m

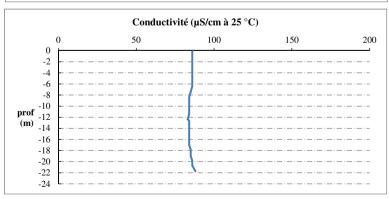
PROFIL VERTICAL

Type de pvlt	Prof.	Temp	pН	Cond.	02	O2	Matières organiques dissoutes	Heure
	(m)	(°C)		(µS/cm 25°)	(%)	(mg/l)	ppb	
į	-0.1	11.9	8.3	86	101	9.1	11.5	9:30
į	-1.4	11.9	8.3	86	101	9.1	11.9	
į	-2.5	11.9	8.3	86	100	9.1	12.0	
Prélèvement	-3.4	11.9	8.3	86	100	9.1	11.9	
de la zone	-4.4	11.9	8.3	86	100	9.1	11.9	
euphotique	-5.4	11.8	8.3	86	100	9.1	11.9	
	-6.4	11.8	8.3	86	100	9.1	11.9	
į	-7.4	11.4	8.2	85	99	9.1	11.9	
1	-8.4	11.1	8.1	84	99	9.2	11.9	
	-9.4	10.7	8.1	84	100	9.3	11.8	
i	-10.4	10.4	8.1	84	100	9.4	10.8	
	-11.4	10.4	8.1	84	100	9.4	10.8	
	-12.4	10.3	8.1	83	100	9.4	10.8	
	-12.6	10.2	8.1	84	99	9.4	10.8	
:	-14.2	10.1	8.1	84	99	9.4	11.0	
:	-15.0	9.9	8.0	84	99	9.4	11.1	
:	-16.0	9.9	8.0	84	99	9.4	11.5	
	-17.0	9.8	8.0	84	99	9.4	11.6	
	-17.8	9.7	8.0	85	99	9.4	11.8	
:	-19.0	9.6	8.0	85	99	9.4	12.0	
:	-19.8	9.5	8.0	86	98	9.5	12.3	
:	-20.7	9.3	7.8	86	94	9.0	12.7	
Pvlt de fond	-21.7	9.3	7.8	88	90	8.7	13.9	9:40
						ļ		
						ļ		
						ļ		
	•••••					:		
······						(!		
:						:		•••••
		({ !		
		(({		
						i 		
		<u>,</u>	!		!	!	!	

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE


 Plan d'eau :
 Puyvalador
 Date :
 12/06/19


 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 Y1005163

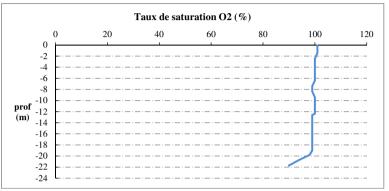

 Organisme / opérateur :
 STE : Aurélien Morin & Adrien Bonnefoy
 Campagne : 2

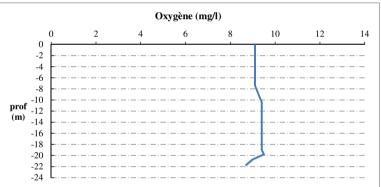
 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

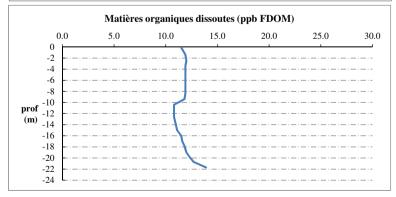
 Page 5/6

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE


 Plan d'eau :
 Puyvalador
 Date :
 12/06/19


 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 Y1005163


 Organisme / opérateur :
 STE : Aurélien Morin & Adrien Bonnefoy
 Campagne : 2

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

 Page 6/6

DONNEES GENERALES PLAN D'EAU

 Plan d'eau :
 Puyvalador
 Date :
 10/07/2019

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 Y1005163

 Organisme / opérateur :
 STE : Audrey Péricat & Adrien Bonnefoy
 Campagne : 3

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

Page 1/6

LOCALISATION PLAN D'EAU

Commune: Formiguères Type: A1
Lac marnant: oui retenues de hautes montagnes, profondes
Temps de séjour: 38 jours

Superficie du plan d'eau : 91 ha **Profondeur maximale :** 17 m

Carte (extrait SCAN 25 IGN 1/25 000)

Photo du site :

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES GENE	RALES PLAN D'EAU	
Plan d'eau :	Puyvalador	Date: 10/07/19
Types (naturel, artificiel): Artificiel	Code lac: Y1005163
Organisme / opérateur :	STE : Audrey Péricat & Adrien Bonnefoy	Campagne: 3
Organisme demandeur :		Marché n°: 160000037
		Page 2/6
	STATION	
Coordonnée de la station	système de Géolocalisation Portable	Carte IGN
Lambert 93:	X: 628141 Y: 6172274	alt.: 1421 m
WGS 84 (syst.internatio	nnal GPS ° '' '): 2°07′29,4" E 42°38′47,6'	N
Profondeur:	20 m	
Météo:	1- temps sec ensoleillé	3- temps humide 6- neige
P atm. :	860 hPa	
Vent :	0- nul ☐ 1- faible ☑ 2- moyen ☐ 3- fort	
Conditions d'observation Surface de l'eau :	n:] 1- lisse 🔽 2- faiblement agitée 🗌 3- agitée 🔲 4- très agitée	÷
Hauteur de vagues :	0.05 m	
Bloom algal:	OUI	
Marnage:	OUI Hauteur de bande : 1.3 m Cô	te échelle : 1419.69 m
Campagne 3	campagne estivale : thermocline bien installée, deuxième p phytoplancton	hase de croissance des
	REMARQUES ET OBSERVATIONS	
Contact préalable :	EDF GU Aude	
Observation :	Quelques flocs dans l'eau - intervention après bloom algal Période de prédation (présence de zooplancton)	
Remarques:		

DONNEES GENERALES PLAN D'EAU

Plan d'eau :	Pu	yvalador		Date :	10/07/19
Types (naturel, artificiel): Arti	ficiel		Code lac	Y1005163
Organisme / opérateur :	STE	: Audrey Péricat &	Adrien Bonnefoy	Campag	me: 3
Organisme demandeur:	Age	nce de l'Eau RMC		Marché n	°: 160000037
					Page 3/6
	PRELE	VEMENTS ZONI	E EUPHOTIQU	JE	
- 41					
Prélèvement pour anal	yses physico-ch	imiques et phytop	lancton		
Heure de relevé :	11:30				
Profondeur:	0 à 11 m				
Volume prélevé :	8 L	Nbre de pre	élèvements: 4		
Matériel employé :	20 m tuyau integr	ateur			
Chlamadadla	OUL W-1	6:14	10001		
Chlorophylle:	OUI VOI	ume filtré sur place :	1000 ml		
Phytoplancton:	OUI	Ajout de lugol :	5 ml		

D (1)		4			OHI
Prélèvement pour anal	yses micropollu	ants			OUI
Heure de relevé :	11:30				
Profondeur :	0 à 11 m				
Prélèvement :	1 plvmt tous les 1	m			
Volume prélevé :	12 L	Nbre de pre	élèvements: 1	1	
Matériel employé :	Bouteille téflon 1	2L			
	D	DELEVEMENTS	DE EOND		OUI
	P	RELEVEMENTS	DE FOND		OUI
Prélèvement pour anal			DE FOND		
Prélèvement pour anal	yses physico-ch	imiques	DE FOND		OUI
Prélèvement pour anal	yses physico-ch	imiques	DE FOND		
Prélèvement pour anal	yses physico-ch yses micropollu	imiques	DE FOND		OUI
	yses physico-ch	imiques	DE FOND		OUI
Prélèvement pour anal Heure de relevé :	yses physico-ch yses micropollu 10:30	imiques ants	DE FOND Elèvements: 3		OUI
Prélèvement pour anal Heure de relevé : Profondeur :	yses physico-ch yses micropollu 10:30 19 m	imiques ants Nbre de pre			OUI
Prélèvement pour anal Heure de relevé : Profondeur : Volume prélevé :	yses physico-ch yses micropollu 10:30 19 m 16 L	imiques ants Nbre de pre			OUI
Prélèvement pour anal Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	yses physico-ch yses micropollu 10:30 19 m 16 L	imiques ants Nbre de pre			OUI
Prélèvement pour anal Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	yses physico-ch yses micropollu 10:30 19 m 16 L	imiques ants Nbre de pre			OUI
Prélèvement pour anal Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	yses physico-ch yses micropollu 10:30 19 m 16 L	imiques ants Nbre de pre			OUI
Prélèvement pour anal Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	yses physico-ch yses micropollu 10:30 19 m 16 L	imiques ants Nbre de pre			OUI
Prélèvement pour anal Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	yses physico-ch yses micropollu 10:30 19 m 16 L	imiques ants Nbre de pre			OUI
Prélèvement pour anal Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	yses physico-ch yses micropollu 10:30 19 m 16 L Bouteille téflon 5	imiques ants Nbre de pre	Slèvements : 3		OUI
Prélèvement pour anal Heure de relevé : Profondeur : Volume prélevé : Matériel employé : Remarques prélèvement :	yses physico-ch yses micropollu 10:30 19 m 16 L Bouteille téflon 5	imiques ants Nbre de pre 3 L MISE DES ECHA	Slèvements : 3		OUI OUI
Prélèvement pour anal Heure de relevé : Profondeur : Volume prélevé : Matériel employé : Remarques prélèvement : Code prélèvement zone eu	yses physico-ch yses micropollu 10:30 19 m 16 L Bouteille téflon 5	imiques ants Nbre de pre 3 L MISE DES ECHA 624483 Bon de trar	Slèvements : 3 NTILLONS ISPOrt :	XY4063644:	OUI OUI
Prélèvement pour anal Heure de relevé : Profondeur : Volume prélevé : Matériel employé : Remarques prélèvement :	yses physico-ch yses micropollu 10:30 19 m 16 L Bouteille téflon 5	imiques ants Nbre de pre 3 L MISE DES ECHA	Slèvements : 3 NTILLONS ISPOrt :	XY4063644: XY4063644	OUI OUI
Prélèvement pour anal Heure de relevé : Profondeur : Volume prélevé : Matériel employé : Remarques prélèvement : Code prélèvement zone eu Code prélèvement de fond	yses physico-ch yses micropollu 10:30 19 m 16 L Bouteille téflon 5.	Nbre de pro 3 L MISE DES ECHA 624483 Bon de trar 624535 Bon de trar	Slèvements : 3 NTILLONS ISPORT :		OUI OUI
Prélèvement pour anal Heure de relevé : Profondeur : Volume prélevé : Matériel employé : Remarques prélèvement : Code prélèvement zone eu Code prélèvement de fond Dépôt : TNT	yses physico-ch yses micropollu 10:30 19 m 16 L Bouteille téflon 5.	Nbre de pro 3 L MISE DES ECHA 624483 Bon de trar 624535 Bon de trar 8SO Ville	Elèvements : 3 NTILLONS ISPORT : ::Sport : ::Rivesaltes		OUI OUI
Prélèvement pour anal Heure de relevé : Profondeur : Volume prélevé : Matériel employé : Remarques prélèvement : Code prélèvement zone eu Code prélèvement de fond	yses physico-ch yses micropollu 10:30 19 m 16 L Bouteille téflon 5.	imiques ants Nbre de pro 3 L MISE DES ECHA 624483 Bon de trar 624535 Bon de trar RSO Ville	Elèvements : 3 NTILLONS ISPORT : ::Sport : ::Rivesaltes		OUI OUI

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES PHYSICO-CHIMIQUES

Plan d'eau :PuyvaladorDate :10/07/19Types (naturel, artificiel ...) :ArtificielCode lac :Y1005163

 Organisme / opérateur :
 STE : Audrey Péricat & Adrien Bonnefoy
 Campagne : 3

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 1600

Agence de l'Eau RMC Marché n° : 160000037 Page 4/6

TRANSPARENCE

Disque Secchi = 4.4 m Zone euphotique (x 2,5 secchi) = 11 m

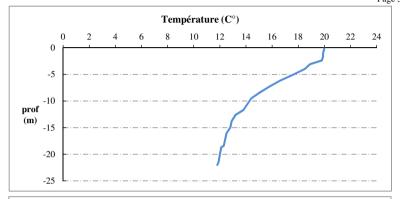
PROFIL VERTICAL

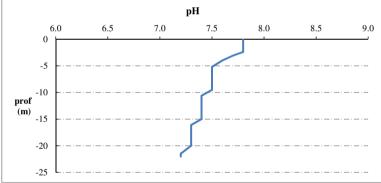
·

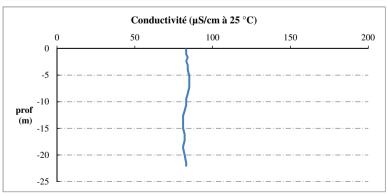
Moyen de mesure utilisé : ☑ in situ à chaque profondeur ☐ en surface dans un récipient

Type de pvlt	Prof.	Temp	pН	Cond.	O2	O2	Matières organiques dissoutes	Heure
	(m)	(°C)		(μS/cm 25°)	(%)	(mg/l)	ppb	
į	-0.1	20.0	7.8	83	102	7.9	8.1	10:10
į	-1.1	19.9	7.8	83	102	7.9	8.3	
į	-1.7	19.9	7.8	84	102	7.9	8.3	
į	-2.4	19.8	7.8	83	102	7.9	8.3	
Prélèvement	-3.1	18.9	7.7	84	103	8.1	8.3	
de la	-4.0	18.5	7.6	84	100	7.9	9.1	
zone	-5.2	17.5	7.5	85	94	7.6	10.1	
euphotique	-6.2	16.6	7.5	85	92	7.6	10.9	
i i	-7.3	15.8	7.5	85	91	7.7	10.3	
•	-8.5	15.0	7.5	84	89	7.6	10.2	
•	-9.5	14.4	7.5	83	87	7.5	9.9	
:	-10.6	14.1	7.4	83	86	7.5	10	
	-11.7	13.8	7.4	82	83	7.3	11.2	
:	-12.6	13.2	7.4	81	80	7.1	11.7	
:	-13.8	12.9	7.4	81	80	7.1	11.7	
	-15.0	12.8	7.4	81	80	7.1	11.2	
:	-16.1	12.5	7.3	82	79	7.1	11.2	
	-17.3	12.4	7.3	82	77	7	11.2	
:	-18.4	12.3	7.3	81	76	6.9	11.3	
:	-18.7	12.1	7.3	81	72	6.6	11.5	
	-20.0	12.0	7.3	82	71	6.5	11.7	
	-21.5	11.9	7.2	83	69	6.3	11.7	
Pvlt de fond	-22.0	11.8	7.2	83	60	5.5	11.7	
:								
:							:	
						:		
						 !		

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE


 Plan d'eau :
 Puyvalador
 Date :
 10/07/19


 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 Y1005163

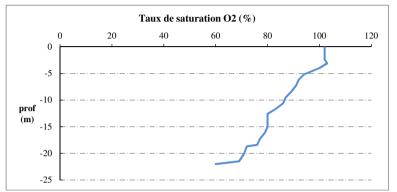

 Organisme / opérateur :
 STE : Audrey Péricat & Adrien Bonnefoy
 Campagne : 3

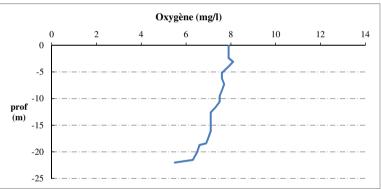
 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

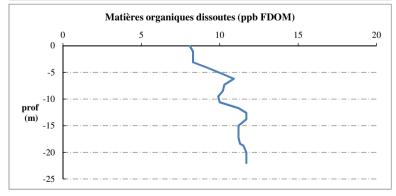
 Page 5/6

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE


 Plan d'eau :
 Puyvalador
 Date :
 10/07/19


 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 Y1005163


 Organisme / opérateur :
 STE : Audrey Péricat & Adrien Bonnefoy
 Campagne : 3

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

Page 6/6

DONNEES GENERALES PLAN D'EAU

 Plan d'eau :
 Puyvalador
 Date :
 11/09/2019

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 Y1005163

 Organisme / opérateur :
 STE : Lionel Bochu & Ingrid Mathieu
 Campagne : 4

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

 Page 1/7

LOCALISATION PLAN D'EAU

Commune:	Formiguères	Type:	A1
Lac marnant :	oui	retenues de	hautes montagnes, profondes
Temps de séjour :	38 jours		
Superficie du plan d'eau :	91 ha		
Profondeur maximale :	17 m		
	Carte (extrait SCAN 25 I	GN 1/25 000,)

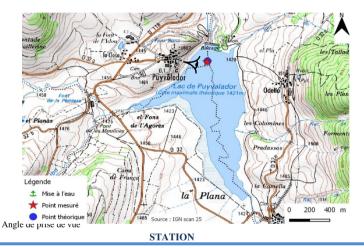


Photo du site:

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES GENE	ERALES PLAN D'EAU	
Plan d'eau :	Puyvalador	Date: 11/09/19
Types (naturel, artificie	el): Artificiel	Code lac: Y1005163
Organisme / opérateur	: STE : Lionel Bochu & Ingrid Mathieu	Campagne: 4
Organisme demandeur	: Agence de l'Eau RMC	Marché n°: 160000037
	CITATION	Page 2/7
Coordonnée de la statio	STATION	Cort. ICN
Coordonnee de la statio	on: Système de Géolocalisation Portable	Carte IGN
Lambert 93 :	X: 628141 Y: 6172274	alt.: 1421 m
WGS 84 (syst.internation		
	<u> </u>	.:
Profondeur:	17 m	
Météo :	1- temps sec ensoleillé	3- temps humide
	4- pluie fine 5- orage-pluie forte	6- neige
	7- gel 8- fortement nuageux	
P atm. :	864 hPa	
Vent :	□ 0- nul □ 1- faible □ 2- moyen □ 3- fort	
Conditions d'observation	on:	
Surface de l'eau :	1- lisse 🗸 2- faiblement agitée 🗌 3- agitée 🔲 4- très agitée	2
Hauteur de vagues :	0.02 m	
Bloom algal:	NON	
Marnage:	OUI Hauteur de bande : 6 m Cô	te échelle : 1414,99
Campagne 4	campagne de fin d'été : fin de stratification avant baisse	e de la température
	REMARQUES ET OBSERVATIONS	
Contact préalable :	EDF GU Aude	
Observation :	Brassage des eaux - masse d'eau homogène	
Remarques :	Pluie forte pas d'orage Eaux turbides, chargées en matières organiques	

S.T.E Sciences Techniques de l'Environnement S.T.E Sciences Techniques de l'Environnement

DONNEES GENE	RALES PLAN D'EAU	
Plan d'eau :	Puyvalador Da	ate: 11/09/19
Types (naturel, artificiel): Artificiel Co	ode lac: Y1005163
Organisme / opérateur :	STE : Lionel Bochu & Ingrid Mathieu C	Campagne : 4
Organisme demandeur :	Agence de l'Eau RMC M	larché n° : 160000037
		Page 3/7
	PRELEVEMENTS ZONE EUPHOTIQUE	
Prélèvement pour ana	lyses physico-chimiques et phytoplancton	
Heure de relevé :	10:40	
Profondeur:	0 à 5.5 m	
Volume prélevé :	8 L Nbre de prélèvements : 8	
Matériel employé :	9 m tuyau intégrateur	
Chlorophylle:	OUI Volume filtré sur place : 500 ml	
Phytoplancton:	OUI Ajout de lugol : 5 ml	
Prélèvement pour ana	lyses micropolluants	OUI
Heure de relevé :	10:50	
Profondeur :	0 à 5.5 m	
Prélèvement :	1 pylt tous les 0,5 m	
Volume prélevé :	11 L Nbre de prélèvements : 10	
Matériel employé :	Bouteille téflon 1,2L	
Matériel employé :	PRELEVEMENTS DE FOND	OUI
		OUI OUI
	PRELEVEMENTS DE FOND	
Prélèvement pour ana	PRELEVEMENTS DE FOND llyses physico-chimiques llyses micropolluants	OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé :	PRELEVEMENTS DE FOND llyses physico-chimiques llyses micropolluants 10:00	OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur :	PRELEVEMENTS DE FOND llyses physico-chimiques llyses micropolluants 10:00 15 m	OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé :	PRELEVEMENTS DE FOND llyses physico-chimiques llyses micropolluants 10:00 15 m	OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	PRELEVEMENTS DE FOND llyses physico-chimiques llyses micropolluants 10:00 15 m 16 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L	OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Volume prélevé :	PRELEVEMENTS DE FOND llyses physico-chimiques llyses micropolluants 10:00 15 m 16 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L	OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	PRELEVEMENTS DE FOND llyses physico-chimiques llyses micropolluants 10:00 15 m 16 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L	OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	PRELEVEMENTS DE FOND llyses physico-chimiques llyses micropolluants 10:00 15 m 16 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L	OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	PRELEVEMENTS DE FOND llyses physico-chimiques llyses micropolluants 10:00 15 m 16 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L	OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	PRELEVEMENTS DE FOND llyses physico-chimiques llyses micropolluants 10:00 15 m 16 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L	OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	PRELEVEMENTS DE FOND llyses physico-chimiques llyses micropolluants 10:00 15 m 16 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L	OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	PRELEVEMENTS DE FOND llyses physico-chimiques llyses micropolluants 10:00 15 m 16 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L REMISE DES ECHANTILLONS aphotique: 624484 Bon de transport : XY4	OUI
Prélèvement pour ana Prélèvement pour ana Heure de relevé : Profondeur : Volume prélevé : Matériel employé : Remarques prélèvement : Code prélèvement zone et	PRELEVEMENTS DE FOND llyses physico-chimiques llyses micropolluants 10:00 15 m 16 L Nbre de prélèvements : 3 Bouteille téflon 5,3 L REMISE DES ECHANTILLONS uphotique: 624484 Bon de transport : XY4 1 : 624536 Bon de transport : XY4 Chrono	OUI OUI

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES PHYSICO-CHIMIQUES

 Plan d'eau :
 Puyvalador
 Date :
 11/09/19

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 Y1005163

 Organisme / opérateur :
 STE : Lionel Bochu & Ingrid Mathieu
 Campagne : 4

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

 Page 4/7

TRANSPARENCE

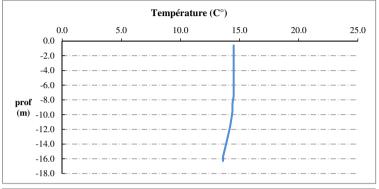
Disque Secchi =	2.2 m	Zone euphotique (x 2,5 secchi) =	5.5 m

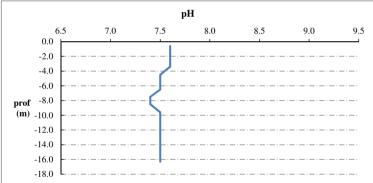
PROFIL VERTICAL

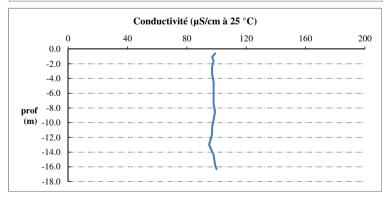
Moyen de mesure utilisé :	✓ in situ à chaque profondeur	en surface dans un récipient
---------------------------	-------------------------------	------------------------------

į							Matières	
Type de pvlt	Prof.	Temp	pН	Cond.	O2	O2	organiques	Heure
z, pe de prit							dissoutes	
įį	(m)	(° C)		(µS/cm 25°)	(%)	(mg/l)	ppb	
į	-0.6	14.5	7.6	99	99	8.7	15.1	10:06
i.	-1.1	14.5	7.6	97	98	8.5	15.1	
Prélèvement	-1.6	14.5	7.6	98	97	8.4	15.1	
de la zone	-2.4	14.5	7.6	97	97	8.5	15.1	
euphotique	-3.4	14.5	7.6	97	97	8.4	15.1	
ľ	-4.5	14.5	7.5	98	97	8.4	15.1	
Ï	-5.2	14.5	7.5	98	96	8.4	15.3	
	-6.5	14.5	7.5	98	97	8.4	15.3	
-	-7.5	14.5	7.4	98	96	8.3	15.6	
	-8.5	14.4	7.4	99	92	8.0	16.4	
	-9.6	14.4	7.5	98	93	8.1	16.7	
	-10.6	14.3	7.5	97	97	8.4	17.1	
:	-11.6	14.2	7.5	97	97	8.4	19.2	
	-13.0	14.0	7.5	95	97	8.5	19.0	
	-14.4	13.8	7.5	98	98	8.6	19.4	
Pvlt de fond	-15.7	13.6	7.5	99	97	8.6	19.0	
······	-16.3	13.6	7.5	100	97	8.6	16.3	
						}		
∤								
		·						
								
<u>j</u>						:	!	

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE


 Plan d'eau :
 Puyvalador
 Date :
 11/09/19


 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 Y1005163

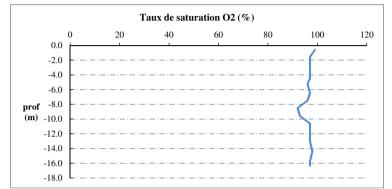

 Organisme / opérateur :
 STE : Lionel Bochu & Ingrid Mathieu
 Campagne : 4

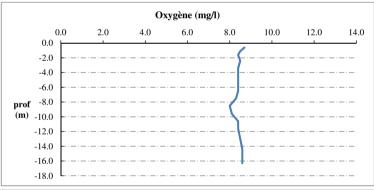
 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

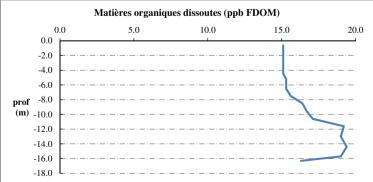
 Page 5/7

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE


 Plan d'eau :
 Puyvalador
 Date :
 11/09/19


 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 Y1005163


 Organisme / opérateur :
 STE : Lionel Bochu & Ingrid Mathieu
 Campagne : 4

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000037

Page 6/7

Prélèvement de sédiments pour analyses physico-chimiques

Plan d'eau : Types (naturel, artificiel) : Organisme / opérateur : Organisme demandeur :	Puyvalador Artificiel STE : Lionel B Agence de l'E		Ingrid Mathieu	ı	Date : Code lac : Campagne : Marché n° :	11/09/2019 Y1005163 4 160000037 Page 7/7
	CONDI	TIONS DU	MILIEU			
Météo 2- faibl	os sec ensoleillé ement nuageux os humide	✓	4- pluie fine 5- orage-plui 6- neige	e forte	7- gel 8- fortement	nuageux
Vent :	☐ 0- nul ☑ 1- faible		2- moyen 3- fort		4- brise 5- brise mode	éré
Surface de l'eau :	☐ 1- lisse ✓	2- faiblemen	t agitée 🔲	3- agitée	4- très agitée	
✓ mort et sédimentation du pland ✓ sédimentation de MES de tout	e nature	MATERIEI				TOWNS OF
✓ benne Ekmann	pelle à main	ELEVEME	Autre :			
Localisation générale de la zone de (correspond au point de plus grand			X :	628141	Y:	6172274
Pélèvements		1	2	3	4	5
Profondeur (en m)		17	17	17	17	
Epaisseur échantillonnée			•			
récents (< 2cm) anciens (> 2cm) Granulométrie dominante		х	х	Х	х	
graviers					<u> </u>	
sables					ļ	
limons					<u> </u>	
vases argile		X	Х	Х	X	
Aspect du sédiments					·····	
homogène hétérogène		Х	х	Х	Х	
couleur		gris /noir	gris /noir	gris /noir	gris /noir	
odeur		non	non	non	non	
Présence de débris végétaux non	décomposés	non	non	non	non	
Présence d'hydrocarbures		non	non	non	non	
Présence d'autres débris		non	non	non	non	
	REMISE D	ES ECHAN	TILLONS			
Code prélèvement :		Bon de trans		Х	V506246867I	Œ.
TNT Chrono LDA 2 Dépôt: Date: 11/ Réception au laboratoire le :	6 09/19 12/09/19	Heure:	Perpignan 16:50			
reception au tabolatorie le .	12/03/19	1				